BMJ Open

BMJ Open

Identifying the patterns of non-communicable diseases (NCDs) in developed eastern coastal China: inspiration for NCDs prevention and cure in developing regions

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-016007
Article Type:	Research
Date Submitted by the Author:	18-Jan-2017
Complete List of Authors:	Yu, Dehua Shi, Jianwei Zhang, Hanzhi Wang, Zhaoxin Lu, Yuan Zhang, Bin Pan, Ying Wang, Bo Sun, Pengfei
Primary Subject Heading :	Health services research
Secondary Subject Heading:	Evidence based practice, Global health, Health services research, Public health
Keywords:	Non-communicable diseases, Electronic Health Record, Eastern coastal China, Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

SCHOLARONE[™] Manuscripts

je 1 of 29		BMJ Open
	1	Identifying the patterns of non-communicable diseases
	2	(NCDs) in developed eastern coastal China: inspiration for
	3	NCDs prevention and cure in developing regions
	4 5	Dehua Yu, PhD ^{1#} , Jianwei Shi, PhD ^{12#} , Hanzhi Zhang, MD ¹ , Zhaoxin Wang, PhD ^{12*} , Yuan Lu, MD ¹ , Bin Zhang, MD ¹ , Ying Pan, MD ¹ , Bo Wang, PhD ¹ , Pengfei Sun, BD ²
	6	1 Department of General Medicine, Yangpu Hospital, Tongji University School of
	7	Medicine, Shanghai, 200090, China
	8	2 Tongji University School of Medicine, Shanghai, 200092, China
	0	
	9	
	10 11	Dehua Yu: ydn1404@sina.com Jianwei Shi: shijianwei amy@126.com
	11	Hanzhi Zhang: drchan001@163.com
	13	Zhaoxin Wang: supercell002@sina.com
	14	Yuan Lu: lussy@126.com
	15	Bin Zhang: metamophore@aliyun.com
	16	Ying Pan: hshpanying@163.com
	17 18	Bo Wang: bowang13241@163.com Pengfei Sun: 18817599414@163.com
	19	
	20	# These authors are co-first authors on this paper.
	21	*Corresponding author:
	21	Zhaovin Wang
	22	Associate Professor, PhD
	24	School of Medicine
	25	Tongji University
	26	Address: 1239 Si Ping RD, Yangpu District, Shanghai, 200092, China
	27	Email: supercell002@sina.com
	28	Tel: 86-13918537473

29	Identifying the patterns of non-communicable
30	diseases (NCDs) in developed eastern coastal China:
31	inspiration for NCDs prevention and cure in
32	developing regions
33	Dehua Yu, PhD ^{1#} , Jianwei Shi, PhD ^{1,2#} , Hanzhi Zhang, MD ¹ , Zhaoxin Wang, PhD ^{1,2*} ,
34	Yuan Lu, MD ¹ , Bin Zhang, MD ¹ , Ying Pan, MD ¹ , Bo Wang, PhD ¹ , Pengfei Sun, BD ²
35	1 Department of General Medicine, Yangpu Hospital, Tongji University School of
36	Medicine, Shanghai, 200090, China
37	2 Tongji University School of Medicine, Shanghai, 200092, China
38	#: Dehua Yu and Jianwei Shi are co-first authors on this paper.
39	* Corresponding author: Zhaoxin Wang, Email: supercell002@sina.com
40	ABSTRACT
41	Objectives: Few studies have examined the spectrum and trends of inpatients'
42	non-communicable diseases (NCDs) in eastern coastal China, which is transforming
43	from an industrial economy to a service-oriented economy and is the most
44	economically developed region in the country. The aim of this study was to
45	dynamically elucidate the spectrum and characteristics of the severe NCDs in eastern
46	coastal China by analysing patients' longitudinal electronic health records.
47	Setting: To monitor the spectrum of NCDs dynamically, we extracted data of
48	electronic health records from 12 general tertiary hospitals in Shanghai from 2003 to
49	2014. The rankings of and trends in the proportions of different NCDs presented by
50	inpatients in different gender and age groups were calculated and analysed.

BMJ Open

51	Participants: We obtained a total sample of 1,907,484 inpatients with NCDs from
52	2003 to 2014, among whom 50.05% were male and most were aged 50 years or older
53	(81.53%).
54	Results: From 2003 to 2014, the prevalence of diabetes, blood and endocrine diseases
55	among inpatients increased approximately four-fold (from 1.36% to 6.74%, P<0.001)
56	in eastern coastal China. Compared with men, women displayed relatively higher and
57	more stable proportions of digestive diseases (P=0.394) and neurological disorders
58	(P=0.173) over time. Moreover, the proportion of 21-50-year-old inpatients with
59	diabetes or blood diseases and endocrine diseases skyrocketed over this period
60	(P<0.001).
61	Conclusions: The burden of inpatients' NCDs increased rapidly, particularly among
62	women and younger people. The NCD spectrum observed in eastern coastal China is
63	a good source of evidence for developing prevention guides for regions experiencing
64	transition.
65	Keywords: Non-communicable diseases; Electronic Health Record; Eastern coastal
66	China; Health policy
67	Strength and limitations
68	• Previous research in China has primarily focused on the nationwide spectrum, or
69	has studied the major patterns of NCDs in specific regional areas
70	cross-sectionally.
71	• This study aimed at exploring the epidemiological patterns of NCDs in eastern

72 coastal China across 12 consecutive years.

It is a good source of evidence for similar developing regions who are or will go
 through transformation to develop NCDs prevention guides or policies.

75 INTRODUCTION

In recent years, an epidemiological shift in morbidity and mortality from infectious diseases and malnutrition to non-communicable diseases (NCDs) has occurred in many countries, including China[1-3]. NCDs have become the major causes of death in China and globally. According to the 2012 WHO data repository, 87% of deaths in China were associated with NCDs[1]. The Global Burden of Disease Study (GBD) revealed that of the 8.3 million deaths in China in 2010, 7.0 million resulted from NCDs[3]. Stroke, ischaemic heart disease, cancers, and chronic obstructive pulmonary disease are now the leading causes of premature death in China, and the burden of these diseases is substantial[4].

Previous research on the epidemiological patterns of NCDs in China has primarily focused on the entire nation or cross-sectional studies of specific regions [1-6]. However, both the WHO and the GBD have acknowledged that a national analysis for a country as large and diverse as China can mask substantial variations in key outcomes[3,5]. Also, few have examined the inpatients' NCD spectrum, which can reflect the more severe condition of NCDs. In this study, we conducted a longitudinal study of NCD patterns in five provinces in eastern coastal China: Shandong, Jiangsu, Zhejiang, Shanghai and Guangdong provinces. Geographically speaking, these provinces are located in the three most productive and dynamic regions of China: the

BMJ Open

94	Bohai Sea, the Yangtze River Delta and the Pearl River Delta. The gross regional
95	domestic product in these five provinces accounts for approximately half that of the
96	32 provinces/autonomous regions/municipalities in China. These provinces' gross
97	domestic product (GDP) per capita far exceeded the average value in China from
98	2005 to 2014[7] and was similar to the GDP of other developed countries in Asia.
99	Moreover, since 2000s, this region experienced dramatic changes in both the
100	economic and health sectors[8]. According to the Health Statistics Yearbook, in 2015,
101	the average life expectancy in eastern coastal China was around 78 years old, which is
102	greater than the national average of approximately 76 years old[7]. Due to the rapid
103	urbanisation, economic development and population ageing in eastern coastal China,
104	NCDs and disabilities are becoming more prevalent[1,3], and the spectrum of
105	inpatients' diseases in this area is speculated to largely differ from that in other
106	regions of China. More specific guidelines for preventing and curing NCDs that are
107	tailored to the disease patterns observed in eastern coastal China must be developed.
108	In exploring disease patterns, particularly in longitudinal studies based on a large
109	sample, second-hand data may be regarded as a good source. In particular, data from
110	hospitals' electronic health record (EHR) systems have unique advantages. For
111	instance, Upshur et al. applied time series methods to a population-based retrospective
112	cohort for the 52 most common causes of hospital admissions in the province of
113	Ontario from 1988 to 2001 and showed that hospital admissions displayed systematic

115 from the admission and discharge/death register, Sani et al.[10] conducted a

patterns that are understandable, predictable, and reasonably accurate[9]. Using data

three-year review of mortality patterns. Their result supported the emerging trend of a combined burden of communicable diseases and NCDs. In China, disease surveillance is conducted by the National Disease Surveillance Points System, which was founded in 1978; however, this system reports primarily on communicable diseases and reports on only a small subset of NCDs, such as cancer[11,12]. Given these factors, the current study used the hospital-based EHR system as a data source. This relatively new database compiles clinical information from a large number of patients in a computationally accessible form. The EHR system provides us with a unique opportunity to elucidate the relatively severe NCD epidemiology and includes a diverse array of NCDs[13]. The aim of this study was to dynamically elucidate the spectrum and characteristics of the severe NCDs in eastern coastal China by analysing hospitals' longitudinal EHR data. The results can provide insight into the aetiology of NCDs and aid in the development of evidence-based clinical guidelines for preventing and curing NCDs. In addition, the distribution of NCDs in eastern coastal China can inform the

development of clinical guidelines for NCDs in other regions or countries intransition.

133 METHODS

- 134 Study design and data collection
- Longitudinal data (2003-2014) on NCDs were extracted from the EHR systems of 12
- 136 general tertiary hospitals in Shandong (2 hospitals), Jiangsu (2 hospitals), Zhejiang (2

137 hospitals), Shanghai (3 hospitals) and Guangdong Provinces (3 hospitals).

A multistage sample was obtained. To obtain a representative sample, when choosing the sites, we first selected 3 cities that represented high, middle, and low socioeconomic statuses, as defined by GDP level, in each of the 5 provinces. Second, in each city, we selected the largest general tertiary hospital, resulting in 15 sampled hospitals. However, we did not obtain consent from three tertiary hospitals in some cities in Shandong, Jiangsu and Zhejiang Provinces due to political reasons regarding EHR data collection. In China, EHR data are not openly available but can be obtained from consenting hospitals with the help of health authorities. However, for several reasons, the health authorities cannot support us in the future. Thus, 12 general tertiary hospitals were included in the study.

We selected tertiary hospitals for this study. In China, hospitals are classified into three categories according to their major functions. Although community hospitals are intended to serve as gatekeepers, a patient's freedom to select medical facilities and doctors is not restricted by policies or health insurance coverage. Consequently, patients with acute or chronic diseases frequently visit the higher-tier, more sophisticated or specialised, and more expensive hospitals rather than community health centres, and many of the community health centres do not have hospital beds, and their EHR systems are defective and incomplete, limiting the use of the information contained in them [14]. Typically, the largest tertiary hospitals see most of the patients discharged in their cities.

158 Study subjects

In this study, information on inpatients with NCDs was extracted from the 2003-2014 hospital EHR data of each hospital, and only individuals who had been admitted to these hospitals during this period were included. We chose 2003 as the starting point because the first EHR system was formally launched in these hospitals in that year. In our study, the EHR systems of the tertiary hospitals include the admission information of patients who received their first diagnosis of an NCD between 2003 and 2014. As these hospitals may also attract patients from other districts or provinces, the inclusion criteria stipulated that participants must have a fixed address in the relevant region, regardless of whether they were registered or nonregistered residents. After excluding non-residents, NCD information for a total of 1,907,484 inpatients was stripped of identifying information and extracted from the hospitals' EHR systems. These patients were admitted to a variety of hospital divisions, and according to the ICD-9 and GBD NCD classification, we classified them into various disease groups based on their first-list diagnosis. The final data set included the residents' basic demographic information(gender and age)and the presence of chronic diseases (disease system/category, disorder and year of admission). We did not include region as a factor because all the hospitals were located in an urban region and it is difficult to determine the inpatients' status from the EHR.

- 177 Statistical analysis
- 178 All data were analysed by using SAS Software 9.20. Basic descriptive statistics were

2
3
4
5
6
0
7
8
q
10
10
11
12
13
11
14
15
16
17
18
10
19
20
21
22
22
23
24
25
26
27
21
28
29
30
31
00
32
33
34
35
26
30
37
38
39
40
40
41
42
43
11
44
45
46
47
<u>1</u> 8
40
49
50
51
52
52
00
54
55
56
57
57
58
59
~~

used to analyse the inpatients' personal characteristics (gender, age, and year of
admission). The NCD systems and the most common disorders within each disease
system were ranked according to their relative proportions. The Cochran-Armitage
Chi-square test was then used to examine significant increases or decreases in the
proportions of NCDs in disease systems across different gender and age groups
between 2003 and 2014.

185 Ethics statement

All research activities were conducted with integrity according to generally accepted ethical principles and were approved by the Ethics Committees of Tongji University (ref: LL-2016-ZRKX-017). This study presented minimal risk of harm to its subjects, and the data were collected anonymously. None of the inpatients' personal information included in the database was available to individuals outside of the research team.

192 **RESULTS**

193 Description of the personal characteristics of inpatients with NCDs

194 The personal characteristics of the studied population are summarised in Table 1. This

- 195 population included 1,907,484 inpatients with NCDs, 50.05% of whom were male.
- 196 Most of these patients were aged 50 years or older (81.53%). Furthermore, the
- number of inpatients with NCDs increased from 2003 to 2014.

198 Ranking of the disorders in all NCDs categories within gender and age groups

BMJ Open

199	The ranks and proportions of all NCDs for each gender group are presented in Table 2.
200	Among males, each of the five most common disorders represented more than 4.0%
201	of the total NCDs from 2003 to 2014. The three most frequently occurring disorders
202	among men were cerebral infarction (12.61%), coronary heart disease (6.94%) and
203	hypertension (6.05%). Similar to the results for men, those for women showed that
204	cerebral infarction (9.63%) occurred most frequently. However, hypertension (6.84%)
205	and uterine fibroids (4.15%) were the second and third most frequently occurring
206	NCDs among women.
207	Table 2 also shows the ranks of the most frequently occurring disorders across age
208	groups. There were relatively few inpatients with NCDs in the 0-10-year-old group,
209	but chronic tonsillitis occurred most frequently in this age group (26.19%). In the
210	11-30-year-old group, redundant prepuce and benign neoplasm of the breast occurred
211	frequently in men and women, respectively. Among 31-50-year-old patients, the most
212	common disorders were endocrine diseases, including uterine fibroids, ovarian cysts,
213	endometrial polyps, ureteral calculi and hyperplasia of the mammary glands. Among
214	51-80-year-old inpatients, the most common conditions were cerebral infarction
215	(ranking first), coronary heart disease and hypertension. Among patients aged 80 or
216	older, the three most common disorders were cerebral infarction, hypertension and
217	coronary heart disease. Vertebrobasilar insufficiency, diabetes, and chronic
218	obstructive pulmonary disease were more common among the elderly than among
219	individuals in the other age groups.

220 Distribution of NCDs across different groups from 2003 to 2014

BMJ Open

e 11 of 29	BMJ Open
22	Table 3 shows the changes in the proportions of the 12 NCD categories from 2013 to
22	2 2014. A significant decrease in the occurrence of cancer ($Z=-20.525$, $P<0.001$), other
22	neoplasms (Z=-20.525, P<0.001), chronic respiratory diseases (Z=-18.290, P<0.001),
22	4 urogenital diseases (Z=-5.329, P< 0.001) and sensory organ diseases (Z=-2.403,
22	P=0.008) was found. In contrast, the proportions of other NCDs increased to various
22	6 extents over the 12-year period. Notably, the proportion of patients with diabetes and
22	7 blood and endocrine diseases increased approximately four-fold (from 1.36% to
22	8 6.74%).
22	As shown in Figure 1, the 12-year NCD percentages recorded in the hospitals varied
23	widely by gender. The percentage of men who were diagnosed with cancer (from
23	1 13.62% to 5.91%, P<0.001) and chronic respiratory diseases (from 18.80% to 12.42%,
23	2 $P<0.001$) decreased substantially, whereas the percentage of men with diabetes or
23	blood and endocrine diseases (from 0.94% to 6.58%, P<0.001) and that of men with
23	4 neurological disorders(from 2.16% to 4.29%, P<0.001) increased substantially. The
23	5 percentage of women who were diagnosed with digestive diseases (Z=-0.270,
23	P=0.394), neurological disorders (Z=0.943, P=0.173), and sensory organ diseases
23	7 (Z=0.056, P=0.478) did not change significantly from 2003 to 2014; this result is in
23	strong contrast to the pattern found in the male inpatients. Furthermore, a substantial
23	9 increase in the percentage of female patients with diabetes or blood and endocrine
24	diseases (from 1.77% to 6.91%, P<0.001) was found. Although the proportion of
24	cancer and other neoplasms decreased in women, the decrease was less pronounced
24	2 than that found in men.
	10

243	Changes in NCD proportions across age groups were also examined (Figure 2). NCDs
244	were relatively rare among patients aged 10 years or younger, but chronic respiratory
245	diseases occurred most frequently in this group. For11-20-year-old subjects,
246	sensory organ diseases (Z=3.304, P<0.001) and cardiovascular and circulatory
247	diseases (Z=2.090, P=0.018) occurred more frequently over time. We noted dramatic
248	decreases in the percentages of patients with cancer and chronic respiratory diseases
249	in the 31-50-year-oldgroup: all decreased nearly 50% from 2003 to 2014. However,
250	the proportions of patients with diabetes or blood and endocrine diseases increased in
251	these two groups and in the 21-30-year-old group. For the 41-50-year-oldgroup, the
252	number of patients diagnosed with cancer decreased significantly but the proportions
253	of patients with cardiovascular, circulatory (Z=7.918, P<0.001) and digestive diseases
254	(Z=3.086, P<0.01) increased to a greater extent than in the younger population. In the
255	\geq 50-year-old group, the proportion of patients with diabetes, blood, and endocrine
256	diseases increased substantially (P<0.001). The proportion of patients with cancer
257	decreased to a greater extent in this age group than in any other age group ($P < 0.001$).
258	DISCUSSION
259	By analysing the EHR information of inpatients with NCDs at 12 hospitals in eastern
260	coastal China, our research team was able to elucidate the severe NCD patterns in a

D patterns in a relatively unbiased fashion and to confirm that NCDs displayed regional heterogeneity to some extent. In order of frequency, cardiovascular and circulatory diseases, urogenital diseases, chronic respiratory diseases, and digestive diseases were the most common NCDs. When comparing these data with inpatient data in other

BMJ Open

265	regions, we found different patterns. For instance, a study using a sample from a
266	hospital in central China found that cardiovascular and circulatory diseases, diabetes,
267	and chronic respiratory diseases occurred most frequently[15]. However, since most
268	studies on inpatients' NCDs were based on only one hospital's EHR data, the
269	comparison may have defects. In eastern coastal China, the severe cardiovascular and
270	circulatory diseases may be the most frequently occurring because of the greater
271	degree of urbanisation and greater proportion of ageing population in the region[2,3].
272	In addition, urogenital diseases (second) and digestive diseases (fourth) were common
273	in this region, potentially because of the more rapid pace of modern life, more
274	sedentary lifestyle and longer working hours. In our search of existing studies on
275	inpatients with NCDs, we rarely found this spectrum at the top of the list[16].
276	Concerning the longitudinal trends in inpatients' NCDs, the results showed a
276	Concerning the longitudinal trends in inpatients' NCDs, the results showed a significant increase in the proportions of many NCDs, including diabetes, blood and
276 277 278	Concerning the longitudinal trends in inpatients' NCDs, the results showed a significant increase in the proportions of many NCDs, including diabetes, blood and endocrine diseases, and cardiovascular and circulatory diseases, from 2003 to 2014.
276 277 278 279	Concerning the longitudinal trends in inpatients' NCDs, the results showed a significant increase in the proportions of many NCDs, including diabetes, blood and endocrine diseases, and cardiovascular and circulatory diseases, from 2003 to 2014. However, interestingly, the proportion of chronic respiratory diseases and cancer
276 277 278 279 280	Concerning the longitudinal trends in inpatients' NCDs, the results showed a significant increase in the proportions of many NCDs, including diabetes, blood and endocrine diseases, and cardiovascular and circulatory diseases, from 2003 to 2014. However, interestingly, the proportion of chronic respiratory diseases and cancer inpatients decreased over the 12-year period, in stark contrast to the changes in the
 276 277 278 279 280 281 	Concerning the longitudinal trends in inpatients' NCDs, the results showed a significant increase in the proportions of many NCDs, including diabetes, blood and endocrine diseases, and cardiovascular and circulatory diseases, from 2003 to 2014. However, interestingly, the proportion of chronic respiratory diseases and cancer inpatients decreased over the 12-year period, in stark contrast to the changes in the incidence observed throughout China[17,18]. Often, previous studies have concluded
 276 277 278 279 280 281 282 	Concerning the longitudinal trends in inpatients' NCDs, the results showed a significant increase in the proportions of many NCDs, including diabetes, blood and endocrine diseases, and cardiovascular and circulatory diseases, from 2003 to 2014. However, interestingly, the proportion of chronic respiratory diseases and cancer inpatients decreased over the 12-year period, in stark contrast to the changes in the incidence observed throughout China[17,18]. Often, previous studies have concluded that the incidence of respiratory diseases is increasing, likely due to ambient air
276 277 278 279 280 281 282 282 283	Concerning the longitudinal trends in inpatients' NCDs, the results showed a significant increase in the proportions of many NCDs, including diabetes, blood and endocrine diseases, and cardiovascular and circulatory diseases, from 2003 to 2014. However, interestingly, the proportion of chronic respiratory diseases and cancer inpatients decreased over the 12-year period, in stark contrast to the changes in the incidence observed throughout China[17,18]. Often, previous studies have concluded that the incidence of respiratory diseases is increasing, likely due to ambient air pollution and tobacco use, resulting in tremendous threats to respiratory health[3,19].

respiratory diseases, however, the opposite trend of inpatients found in eastern coastal

286 China may have also resulted from this region's transition from a heavy industrial

BMJ Open

ა ⊿
4
5
6
1
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
30
10
40 //1
+ I 10
42 12
40
44 15
40
40 17
47
48
49
00 54
51
ວ∠ ≂າ
ວ ວ
ว4 กก
55
56
5/
58
59
60

1 2

> 287 district to a technologically focused area, which has been associated with a substantial reduction in environmental pollution. Moreover, regional public health media 288 289 campaigns focused on cancer prevention and the regional government have promoted 290 early screening and the treatment of major cancers since the 2000s[20], which likely explains the reduced proportion of cancer patients. However, PM 2.5 air pollution, 291 292 household pollution, tobacco use, residents' insufficient knowledge of NCD 293 prevention, etc. remain persistent risk factors in eastern coastal China and deserve considerable attention[21, 22]. 294

> 295 Demographic factors may result in physiological and psychological differences across 296 different populations, which may then give rise to distinct behaviours and ultimately 297 to a heterogeneous distribution of NCDs. For instance, the Framingham Heart Study 298 (FHS) conducted in the USA showed that women were significantly older than men at their first stroke, had a higher stroke rate than men at ages above 85 years, lower rates 299 300 than men at all other ages, and a higher life time risk of stroke than men at all 301 ages[23]. Our study found a significant increase in the proportion of male and female 302 inpatients with diabetes, blood and endocrine diseases, cardiovascular and circulatory 303 diseases, and congenital anomalies in eastern coastal China. However, we identified 304 demographic differences in the patterns of NCDs. The proportion of male inpatients with digestive diseases decreased, but that of female inpatients remained relatively 305 306 high. The proportion of female patients with mental and behavioural disorders increased. Currently, women in China are employed in the same fast-paced jobs or 307 roles as men, which is likely one important cause of this phenomenon[24]. 308

BMJ Open

309	Furthermore, women are expected to devote more effort to balancing family and
310	work[25,26], which is undoubtedly challenging. On the other hand, we found an
311	increasing trend in the number of men diagnosed with neurological diseases, which
312	may be associated with the complex aetiology of dystrophia, immune damage,
313	endocrine disorders, etc. Diet and stress may also influence the incidence of these
314	diseases among men to a certain extent and should be closely examined.
315	In our study, we found that, on the one hand, a greater proportion of older inpatients

(>50 years) suffered from NCDs such as diabetes or blood and endocrine diseases as they aged. This proportion increased nearly four-fold from 2003 to 2014. On the other hand, the proportion of inpatients between the ages of 30 and 50 with these diseases increased significantly. In addition, the proportion of young patients with NCDs, such as cardiovascular and circulatory diseases, increased over the 12-year period. As shown in Figure 2, cancer was not among the most common NCDs in any age group, and surprisingly, the proportion of patients with cancer decreased in all age groups but decreased more quickly in older age groups. This phenomenon is likely highly correlated with improvements to the environment and the effects of cancer prevention media campaigns[27-29]. However, this result does not imply that cancer prevention can be abated in the future.

The public's awareness of NCD prevention is insufficient due to complex cultural and social factors[27,30,31]. The specific risk factors for frequently occurring NCDs in different gender and age groups should be monitored every year. Other interventions, such as reform of China's medical system, should aim to improve the function of

community hospitals such that these hospitals focus on NCD prevention. Meanwhile, education or training should be promoted in communities and among health practitioners. Knowledge of and information on NCDs should be disseminated via the media to increase awareness. The distributions of NCDs in eastern coastal China suggest future directions for NCD prevention in this region and may provide similar developing regions with strategies for better managing NCDs.

337 Limitations

In this study, there were several limitations. First, the sampled hospitals were the largest hospitals in eastern coastal cities. These cities were selected to increase the sample's representativeness of eastern coastal China. However, the generalisability and reliability of the findings are a concern. However, because the EHR included a large number of inpatients with NCDs, it was a precise data source for determining the status of and trends in the occurrence of different diseases. To reduce selection bias, more representative hospitals from each of the cities must be investigated. Second, because few longitudinal studies examining the spectrum of NCDs among many hospitals' inpatients have been conducted in other areas of China, it was difficult to compare the current findings regarding inpatients' NCDs with those in other parts of China.

CONCLUSIONS

In summary, the spectrum of NCDs inpatients from 12 hospitals exhibits the severe NCDs condition and spectrum in eastern coastal China to a certain extent. Specific

4
5
6
7
γ Q
0
9
10
11
12
13
14
15
16
10
17
18
19
20
21
22
23
24
25
20
20
27
28
29
30
31
32
33
22
34
35
36
37
38
39
40
11
41
42
43
44
45
46
47
48
10
43 50
50
51
52
53
54
55
56
57
50
50
59
60

NCDs rapidly increased in women and the younger population over the studied 12-year period, underscoring the importance of healthcare policies or guidelines for developing countries or regions such as China. Public awareness campaigns should be targeted at the regional level and should consider differences in demographic factors across regions. However, due to the limited generalisability and reliability of this study, stronger support must be obtained through future studies on the spectrum of inpatients' NCDs in eastern coastal China and other regions.

359 Abbreviations

- 360 Non-communicable diseases: NCDs
- 361 GDP: Gross domestic product

362 Acknowledgements

363 The authors appreciate the assistance of all the hospitals involved in this research

364 project in collecting the data.

365 **Funding**

- 366 The design of this study was financially supported by the Shanghai Health Policy
- 367 Program (2016HP043). Data collection, analysis and interpretation were funded as
- 368 part of a Central University Special Funds for Scientific Research Project
- 369 (1500219099), and the writing and revision of the manuscript was funded by the
- 370 Natural Science Foundation of China (71603182).

371 Availability of data and materials

All relevant data are available in the Figshare database under the DOI:

373	https://figshare.com/s/f79b2b4e686d1d477527								
374	Autho	Authors' contributions							
375	Conce	Conceived and designed the experiments: DHY, JWS and ZXW. Analysed the data:							
376	JWS,	JWS, HZZ and YL. Contributed reagents/materials/analysis tools: YL, BZ, YP, BW							
377	and P	FS. Wrote the pa	aper: DHY and J	WS.					
378	Comp	peting interests							
379	The a	uthors have decl	lared that they ha	ive no competing	interests.				
380									
381	REF	FERENCES							
382	[1]	World Health	Organization, No	on Communicable	Diseases Progress Monitor				
383		2015,							
384		http://apps.wh	o.int/iris/bitstrea	m/10665/184688/	1/9789241509459_eng.pdf				
385		(accessed 1 Aj	pr 2016).						
386	[2]	Lim SS, Vos 7	ſ, Flaxmanet AD	, et al. A compara	tive risk assessment of burden				
387		of disease and	l injury attributa	ble to 67 risk fact	tors and risk factor clusters in				
388		21 regions, 19	90-2010: a syste	matic analysis for	the Global Burden of Disease				
389		Study	2010.	Lancet,	2012;380(9859):2224-2260.				
390		doi:10.1016/S	0140-6736(12)61	1766-8.					
391	[3]	Yang G, Wang	g Y, Zeng Y, et a	l. Rapid health tr	ansition in China, 1990-2010:				
392		findings from	the Global B	urden of Disease	e Study 2010. Lancet, 2013;				
393		381(9882):198	87-2015. doi:10.1	1016/S0140-6736((13)61097-1.				
394	[4]	Liu Y, Yang C	G, Zeng Y, et al.	Policy dialogue o	n China's changing burden of				
				17					

BMJ Open

395		disease.	Lancet,	2013;	381(9882):1961-1962.
396		doi:10.1016/S014	0-6736(13)61031-	-4.	
397	[5]	Fang P, Dong S	S, Xiao J, et al.	. Regional inequ	ality in health and its
398		determinants: ev	vidence from Ch	nina. <i>Health Po</i>	licy, 2010; 94(1):14-25.
399		doi:10.1016/j.hea	lthpol.2009.08.002	2.	
400	[6]	Tang S, Meng Q,	Chen L, et al. Tacl	kling the challeng	es to health equity in
401		China. Lancet, 20	08; 372(9648):149	93-1501.	
402		doi:10.1016/S014	0-6736(08)61364-	-1.	
403	[7]	National Bureau	of Statistics of	the People's Re	public of China, China
404		Statistical Bulleti	in, 2015, http://ww	ww.stats.gov.cn/tj	sj/tjgb/ndtjgb/(accessed 1
405		Apr 2016).			
406	[8]	Liu GF, Sun MP,	Wang ZY, et al.	Association analy	sis between urbanization
407		and non-commu	nicable diseases	and health-relate	ed behavior. Journal of
408		Peking University	v. Health Sciences	(Chinese Journal)	, 2016;48(3):478-482.
409	[9]	Upshur RE, Moi	neddin R, Crighto	on E, et al. Simp	licity within complexity:
410		seasonality and pr	redictability of hos	spital admissions	in the province of Ontario
411		1988-2001, a pop	ulation-based anal	ysis. BMC Health	Services Research, 2005;
412		5(1): 13. doi:10.1	186/1472-6963-5-	13.	
413	[10]	Sani MU, Mohan	nmed AZ, Bapp	A, et al. A three-	year review of mortality
414		patterns in the r	medical wards of	[°] Aminu Kano T	eaching Hospital, Kano,
415		Nigeria. Nigerian	Postgraduate Me	dical Journal, 200)7;14(4):347-351.
416	[11]	Duan L, Deng X	, Wang Y, et al. T	The National inju-	ry surveillance system in
			1	8	

BMJ Open

417		China: a six-year review. <i>Injury</i> , 2015;46(4):572-579.
418		doi:10.1016/j.injury.2014.12.013.
419	[12]	Zhu M, Ruan W, Fei SJ, et al. Approaches to the evaluation of malaria
420		elimination at county level: case study in the Yangtze River Delta region.
421		Advances in Parasitology, 2014;86:135-182.
422		doi:10.1016/B978-0-12-800869-0.00006-8.
423	[13]	Melamed RD, Khiabanian H, Rabadan R. Data-driven discovery of seasonally
424		linked diseases from an electronic health records system. BMC Bioinformatics,
425		2014; 15 (Suppl 6):S3. doi:10.1186/1471-2105-15-S6-S3.
426	[14]	Yang H, Huang X, Zhou X, et al. Determinants of initial utilization of
427		community healthcare services among patients with major non-communicable
428		chronic diseases in south China. PLOS ONE, 2014;9(12):e116051.
429		doi:10.1371/journal.pone.0116051.
430	[15]	Zhou L. Analysis of the chronic diseases components of inpatient in a hospital
431		of Wuhan from 2008-2012. Medicine and Society, 2014;10:23-25.
432	[16]	Zhu YJ, Yao YH, Xue SS, et al. Analysis on condition of chronic diseases,
433		distribution of disease spectrum and main risk factors of diseases of elderly in
434		Jilin Province. Journal of Jilin University (Medicine Edition) (Chinese Journal),
435		2013;6:1275-1281.
436	[17]	World Health Organization, Global Health Observatory Data Repository, 2016,
437		http://apps.who.int/gho/data/node.main.A865?lang=en (accessed 3 Apr 2016).
438	[18]	Oyebode O, Pape UJ, Laverty AA, et al. Rural, urban and migrant differences

BMJ Open

439		in non-communicable disease risk-factors in middle income countries: a
440		cross-sectional study of WHO-SAGE data. PLOS ONE, 2015;10(4): e0122747.
441		doi:10.1371/journal.pone.0122747.
442	[19]	Tao Y, Mi S, Zhou S, Wang S, Xie X. Air pollution and hospital admissions for
443		respiratory diseases in Lanzhou, China. Environmental Pollution,
444		2014;185:196-201. doi:10.1016/j.envpol.2013.10.035.
445	[20]	Li DL, Zheng Y, Lu W. Practice and probe into prevention and control for high
446		incidence cancers in Shanghai. China Cancer(Chinese Journal),
447		2010;19:80-85.
448	[21]	Tu ZG. The coordination of industrial growth with environment and resource.
449		Economic Research Journal(Chinese Journal), 2008; 2:93-105.
450	[22]	Wu F. Shanghai, China – Study on Global Ageing and Adult Health-2009/10,
451		WAVE, 2013,
452		http://apps.who.int/healthinfo/systems/surveydata/index.php/catalog/141
453		(accessed 3 Jan 2016).
454	[23]	Petrea RE, Beiser AS, Seshadri S, et al. Gender differences in stroke incidence
455		and post stroke disability in the Framingham Heart Study. Stroke, 2009; 40(4):
456		1032-1037. doi:10.1161/STROKEAHA.108.542894.
457	[24]	Liu LN. Analysis on the overstrain women in the workforce in China. Reform
458		& Openning(Chinese Journal), 2013;1:33-34.
459	[25]	Yang H, He F, Wang T, et al. Health-related lifestyle behaviors among male
460		and female rural-to-urban migrant workers in Shanghai, China. PLOS ONE,
		20

461		2015;10(2):e0117946. doi:10.1371/journal.pone.0117946.
462	[26]	Du M, Prescott J, Kraft P, et al. Physical activity, sedentary behavior, and
463		leukocyte telomere length in women. American Journal of Epidemiology,
464		2012;175(5):414-422. doi:10.1093/aje/kwr330.
465	[27]	Ding D, Zhong X, Lau JT, Oldenburg B. Behavioral medicine and prevention
466		of non-communicable diseases in China: current challenges and future
467		directions. International Journal of Behavioral Medicine, 2014; 21(4): 584-589.
468		doi:10.1007/s12529-014-9393-7.
469	[28]	Zhai F, Wang H, Du S, et al. Prospective study on nutrition transition in China.
470		Nutrition Reviews, 2009; 67(suppl. 1):S56–S61.
471		doi:10.1111/j.1753-4887.2009.00160.x.
472	[29]	Monda KL, Adair LS, Zhai F, et al. Longitudinal relationships between
473		occupational and domestic physical activity patterns and body weight in China.
474		European Journal of Clinical Nutrition, 2008;62(11):1318-1325.
475		doi:10.1038/sj.ejcn.1602849.
476	[30]	Gool CHV, Kempen GI, Penninx BW, et al. Chronic disease and lifestyle
477		transitions: results from the Longitudinal Aging Study Amsterdam. Journal of
478		Aging and Health, 2007;19(3):416-438. doi:10.1177/0898264307300189.
479	[31]	Cheng L, Tan L, Zhang L, et al. Chronic disease mortality in rural and urban
480		residents in Hubei Province, China, 2008-2010. BMC Public Health,
481		2013;13:713. doi:10.1186/1471-2458-13-713.

Page 23 of 29

BMJ Open

ariable	Classification	Ν	%
ender	Male	954612	50.05
	Female	952872	49.95
ge	0-10	1008	0.05
vears)	11-20	14688	0.77
	21-30	47484	2.49
	31-40	70164	3.68
	41-50	219060	11.48
	51-60	320172	16.79
	61-70	268176	14.06
	71-80	523452	27.44
	>80	443280	23.24
ear of admission	2003	110796	5.81
	2004	126744	6.64
	2005	127704	6.69
	2006	135972	7.13
	2007	141780	7.43
	2008	145728	7.64
	2009	155220	8.14
	2010	157500	8.26
	2011	171060	8.97
	2012	191004	10.01
	2013	209100	10.96
	2014	234876	12.31
	Total	1907484	100.00
		22	

				Table 2	Ranking of the Most (Common NCDs by	Group				
Variable	First		Second		Third		Fourth		Fifth		
	Disease	N(%)	Disease	N(%)	Disease	N(%)	Disease	N(%)	Disease	N(%)	
Gender											
Male	Cerebral infarction	120396(12.61)	Coronary heart disease	66216(6.94)	Hypertension	57708(6.05)	Chronic obstructive pulmonary disease	53904(5.65)	Chronic bronchitis	45252(4.74)	
Female	Cerebral infarction	91776(9.63)	Hypertension	65136(6.84)	Uterine fibroid	39564(4.15)	Coronary heart disease	31188(3.27)	Chronic bronchitis	25776(2.71)	
Age(years)											
0-10	Chronic tonsillitis	264(16.19)	Redundant prepuce	144(14.29)	Adenoid vegetation	72(7.14)	Adenoidal hypertrophy	48(4.76)	Tonsil hypertrophy	24(2.38)	
11-20	Redundant prepuce	2064(14.05)	Benign neoplasm of breast	996(6.78)	Spontaneous pneumothorax	648(4.41)	Chronic tonsillitis	552(3.76)	Respiratory failure	444(3.02)	
21-30	Redundant prepuce	4704(9.91)	Benign neoplasm of breast	2448(7.51)	Ovarian cyst	3564(5.16)	Ureteral calculi	1632(3.44)	Chronic tonsillitis	1032(2.17)	
31-40	Uterine fibroid	5484(7.82)	Ovarian cyst	3156(4.50)	Endometrial polyp	2844(4.05)	Ureteral calculi	2556(3.64)	Hyperplasia of mammary glands	2268(3.23)	
41-50	Uterine fibroid	25644(11.71)	Endometrial hyperplasia	9408(4.29)	Hyperplasia of mammary glands	8052(3.68)	Endometrial polyp	7404(3.38)	Ureteral calculi	5640(2.57)	
51-60	Cerebral infarction	23124(7.22)	Coronary heart disease	14016(4.38)	Hypertension	12144(3.79)	Ureteral calculi	8364(2.61)	Cerebral haemorrhage	6636(2.07)	
61-70	Cerebral infarction	29508(11.00)	Coronary heart disease	14016(6.30)	Hypertension	13668(5.10)	Vertebrobasilar insufficiency	6480(2.42)	Diabetes	5640(2.10)	
71-80	Cerebral infarction	75972(14.51)	Hypertension	45612(8.71)	Coronary heart disease	38808(7.41)	Chronic bronchitis	30720(5.87)	Chronic obstructive pulmonary disease	25536(4.88)	
>80	Cerebral infarction	46560(17.58)	Hypertension	31488(10.50)	Coronary heart disease	77928(8.51)	Chronic obstructive pulmonary disease	36216(8.17)	Chronic bronchitis	37728(7.10)	

	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014			
	Ν	N	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	7	D 1	T I
Disorder	=110796	=126744	=127704	=135972	=141780	=145728	=155220	=157500	=171060	=191004	=209100	=234876	L	P-value	Trend
Cancer	11.57	10.16	8.15	9.33	8.37	8.28	7.24	7.18	7.19	7.80	6.12	5.78	-20.525	< 0.001	$\downarrow\downarrow\downarrow\downarrow$
Other neoplasms	6.63	8.05	7.43	7.41	5.58	4.55	5.54	4.45	4.67	4.55	4.36	4.01	-20.527	< 0.001	$\downarrow \downarrow \downarrow$
Cardiovascular and circulatory	28.20	20.28	20.19	20.52	21.42		24.69	26.01	25.64	25.65	24.97	24.60	10.961	<0.001	***
diseases	28.30	29.38	29.18	29.32	31.43	33.33	34.08	30.21	33.04	33.03	34.87	34.00	19.801	<0.001	111
Chronic respiratory diseases	13.43	13.46	13.85	12.98	13.50	12.85	12.52	12.45	11.27	10.89	9.37	9.40	-18.290	< 0.001	$\downarrow \downarrow \downarrow$
Diabetes and blood and	1.20	1.42	1.25	1.20		1.40	1.25	1.75	1.55	2 (7	(17	674	41.269	<0.001	***
endocrine diseases	1.30	1.43	1.25	1.20	1.44	1.46	1.55	1.75	1.55	3.0/	0.4/	6.74	41.268	<0.001	
Digestive diseases	10.54	11.57	10.98	11.24	9.58	10.56	10.00	10.81	10.12	9.67	10.00	10.98	-2.757	0.003	$\downarrow \downarrow$
Mental and behavioural disorders	0.17	0.08	0.23	0.19	0.19	0.13	0.26	0.25	0.16	0.12	0.36	0.25	3.130	0.001	$\uparrow\uparrow$
Musculoskeletal disorders	5.44	4.74	4.85	4.64	5.18	4.48	4.58	3.86	4.67	4.54	5.80	6.23	4.668	< 0.001	$\uparrow\uparrow\uparrow$
Urogenital diseases	14.97	13.24	15.95	14.93	15.68	14.65	13.29	13.12	15.34	14.81	13.83	12.72	-5.329	< 0.001	$\downarrow \downarrow \downarrow$
Neurological disorders	2.25	3.78	4.35	3.96	4.58	5.34	5.33	4.97	4.83	3.49	4.13	4.36	3.915	< 0.001	$\uparrow\uparrow\uparrow$
Sensory organ diseases	4.14	3.20	2.69	3.15	3.50	2.97	3.64	3.18	2.84	3.26	3.02	3.15	-2.403	0.008	$\downarrow\downarrow$
Congenital anomalies	0.40	0.44	0.28	0.38	0.37	0.26	0.49	0.41	0.32	0.28	0.60	0.63	3.750	< 0.001	$\uparrow \uparrow \uparrow$
Skin and subcutaneous disease	0.80	0.47	0.82	0.99	0.59	1.14	1.06	1.35	1.38	1.26	1.08	1.15	7.294	< 0.001	$\uparrow\uparrow\uparrow$

 \downarrow \downarrow : P<0.01, negative trend; \downarrow \downarrow : P<0.001, negative trend; \uparrow : P<0.01, positive trend; \uparrow : P<0.001, positive trend.

Fig.1 Distribution of non-communicable diseases by gender

0: cancer, 1: other neoplasms, 2: cardiovascular and circulatory diseases, 3: chronic respiratory diseases, 4: diabetes and blood and endocrine diseases, 5: digestive diseases, 6: mental and behavioural disorders, 7: musculoskeletal disorders, 8: urogenital diseases, 9: neurological disorders, 10: sensory organ diseases, 11: congenital anomalies, 12: skin and subcutaneous diseases

↓: P<0.05, negative trend; ↓↓: P<0.01, negative trend; ↓↓↓: P<0.001, negative trend; ↑: P<0.05, positive trend; ↑↑: P<0.01, positive trend;↑↑↑: P<0.001, positive trend.</pre>

55x17mm (600 x 600 DPI)

BMJ Open

Fig. 2 Distribution of non-communicable diseases by age 0: cancer, 1: other neoplasms, 2: cardiovascular and circulatory diseases, 3: chronic respiratory diseases, 4: diabetes and blood and endocrine diseases, 5: digestive diseases, 6: mental and behavioural disorders, 7: musculoskeletal disorders, 8: urogenital diseases, 9: neurological disorders, 10: sensory organ diseases, 11: congenital anomalies, 12: skin and subcutaneous diseases

\: P<0.05,negative trend;↓↓: P<0.01, negative trend;↓↓↓: P<0.001,negative trend; ↑: P<0.05,positive trend; ↑↑: P<0.01,positive trend;↑↑↑: P<0.001,positive trend.</pre>

48x64mm (600 x 600 DPI)

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cross-sectional studies

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3-5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5-6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5-6
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	7
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	7-8
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	7-8
Bias	9	Describe any efforts to address potential sources of bias	7
Study size	10	Explain how the study size was arrived at	5-6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	7-8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7-8
		(b) Describe any methods used to examine subgroups and interactions	7-8
		(c) Explain how missing data were addressed	7-8
		(d) If applicable, describe analytical methods taking account of sampling strategy	7-8
		(e) Describe any sensitivity analyses	7-8
Results			

BMJ Open

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	N/A
		(b) Give reasons for non-participation at each stage	N/A
		(c) Consider use of a flow diagram	N/A
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	8
		(b) Indicate number of participants with missing data for each variable of interest	N/A
Outcome data	15*	Report numbers of outcome events or summary measures	8-11
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	N/A
		(b) Report category boundaries when continuous variables were categorized	N/A
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	N/A
Discussion			
Key results	18	Summarise key results with reference to study objectives	11-12
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	15
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	12-15
Generalisability	21	Discuss the generalisability (external validity) of the study results	15
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	16

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

BMJ Open

Identifying the patterns of non-communicable diseases in developed eastern coastal China: A longitudinal study on the electronic health records in 12 public hospitals

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-016007.R1
Article Type:	Research
Date Submitted by the Author:	12-Apr-2017
Complete List of Authors:	Yu, Dehua; Yangpu Hospital, Tongji University School of Medicine, Department of General Medicine Shi, Jianwei; Tongji University School of Medicine; Yangpu Hospital, Tongji University School of Medicine Zhang, Hanzhi; Yangpu Hospital, Tongji University School of Medicine, Department of General Medicine Wang, Zhaoxin; Tongji University School of Medicine; Yangpu Hospital, Tongji University School of Medicine, Department of General Medicine Lu, Yuan; Yangpu Hospital, Tongji University School of Medicine, Department of General Medicine Zhang, Bin; Yangpu Hospital, Tongji University School of Medicine, Department of General Medicine Zhang, Bin; Yangpu Hospital, Tongji University School of Medicine, Department of General Medicine Pan, Ying; Yangpu Hospital, Tongji University School of Medicine Wang, Bo; Yangpu Hospital, Tongji University School of Medicine, Department of General Medicine Sun, Pengfei; Tongji University School of Medicine
Primary Subject Heading :	Health services research
Secondary Subject Heading:	Evidence based practice, Global health, Health services research, Public health
Keywords:	Non-communicable diseases, Electronic Health Record, Eastern coastal China, Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

SCHOLARONE[™] Manuscripts

Page 1 of 30		BMJ Open
1		
2 3 4	1	Identifying the patterns of non-communicable diseases in
5 6 7	2	developed eastern coastal China: A longitudinal study on the
8 9	3	electronic health records in 12 public hospitals
10	4	Dehua Yu, PhD ^{1*} , Jianwei Shi, PhD ^{12*} , Hanzhi Zhang, MD ¹ , Zhaoxin Wang, PhD ^{12*} ,
12	5	Yuan Lu, MD ¹ , Bin Zhang, MD ¹ , Ying Pan, MD ¹ , Bo Wang, PhD ¹ , Pengfei Sun, BD ²
13 14	6	1 Department of General Medicine, Yangpu Hospital, Tongji University School of
15	7	Medicine, Shanghai, 200090, China
16 17 18	8	2 Tongji University School of Medicine, Shanghai, 200092, China
19	9	
20 21	10	DehuaYu: ydn1404@sina.com
22	11	JianweiShi: shijianwei_amy@126.com
23	12	Hanzhi Zhang: drchan001@163.com
25	13	Zhaoxin Wang: supercell002@sina.com
26	14	Y uan Lu: Iussy@120.com Bin Zhang: metamonhora@aliyun com
27 28	15	Ving Pan: hshpanying@163.com
29	17	Bo Wang ¹ howang13241@163.com
30 31	18	Pengfei Sun: 18817599414@163.com
32		
33	19	
34 35	20	# These authors are co-first authors on this paper.
36	21	*Corresponding author:
37 38	22	Zhaoxin Wang.
39	23	Associate Professor, PhD
40	24	School of Medicine
42	25	Tongji University
43	26	Address: 1239 Si Ping RD, Yangpu District, Shanghai, 200092, China
44	27	Email: supercell002@sina.com
46	28	Tel: 86-13918537473
47		
48 49		
50		
51		
52 53		
54		
55		
56 57		
58		
59		
00		

29	Identifying the patterns of non-communicable
30	diseases in developed eastern coastal China: A
31	longitudinal study on the electronic health records in
32	12 public hospitals
33	Dehua Yu, PhD ^{1#} , Jianwei Shi, PhD ^{1,2#} , Hanzhi Zhang, MD ¹ , Zhaoxin Wang, PhD ^{1,2*} ,
34	Yuan Lu, MD ¹ , Bin Zhang, MD ¹ , Ying Pan, MD ¹ , Bo Wang, PhD ¹ , Pengfei Sun, BD ²
35	1 Department of General Medicine, Yangpu Hospital, Tongji University School of
36	Medicine, Shanghai, 200090, China
37	2 Tongji University School of Medicine, Shanghai, 200092, China
38	#: Dehua Yu and Jianwei Shi are co-first authors on this paper
39	* Corresponding author: Zhaoxin Wang, Email: supercell002@sina.com
40	ABSTRACT
41	Objective: Few studies have examined the spectrum and trends of non-communicable
42	diseases (NCDs) in inpatients in eastern coastal China, which is transforming from an
43	industrial economy to a service-oriented economy and is the most economically
44	developed region in the country. The aim of this study was to dynamically elucidate
45	the spectrum and characteristics of severe NCDs in eastern coastal China by analysing
46	patients' longitudinal electronic health records (EHRs).
47	Setting: To monitor the spectrum of NCDs dynamically, we extracted the EHR data
48	from 12 general tertiary hospitals in eastern coastal China from 2003 to 2014. The
49	rankings of and trends in the proportions of different NCDs presented by inpatients in
50	different gender and age groups were calculated and analysed.

BMJ Open

51	Participants: We obtained a total sample of 1,907,484 inpatients with NCDs from
52	2003 to 2014, 50.05% of whom were male and the majority of whom were aged 50
53	years or older (81.53%).
54	Results: There is an increase in the number of total NCD inpatients in eastern coastal
55	China from 2003 to 2014. However, the proportion of chronic respiratory diseases and
56	cancer inpatients decreased over the 12-year period. Compared with men, women
57	displayed higher proportions of digestive diseases (P=0.394) and neurological
58	disorders (P=0.173) over time. The older group accounted for a larger and growing
59	proportion of the NCD inpatients, and the most common conditions in this group were
60	cerebral infarctions, coronary heart disease and hypertension. In addition, the
61	proportion of 21- to 50-year-old inpatients with diabetes, blood diseases or endocrine
62	diseases skyrocketed from 2003 to 2014 (P<0.001).
63	Conclusions: The burden of inpatients' NCDs increased rapidly, particularly among
64	women and younger people. The NCD spectrum observed in eastern coastal China is
65	a good source of evidence for developing prevention guides for regions experiencing
66	transition.
67	Keywords: Non-communicable diseases; Electronic Health Record; Eastern coastal
68	China; Health policy
68 69	China; Health policy Strengths and limitations
68 69 70	 China; Health policy Strengths and limitations The concept of using longitudinal EHRs to document the proportion of NCD
68 69 70 71	 China; Health policy Strengths and limitations The concept of using longitudinal EHRs to document the proportion of NCD admissions in eastern coastal China hospitals can provide a reasonably simple and

precise method of examining NCD trends over time.
The evidence is a good source to develop NCD prevention guides or policies for similar developing regions that are undergoing or will undergo an economic transformation.
The generalisability and reliability of the findings of this study are a concern, and more hospitals from other parts of China should be included in future studies to make a persuasive comparison.

80 INTRODUCTION

In recent years, an epidemiological shift in morbidity and mortality from infectious diseases and malnutrition to non-communicable diseases(NCDs) has occurred in many countries, including China[1-3]. NCDs have become the major causes of death in China and globally. According to the 2012 WHO data repository, 87% of deaths in China were associated with NCDs[1]. The Global Burden of Disease Study(GBD) revealed that of the 8.3 million deaths in China in 2010, 7.0 million resulted from NCDs[3]. Stroke, ischaemic heart disease, cancers, and chronic obstructive pulmonary disease are now the leading causes of premature death in China, and the burden of these diseases is substantial[4].

Previous research on the epidemiological patterns of NCDs in China has primarily
focused on the entire nation or cross-sectional studies of specific regions[1-6].
However, both the WHO and the GBD have acknowledged that a national analysis
conducted in a country as large and diverse as China can mask substantial variations

BMJ Open

in key outcomes[3,5]. In addition, few studies have examined the NCD spectrum in inpatients, which can reflect the severe state of NCDs. In this study, we conducted a longitudinal study of NCD patterns in five provinces in eastern coastal China: Shandong, Jiangsu, Zhejiang, Shanghai and Guangdong provinces. Geographically speaking, these provinces are located in the three most productive and dynamic regions of China: the Bohai Sea, the Yangtze River Delta and the Pearl River Delta. The gross regional domestic product in these five provinces accounts for approximately half that of the 32 provinces/autonomous regions/municipalities in China. These provinces' gross domestic product(GDP) per capita far exceeded the average value in China from 2005 to 2014[7] and was similar to the GDP of other developed countries in Asia. Moreover, since the 2000s, this region has experienced dramatic changes in both the economic and health sectors[8]. According to the Health Statistics Yearbook, in 2015, the average life expectancy in eastern coastal China was around 78 years old, which is greater than the national average of approximately 76 years old[7]. Due to the rapid urbanisation, economic development and population ageing in eastern coastal China, NCDs and disabilities are becoming more prevalent[1,3], and the spectrum of inpatients' diseases in this area is speculated to largely differ from that in other regions of China. More specific guidelines for preventing and curing NCDs that are tailored to the disease patterns observed in eastern coastal China must be developed.

In exploring disease patterns, particularly in longitudinal studies based on a largesample, second-hand data may be regarded as a good source. In particular, data from
116	hospitals' electronic health record(EHR) systems have unique advantages. For
117	instance, Upshur et al. applied time series methods to a population-based retrospective
118	cohort for the 52 most common causes of hospital admissions in the province of
119	Ontario from 1988 to 2001 and showed that hospital admissions displayed systematic
120	patterns that are understandable, predictable, and reasonably accurate[9]. Using data
121	from the admission and discharge/death register, Sani et al.[10] conducted a
122	three-year review of mortality patterns. Their result supported the emerging trend of a
123	combined burden of communicable diseases and NCDs. In China, disease surveillance
124	is conducted by the National Disease Surveillance Points System, which was founded
125	in 1978; however, this system reports primarily on communicable diseases and reports
126	on only a small subset of NCDs, such as cancer[11,12]. Given these factors, the
127	current study used the hospital-based EHR system as a data source. This relatively
128	new database compiles clinical information from a large number of patients in a
129	computationally accessible form. The EHR system provides us with a unique
130	opportunity to elucidate the relatively severe NCD epidemiology and includes a
131	diverse array of NCDs[13].
132	The aim of this study was to dynamically elucidate the spectrum and characteristics of

severe NCDs in eastern coastal China by analysing hospitals' longitudinal EHR data. The results can provide insight into the aetiology of NCDs and aid in the development of evidence-based clinical guidelines for preventing and curing NCDs. In addition, the distribution of NCDs in eastern coastal China can inform the development of clinical guidelines for NCDs in other regions or countries in transition.

138 METHODS

139 Study design and data collection

Longitudinal data(2003-2014) on NCDs were extracted from the EHR systems of 12
general tertiary hospitals in Shandong(2 hospitals), Jiangsu(2 hospitals), Zhejiang(2
hospitals), Shanghai(3 hospitals) and Guangdong Provinces(3 hospitals).

A multistage sample was obtained. To obtain a representative sample, when choosing the sites, we first selected 3 cities that represented high, middle, and low socioeconomic statuses, as defined by GDP level, in each of the 5 provinces. Second, in each city, we selected the largest general tertiary hospital, resulting in 15 sampled hospitals. However, we did not obtain consent from three tertiary hospitals in some cities in Shandong, Jiangsu and Zhejiang Provinces due to political reasons regarding EHR data collection. In China, EHR data are not openly available but can be obtained from consenting hospitals with the help of health authorities. However, for several reasons, the health authorities cannot support us in the future. Thus, 12 general tertiary hospitals were included in the study. In this study, one hospital in Shandong Province in the low socioeconomic group, one hospital in Jiangsu Province in the middle socioeconomic group, and one hospital in Zhejiang Province in the high group were missing from the dataset. However, due to the distribution of the missing hospitals, it was thought that lack of participation of these hospitals would not influence the final results. In China, EHRs have used a uniform version since 2001 in most large cities and comprised two parts. The first part contains the patients' personal

159	information, including their gender, age, identification card number, profession,
160	address, etc. This information is usually provided by the patients or their family. The
161	second part contains the inpatients' hospitalisation information, including their
162	diagnosis code, discharge status, pathologic diagnosis (if possible), operation code (if
163	possible), etc. This information is provided by the patient's physician, which ensures
164	its reliability. In terms of the diagnosis code, each inpatient is coded with an ICD-9
165	disease code by their physician. In addition, the GBD has well defined categories for
166	NCDs. Therefore, we extracted the inpatients' NCDs using their ICD-9 codes and
167	classified them into different categories.
168	We selected tertiary hospitals for this study. In China, hospitals are classified into
169	three categories according to their major functions. Although community institutions
170	are intended to serve as gatekeepers, a patient's freedom to select medical facilities
171	and doctors is not restricted by policies or health insurance coverage. Consequently,
172	patients with acute or chronic diseases frequently visit the higher-tier, more
173	sophisticated or specialised, and more expensive hospitals rather than community
174	health centres, and many of the community health centres do not have hospital beds.
175	In addition, their EHR systems are defective and incomplete, limiting the use of the
176	information they contain[14]. Typically, the largest tertiary hospitals see most of the
177	patients discharged in their cities.

178 Study subjects

179 In this study, information on inpatients with NCDs was extracted from the 2003-2014

BMJ Open

180	hospital EHR data of each hospital, and only individuals who had been admitted to
181	these hospitals during this period were included. We chose 2003 as the starting point
182	because the first EHR system was formally launched in these hospitals in that year. In
183	our study, the EHR systems of the tertiary hospitals include the admission information
184	of patients who received their first diagnosis of an NCD between 2003 and 2014. We
185	excluded any duplicated patients by searching and analysing their Identification Card
186	number in the EHRs. In addition, because these hospitals may also attract patients
187	from other districts or provinces, the inclusion criteria stipulated that participants must
188	have a fixed address in the relevant region, regardless of whether they were registered
189	or nonregistered residents. After excluding non-residents, NCD information for a total
190	of 1,907,484 inpatients was stripped of identifying information and extracted from the
191	hospitals' EHR systems. These patients were admitted to a variety of hospital
192	divisions, and according to the ICD-9 and GBD NCD classification, we extracted the
193	NCD patients from all of the inpatients and classified them into various disease
194	groups based on their first-list diagnosis. The final data set included the residents'
195	basic demographic information(gender and age) and the presence of chronic
196	diseases(disease system/category, disorder and year of admission). We did not include
197	region and socioeconomic status as factors because all of the hospitals were located in
198	an urban region and because it is difficult to determine the inpatients' socioeconomic
199	status from the EHR.

200 Statistical analysis

201 All data were analysed by using SAS Software 9.20. Basic descriptive statistics were

used to analyse the inpatients' personal characteristics(gender, age, and year of
admission). The NCD systems and the most common disorders within each disease
system were ranked according to their relative proportions. The Cochran-Armitage
Chi-square test was then used to examine significant increases or decreases in the
proportions of NCDs in disease systems across different gender and age groups
between 2003 and 2014.

208 Ethics statement

All research activities were conducted with integrity according to generally accepted ethical principles and were approved by the Ethics Committees of Tongji University(ref: LL-2016-ZRKX-017). This study presented minimal risk of harm to its subjects, and the data were collected anonymously. None of the inpatients' personal information included in the database was available to individuals outside of the research team.

RESULTS

216 Description of the personal characteristics of inpatients with NCDs

The personal characteristics of the studied population are summarised in Table 1. This

- population included 1,907,484 inpatients with NCDs, 50.05% of whom were male.
- 219 Most of these patients were aged 50 years or older(81.53%). Furthermore, the number
- of inpatients with NCDs increased from 2003 to 2014.

221 Ranking of the disorders in all NCDs categories within gender and age groups

BMJ Open

The ranks and proportions of all NCDs for each gender group are presented in Table 2. Among males, each of the five most common disorders represented more than 4.0%of the total NCDs from 2003 to 2014. The three most frequently occurring disorders among men inpatients were cerebral infarction(12.61%), coronary heart disease (6.94%) and hypertension (6.05%). Similarly, those for women showed that cerebral infarction (9.63%) occurred most frequently. However, hypertension (6.84%) and uterine fibroids(4.15%) were the second and third most frequently occurring NCDs among women, respectively.

Table 2 also shows the ranks of the most frequently occurring disorders across age groups. The older group(>41 years of age) accounted for a larger proportion of NCD inpatients, and the most common conditions in this group were cerebral infarction, coronary heart disease and hypertension. In the 11- to 50-year-old group, urogenital diseases, endocrine diseases and neoplasms including redundant prepuce, benign neoplasm of the breast and endometrial hyperplasia occurred frequently in men and women. In addition, hypertension, chronic obstructive pulmonary disease and diabetes were more common among the elderly than among individuals in the other age groups.

239 Distribution of NCDs across the different groups from 2003 to 2014

Table 3 shows the changes in the proportions of the 12 NCD categories from 2003 to 241 2014. A significant decrease in the occurrence of cancer(Z=-20.525, P<0.001), other 242 neoplasms(Z=-20.525, P<0.001), chronic respiratory diseases(Z=-18.290, P<0.001),

urogenital diseases(Z=-5.329, P<0.001) and sensory organ diseases(Z=-2.403, P=0.008) was found. In contrast, the proportions of other NCDs increased to various extents over the 12-year period. Notably, the proportion of patients with diabetes and blood and endocrine diseases increased approximately four-fold(from 1.36% to 6.74%).

As shown in Figure 1, the 12-year NCD percentages recorded in the hospitals varied widely by gender. The percentage of both men and women who were diagnosed with diabetes or blood and endocrine diseases increased substantially. It is worth noting that the percentage of women who were diagnosed with digestive diseases (Z=-0.270, P=0.394), neurological disorders(Z=0.943, P=0.173), and sensory organ diseases (Z=0.056, P=0.478) was higher and found in more stable proportions from 2003 to 2014; this result is in strong contrast to the pattern found in the male inpatients. In addition, although the proportion of cancer and other neoplasms decreased in women, this decrease was less pronounced than that found in men.

Changes in NCDs proportions across age groups were also examined(Figure 2). NCDs were relatively rare among patients aged 10 years or younger, but chronic respiratory diseases occurred most frequently in this group. For 11-20-year-old subjects, sensory organ diseases (Z=3.304, P<0.001) and cardiovascular and circulatory diseases(Z=2.090, P=0.018) occurred more frequently over time. We noted the proportions of patients with diabetes or blood and endocrine diseases increased in these two groups and in the below 30-year-old group. For the 41- to 50-year-old group, the number of patients diagnosed with cancer decreased

BMJ Open

significantly but the proportions of patients with cardiovascular, circulatory(Z=7.918, P<0.001) and digestive diseases (Z=3.086, P<0.01) increased to a greater extent than in the younger population. In the \geq 50-year-old group, the proportion of patients with diabetes or blood and endocrine diseases increased substantially(P<0.001).

DISCUSSION

By analysing the EHR information of inpatients with NCDs at 12 hospitals in eastern coastal China, our research team was able to elucidate the severe NCD patterns in a relatively unbiased fashion and to confirm that NCDs displayed regional heterogeneity to some extent. The increase in the number of NCD inpatients in eastern coastal China from 2003 to 2014 may be due to several reasons. First, owning to improvements in economics, health insurance and convenient transportation in China, even people with minor diseases may go to larger hospitals because they are equipped with better devices and doctors and do not adhere to strict referral policies. Second, the increase in the number of severe NCD patients may mainly result from higher pressure, a lack of exercise, and air pollution, among other factors in rapidly developed cities [14,15], which is consistent with the findings of Allen et al. (2017) who, in a systematic review, showed that NCD behavioural risk factors is well established in high-income countries. For example, high socioeconomic groups were found to be less physically active and to consume more fats, salt, and processed food than low socioeconomic status individuals[16].

285 In order of ranks, cardiovascular and circulatory diseases, urogenital diseases, chronic

5	1
5	8
5	ŝ
6	C
5 6	

2	
3	
4	
5	
6	
7	
, 0	
0	
9	
10	
11	
12	
13	
14	
15	
10	
16	
17	
18	
19	
20	
21	
22	
22 22	
23	
24	
25	
26	
27	
28	
29	
20	
30	
31	
32	
33	
34	
35	
36	
27	
20	
38	
39	
40	
41	
42	
43	
44	
4-7 Λ5	
40	
46	
47	
48	
49	
50	
51	
50	
5Z	
53	
54	
55	
56	
57	
58	
50	
59	
60	

1

286	respiratory diseases, and digestive diseases were the most common NCDs in this
287	region. In eastern coastal China, severe cardiovascular and circulatory diseases may
288	occur more frequently because of the greater degree of urbanisation and greater
289	proportion of ageing population in the region[2,3]. Goryakin et al.(2017) studied the
290	contribution of urbanisation to NCDs in 173 countries and found that when shifting
291	from rural to urban areas, the average body mass index (BMI), total cholesterol level
292	and systolic blood pressure, increased[17], demonstrating that high urbanisation
293	increases the occurrence of cardiovascular and circulatory diseases, which is in
294	consistent with this study. In addition, the frequency of urogenital diseases (second)
295	and digestive diseases (fourth) in this region is potentially because of the more rapid
296	pace of modern life, more sedentary lifestyle and longer working hours. In our search
297	of existing studies on inpatients with NCDs, we rarely found this spectrum at the top
298	of the list in other regions[18]. However, interestingly, this study revealed that the
299	proportion of chronic respiratory diseases and cancer inpatients decreased over the
300	12-year period, in stark contrast to the changes in the incidence observed throughout
301	China[19,20]. Often, previous studies have concluded that the incidence of respiratory
302	diseases is increasing, likely due to ambient air pollution and tobacco use, resulting in
303	tremendous threats to respiratory health[3,21]. This difference may be a result of the
304	data because the reported incidence also includes mild respiratory diseases. However,
305	the opposite trend found in inpatients in eastern coastal China may have also resulted
306	from this region's transition from a heavy industrial district to a technologically
307	focused area, which has been associated with a substantial reduction in environmental

BMJ Open

pollution. Moreover, the regional public health media campaigns have focused on cancer prevention and the regional government has promoted early screening and the treatment of major cancers since the 2000s, particularly in these developed areas in China where the government can invest more money into public health activities[22], which likely explains the reduced proportion of cancer patients. However, PM 2.5 air pollution, household pollution, tobacco use, residents' insufficient knowledge of NCD prevention, etc. remain persistent risk factors in eastern coastal China and deserve considerable attention[23,24].

Concerning the NCD distribution in the different age groups, we found that the older age group accounted for the largest proportion of individuals with NCDs, with cerebral infarction, coronary heart disease and hypertension being the most common conditions, which is consistent with the epidemiological features of NCDs[25,26] and indicates these NCDs represent a significant burden for the Chinese government. Interestingly, it is also found that not only did the proportion of older patients suffering from NCDs such as diabetes or blood and endocrine diseases increase nearly four-fold from 2003 to 2014, but also, the proportion of younger individuals between the ages of 30 and 50 with these diseases increased significantly. However, this may be the result of unhealthy nutrient intake and great psychological pressure on the younger population in this fast-paced area and should be given great attention.

Additionally, the identified demographic differences in which women exhibit a higher proportion of severe digestive diseases and neurological disorders may indicate that currently, women in China are employed in the same fast-paced jobs or roles as

330	men[27]. Furthermore, women are expected to devote more effort to balancing family
331	and work[28,29] in developed areas or cities, which is undoubtedly challenging for
332	them and may induce the onset of these diseases. These factors imply that specific
333	risk factors for frequently occurring NCDs in different gender groups should be
334	monitored in addition to the diseases or groups that are currently monitored and
335	screened for due to their significant burden. Other frequently occurring NCD diseases
336	and a wider population should also be targeted, such as the prevention and screening
337	of digestive diseases in females or increased preventative measures for diabetes and
338	blood, endocrine, cardiovascular and circulatory diseases among the younger and
339	population. In addition, all these call for the improvement and more invest in
340	prevention and control of NCDs by community health institutions, which is lagged
341	even in the economic-developed eastern coastal or averagely the whole China
342	compared with the western countries[30]. For instance, usually community health
343	institutions are competing with hospitals to attract more patients, and only the public
344	health physicians(different from general physicians) mainly take the responsibilities
345	of health education and follow-up visit for NCD patients. According to a survey on a
346	representative community health institution in Shanghai, the public health physicians
347	accounted for 7.94% of the total health personnel, which are in great shortage.
348	Undoubted, this is a significant political and public issue for China currently to better
349	reduce the NCDs and improve the national health[31].

350 Limitations

351 In this study, there were several limitations. First, the sampled hospitals were the

BMJ Open

largest hospitals in eastern coastal cities. These cities were selected to increase the sample's representativeness of eastern coastal China. However, the generalisability and reliability of the findings are a concern. Because the EHR included a large number of inpatients with NCDs, it was a precise data source for determining the status of and trends in the occurrence of different diseases. To reduce selection bias, more representative hospitals from each of the cities must be investigated. Second, because socioeconomic data was absent in the EHRs, we were unable to compare the differences in socioeconomic groups in this study. Third, because few longitudinal studies examining the spectrum of NCDs among many hospitals' inpatients have been conducted in other areas of China, it was difficult to compare the current findings regarding inpatients' NCDs with those in other parts of China.

CONCLUSIONS

In summary, the spectrum of NCD inpatients from 12 hospitals exhibits the severe NCDs condition and spectrum in eastern coastal China to a certain extent. Specific NCDs rapidly increased in women and the younger population over the studied 12-year period, underscoring the importance of healthcare policies or guidelines for developing countries or regions such as China. However, due to the limited generalisability and reliability of this study, stronger support must be obtained through future studies on the spectrum of inpatients' NCDs in eastern coastal China and other regions.

372 Abbreviations

373 Non-communicable diseases: NCDs

374	GDP: Gross domestic product
375	Acknowledgements
6	The authors appreciate the assistance of all the hospitals involved in this research
,	project in collecting the data.
	Funding
	The design of this study was financially supported by the Shanghai Health Policy
	Program(2016HP043). Data collection, analysis and interpretation were funded as
	part of a Central University Special Funds for Scientific Research
	Project(1500219099), and the writing and revision of the manuscript was funded by
	the National Natural Science Foundation of China (71603182) and the Shanghai
	Health Bureau Program(201440344).
	Availability of data and materials
	All relevant data are available in the Figshare database under the DOI:
	https://figshare.com/s/f79b2b4e686d1d477527
	Authors' contributions
	Conceived and designed the experiments: DHY, JWS and ZXW. Analysed the data:
	JWS, HZZ and YL. Contributed reagents/materials/analysis tools: YL, BZ, YP, BW
	and PFS. Wrote the paper: DHY and JWS.
	Competing interests
	The authors have declared that they have no competing interests.

1 2	
3 4	
5 6	
7 8	
9 10	
11	
12	
14	
16 17	
18 19	
20 21	
22 23	
24 25	
26 27	
28 29	
30 31	
32 33	
34 35	
36 37	
38 39	
40 41	
42	
44	
40	
47	
49 50	
51 52	
53 54	
55 56	
57 58	
59 60	

REFERENCES 395

396	1	World Health Organization. Non communicable diseases progress. Monitor.
397		http://apps.who.int/iris/bitstream/10665/184688/1/9789241509459_eng.pdf
398		(accessed: 1 Apr 2016), 2015.
399	2	Lim SS, Vos T, Flaxman AD, et al. A comparative risk assessment of burden
400		of disease and injury attributable to 67 risk factors and risk factor clusters in
401		21 regions, 1990-2010: a systematic analysis for the global Burden of Disease
402		Study 2010. Lancet2012;380:2224-60. doi:10.1016/S0140-6736(12)61766-8.
403	3	Yang G, Wang Y, Zeng Y, et al. Rapid health transition in China, 1990-2010:
404		findings from the Global Burden of Disease Study 2010.
405		Lancet2013;381:1987-2015. doi:10.1016/S0140-6736(13)61097-1.
406	4	Liu Y, Yang G, Zeng Y, et al. Policy dialogue on China's changing burden of
407		disease. Lancet2013;381:1961-2. doi:10.1016/S0140-6736(13)61031-4.
408	5	Fang P, Dong S, Xiao J, et al. Regional inequality in health and its
409		determinants: evidence from China. <i>Health Policy</i> 2010;94:14-25.
410		doi:10.1016/j.healthpol.2009.08.002.
411	6	Tang S, Meng Q, Chen L, et al. Tackling the challenges to health equity in
412		China. Lancet2008;372:1493-501. doi:10.1016/S0140-6736(08)61364-1.
413	7	National Bureau of Statistics of the People's Republic of China. China
414		Statistical Bullletin, 2015. http://www.stats.gov.cn/tjsj/tjgb/ndtjgb/ (accessed:
415		1 Apr 2016)

416	8	Liu GF, Sun MP, Wang ZY, et al. Association analysis between urbanization
417		and non-communicable diseases and health-related behavior. Acta Scientiarum
418		Naturalium Universitatis Pekinensis(Chinese Journal)2016;48:478–82.
419	9	Upshur RE, Moineddin R, Crighton E, et al. Simplicity within complexity:
420		seasonality and predictability of hospital admissions in the province of Ontario
421		1988-2001, a population-based analysis. BMC Health Serv Res2005;5:13.
422		doi:10.1186/1472-6963-5-13.
423	10	Sani MU, Mohammed AZ, Bapp A, et al. A three-year review of mortality
424		patterns in the medical wards of Aminu Kano Teaching Hospital, Kano,
425		Nigeria. Niger Postgrad Med J2007;14:347-51.
426	11	Duan L, Deng X, Wang Y, et al. The National injury surveillance system in
427		China: a six-year review. <i>Injury</i> 2015;46:572-9.
428		doi:10.1016/j.injury.2014.12.013.
429	12	Zhu M, Ruan W, Fei SJ, et al. Approaches to the evaluation of malaria
430		elimination at county level: case study in the Yangtze River Delta region. Adv
431		Parasitol2014;86:135-82. doi:10.1016/B978-0-12-800869-0.00006-8.
432	13	Melamed RD, Khiabanian H, Rabadan R. Data-driven discovery of seasonally
433		linked diseases from an electronic health records system. BMC
434		Bioinformatics2014;15(Suppl 6):S3. doi:10.1186/1471-2105-15-S6-S3.
435	14	Yang H, Huang X, Zhou Z, et al. Determinants of initial utilization of
436		community healthcare services among patients with major non-communicable

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Page 21 of 30			BMJ Open
1 2			
3	437		chronic diseases in south China. PLoS ONE 2014;9:e116051.
5 6 7	438		doi:10.1371/journal.pone.0116051.
8 9 10	439	15	Zhou L. Analysis of the chronic diseases components of inpatient in a hospital
11 12	440		of Wuhan from 2008-2012. Med Soc2014;10:23-5.
13 14 15	441	16	Allen L, Williams J, Townsend N, et al. Socioeconomic status and
16 17	442		non-communicable disease behavioural risk factors in low-income and
18 19 20	443		lower-middle-income countries: a systematic review. Lancet Glob
21 22	444		Health2017;5:e277-e289. doi: 10.1016/S2214-109X(17)30058-X.
23 24 25	445	17	Goryakin Y, Rocco L, Suhrcke M. The contribution of urbanization to
26 27	446		non-communicable diseases: evidence from 173 countries from 1980 to 2008.
28 29 30	447		<i>Econ Hum Biol</i> 2017. doi:10.1016/j.ehb.2017.03.004.
31 32	448	18	Zhu YJ, Yao YH, Xue SS, et al. Analysis on condition of chronic diseases,
33 34 35	449		distribution of disease spectrum and main risk factors of diseases of elderly in
36 37	450		Jilin Province. Journal Jilin University (Medicine Edition) (Chinese
38 39 40	451		Journal)2013;6:1275-81.
41 42 42	452	19	World Health Organization, Global Health Observatory Data Repository,
43 44 45	453		2016. http://apps.who.int/gho/data/node.main.A865?lang=en (accessed: 3 Apr
46 47 48	454		2016).
48 49 50	455	20	Oyebode O, Pape UJ, Laverty AA, et al. Rural, urban and migrant differences
51 52 53	456		in non-communicable disease risk-factors in middle income countries: a
54 55	457		cross-sectional study of WHO-SAGE data. PLoS ONE 2015;10:e0122747.
56 57 58	458		doi:10.1371/journal.pone.0122747.
59 60			21

2
2
3
4
5
6
7
1
8
9
10
11
10
12
13
14
15
16
10
17
18
19
20
21
∠ I
22
23
24
25
20
26
27
28
20
29
30
31
32
33
24
34
35
36
37
20
30
39
40
41
12
42
43
44
45
46
47
47
48
49
50
50 51
51
52
53
54
55
55
56
57
58
50
09
60

459	21	Tao Y, Mi S, Zhou S, et al. Air pollution and hospital admissions for
460		respiratory diseases in Lanzhou, China. Environ Pollut2014;185:196-201.
461		doi:10.1016/j.envpol.2013.10.035.
462	22	Li DL, Zheng Y, Lu W. Practice and probe into prevention and control for high
463		incidence cancers in Shanghai. China Cancer (Chinese Journal)2010; 19:80-5.
464	23	Tu ZG. The coordination of industrial growth with environment and resource.
465		Econ Res J (Chinese Journal)2008;2:93-105.
466	24	Wu F. Shanghai, China – study on global ageing and adult health, 2009/10.
467		WAVE, 2013.
468	25	Ding D, Zhong X, Lau JT, et al. Behavioral medicine and prevention of
469		non-communicable diseases in China: current challenges and future directions.
470		Int J Behav Med2014;21:584-9. doi:10.1007/s12529-014-9393-7.
471	26	Zhai F, Wang H, Du S, et al. Prospective study on nutrition transition in China.
472		Nutr Rev2009;67(Suppl 1):S56–S61. doi:10.1111/j.1753-4887.2009.00160.x.
473	27	Liu LN. Analysis on the overstrain women in the workforce in China. Reform &
474		Openning (Chinese Journal)2013;1:33-4.
475	28	Yang H, He F, Wang T, et al. Health-related lifestyle behaviors among male
476		and female rural-to-urban migrant workers in Shanghai, China. PLoS ONE
477		2015;10:e0117946. doi:10.1371/journal.pone.0117946.
478	29	Du M, Prescott J, Kraft P, et al. Physical activity, sedentary behavior, and
479		leukocyte telomere length in women. Am J Epidemiol2012;175:414-22.
480		doi:10.1093/aje/kwr330.

2	
3	
4	
5	
6	
1	
8	
9	
10	
11	
12	
13	
14	
15	
10	
17	
10	
20	
20	
∠ I 22	
22	
20	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
5U	
51	
52 52	
53	
54	
56	
50	
58	
59	
60	

481	30	Mathur R, Bhaskaran K, Edwards E, et al. Population trends in the 10-year
482		incidence and prevalence of diabetic retinopathy in the UK: a cohort study in
483		the Clinical Practice Research Datalink 2004-2014. BMJ Open2017;7:e014444.
484		doi: 10.1136/bmjopen-2016-014444.
485	31	Zhou XL, Wu KF, Sun BH. Analysis on the current status and development
486		strategies of public health physicians in community health institutions in
487		Shanghai. Chinese Journal of General Practice(Chinese Journal)2012; 10(11):
488		1756-1757.

489

490 Table 1Demographic Characteristics of Inpatients with NCDs

Variable	Classification	Ν	%
Gender	Male	954612	50.05
	Female	952872	49.95
Age	0-10	1008	0.05
(years)	11-20	14688	0.77
	21-30	47484	2.49
	31-40	70164	3.68
	41-50	219060	11.48
	51-60	320172	16.79
	61-70	268176	14.06
	71-80	523452	27.44
	>80	443280	23.24
Year of admission	2003	110796	5.81
	2004	126744	6.64
	2005	127704	6.69
	2006	135972	7.13
	2007	141780	7.43
	2008	145728	7.64
	2009	155220	8.14
	2010	157500	8.26
	2011	171060	8.97
	2012	191004	10.01
	2013	209100	10.96
	2014	234876	12.31
	Total	1907484	100.00

				Table 2 I	Ranking of the Most C	ommon NCDs by (Group			
Variable	First		Second		Third		Fourth		Fifth	
	Disease	N(%)	Disease	N(%)	Disease	N(%)	Disease	N(%)	Disease	N(%)
Gender										
Male	Cerebral infarction	120396(12.61)	Coronary heart disease	66216(6.94)	Hypertension	57708(6.05)	Chronic obstructive pulmonary disease	53904(5.65)	Chronic bronchitis	45252(4.74)
Female	Cerebral infarction	91776(9.63)	Hypertension	65136(6.84)	Uterine fibroid	39564(4.15)	Coronary heart disease	31188(3.27)	Chronic bronchitis	25776(2.71)
Age(years)										
0-10	Chronic tonsillitis	264(16.19)	Redundant <	144(14.29)	Adenoid vegetation	72(7.14)	Adenoidal hypertrophy	48(4.76)	Tonsil hypertrophy	24(2.38)
11-20	Redundant prepuce	2064(14.05)	Benign neoplasm of breast	996(6.78)	Spontaneous pneumothorax	648(4.41)	Chronic tonsillitis	552(3.76)	Respiratory failure	444(3.02)
21-30	Redundant prepuce	4704(9.91)	Benign neoplasm of breast	2448(7.51)	Ovarian cyst	3564(5.16)	Ureteral calculi	1632(3.44)	Chronic tonsillitis	1032(2.17)
31-40	Uterine fibroid	5484(7.82)	Ovarian cyst	3156(4.50)	Endometrial polyp	2844(4.05)	Ureteral calculi	2556(3.64)	Hyperplasia of mammary glands	2268(3.23)
41-50	Uterine fibroid	25644(11.71)	Endometrial hyperplasia	9408(4.29)	Hyperplasia of mammary glands	8052(3.68)	Endometrial polyp	7404(3.38)	Ureteral calculi	5640(2.57)
51-60	Cerebral infarction	23124(7.22)	Coronary heart disease	14016(4.38)	Hypertension	12144(3.79)	Ureteral calculi	8364(2.61)	Cerebral haemorrhage	6636(2.07)
61-70	Cerebral infarction	29508(11.00)	Coronary heart disease	14016(6.30)	Hypertension	13668(5.10)	Vertebrobasilar insufficiency	6480(2.42)	Diabetes	5640(2.10)
71-80	Cerebral infarction	75972(14.51)	Hypertension	45612(8.71)	Coronary heart disease	38808(7.41)	Chronic bronchitis	30720(5.87)	Chronic obstructive pulmonary disease	25536(4.88)
>80	Cerebral infarction	46560(17.58)	Hypertension	31488(10.50)	Coronary heart disease	77928(8.51)	Chronic obstructive pulmonary disease	36216(8.17)	Chronic bronchitis	37728(7.10)

	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014			
	Ν	N	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	7	D 1	T 1
Disorder	=110796	=126744	=127704	=135972	=141780	=145728	=155220	=157500	=171060	=191004	=209100	=234876	L	P-value	Irend
Cancer	11.57	10.16	8.15	9.33	8.37	8.28	7.24	7.18	7.19	7.80	6.12	5.78	-20.525	< 0.001	$\downarrow \downarrow \downarrow$
Other neoplasms	6.63	8.05	7.43	7.41	5.58	4.55	5.54	4.45	4.67	4.55	4.36	4.01	-20.527	< 0.001	$\downarrow \downarrow \downarrow$
Cardiovascular and circulatory	28.20	20.28	20.18	20.52	21.42	22.22	21 69	26.21	25.64	25.65	24.97	24.60	10.961	<0.001	***
liseases	28.30	29.38	29.18	29.32	51.45	33.33	34.08	30.21	33.04	33.03	34.87	54.00	19.801	<0.001	
Chronic respiratory diseases	13.43	13.46	13.85	12.98	13.50	12.85	12.52	12.45	11.27	10.89	9.37	9.40	-18.290	< 0.001	$\downarrow \downarrow \downarrow$
Diabetes and blood and	1.26	1.42	1.25	1.26	1 44	1 46	1.25	1 75	1.55	2 67	6 47	674	41 269	<0.001	***
ndocrine diseases	1.30	1.43	1.23	1.20	1.44	1.40	1.33	1.75	1.55	3.07	0.4/	0.74	41.208	<0.001	
Digestive diseases	10.54	11.57	10.98	11.24	9.58	10.56	10.00	10.81	10.12	9.67	10.00	10.98	-2.757	0.003	$\downarrow\downarrow$
Mental and behavioural disorders	0.17	0.08	0.23	0.19	0.19	0.13	0.26	0.25	0.16	0.12	0.36	0.25	3.130	0.001	$\uparrow\uparrow$
Musculoskeletal disorders	5.44	4.74	4.85	4.64	5.18	4.48	4.58	3.86	4.67	4.54	5.80	6.23	4.668	< 0.001	$\uparrow\uparrow\uparrow$
Urogenital diseases	14.97	13.24	15.95	14.93	15.68	14.65	13.29	13.12	15.34	14.81	13.83	12.72	-5.329	< 0.001	$\downarrow \downarrow \downarrow$
Neurological disorders	2.25	3.78	4.35	3.96	4.58	5.34	5.33	4.97	4.83	3.49	4.13	4.36	3.915	< 0.001	$\uparrow\uparrow\uparrow$
Sensory organ diseases	4.14	3.20	2.69	3.15	3.50	2.97	3.64	3.18	2.84	3.26	3.02	3.15	-2.403	0.008	$\downarrow\downarrow$
Congenital anomalies	0.40	0.44	0.28	0.38	0.37	0.26	0.49	0.41	0.32	0.28	0.60	0.63	3.750	< 0.001	$\uparrow\uparrow\uparrow$
Skin and subcutaneous disease	0.80	0.47	0.82	0.99	0.59	1.14	1.06	1.35	1.38	1.26	1.08	1.15	7.294	< 0.001	$\uparrow\uparrow\uparrow$

 $\downarrow\downarrow$: P<0.01, negative trend; $\downarrow\downarrow\downarrow\downarrow$: P<0.001, negative trend; $\uparrow\uparrow$: P<0.01, positive trend; $\uparrow\uparrow\uparrow$: P<0.001, positive trend.

Fig.1 Distribution of non-communicable diseases by gender

0: cancer, 1: other neoplasms, 2: cardiovascular and circulatory diseases, 3: chronic respiratory diseases, 4: diabetes and blood and endocrine diseases, 5: digestive diseases, 6: mental and behavioural disorders, 7: musculoskeletal disorders, 8: urogenital diseases, 9: neurological disorders, 10: sensory organ diseases, 11: congenital anomalies, 12: skin and subcutaneous diseases

 \downarrow : P<0.05, negative trend; $\downarrow \downarrow$: P<0.01, negative trend; $\downarrow \downarrow \downarrow$: P<0.001, negative trend;

 \uparrow : P<0.05, positive trend; $\uparrow\uparrow$: P<0.01, positive trend; $\uparrow\uparrow\uparrow$: P<0.001, positive trend.

Fig. 2 Distribution of non-communicable diseases by age

0: cancer, 1: other neoplasms, 2: cardiovascular and circulatory diseases, 3: chronic respiratory diseases, 4: diabetes and blood and endocrine diseases, 5: digestive diseases, 6: mental and behavioural disorders, 7: musculoskeletal disorders, 8: urogenital diseases, 9: neurological disorders, 10: sensory organ diseases, 11: congenital anomalies, 12: skin and subcutaneous diseases

 \downarrow : P<0.05, negative trend; $\downarrow \downarrow$: P<0.01, negative trend; $\downarrow \downarrow \downarrow$: P<0.001, negative trend; ITEILS,

 \uparrow : P<0.05, positive trend; $\uparrow\uparrow$: P<0.01, positive trend; $\uparrow\uparrow\uparrow$: P<0.001, positive trend.

Fig.1 Distribution of non-communicable diseases by gender

0: cancer, 1: other neoplasms, 2: cardiovascular and circulatory diseases, 3: chronic respiratory diseases, 4: diabetes and blood and endocrine diseases, 5: digestive diseases, 6: mental and behavioural disorders, 7: musculoskeletal disorders, 8: urogenital diseases, 9: neurological disorders, 10: sensory organ diseases, 11: congenital anomalies, 12: skin and subcutaneous diseases

\: P<0.05, negative trend; ↓↓: P<0.01, negative trend; ↓↓↓: P<0.001, negative trend; ↑: P<0.05, positive trend; ↑↑: P<0.01, positive trend; ↑↑↑: P<0.001, positive trend.</pre>

55x17mm (600 x 600 DPI)

Fig. 2 Distribution of non-communicable diseases by age 0: cancer, 1: other neoplasms, 2: cardiovascular and circulatory diseases, 3: chronic respiratory diseases, 4: diabetes and blood and endocrine diseases, 5: digestive diseases, 6: mental and behavioural disorders, 7: musculoskeletal disorders, 8: urogenital diseases, 9: neurological disorders, 10: sensory organ diseases, 11: congenital anomalies, 12: skin and subcutaneous diseases

↓: P<0.05,negative trend;↓↓: P<0.01, negative trend;↓↓↓: P<0.001,negative trend; ↑: P<0.05,positive trend; ↑↑: P<0.01,positive trend;↑↑↑: P<0.001,positive trend.</pre>

48x64mm (600 x 600 DPI)

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cross-sectional studies

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3-5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5-6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5-6
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	7
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	7-8
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	7-8
Bias	9	Describe any efforts to address potential sources of bias	7
Study size	10	Explain how the study size was arrived at	5-6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	7-8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7-8
		(b) Describe any methods used to examine subgroups and interactions	7-8
		(c) Explain how missing data were addressed	7-8
		(d) If applicable, describe analytical methods taking account of sampling strategy	7-8
		(e) Describe any sensitivity analyses	7-8
Results			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	N/A
		confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	N/A
		(c) Consider use of a flow diagram	N/A
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	8
		(b) Indicate number of participants with missing data for each variable of interest	N/A
Outcome data	15*	Report numbers of outcome events or summary measures	8-11
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	N/A
		(b) Report category boundaries when continuous variables were categorized	N/A
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	N/A
Discussion			
Key results	18	Summarise key results with reference to study objectives	11-12
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	15
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	12-15
Generalisability	21	Discuss the generalisability (external validity) of the study results	15
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	16

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Identifying patterns of non-communicable diseases in developed eastern coastal China: A longitudinal study of electronic health records from 12 public hospitals

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-016007.R2
Article Type:	Research
Date Submitted by the Author:	05-Jun-2017
Complete List of Authors:	Yu, Dehua; Yangpu Hospital, Tongji University School of Medicine, Department of General Medicine Shi, Jianwei; Tongji University School of Medicine; Yangpu Hospital, Tongji University School of Medicine Zhang, Hanzhi; Yangpu Hospital, Tongji University School of Medicine, Department of General Medicine Wang, Zhaoxin; Tongji University School of Medicine; Yangpu Hospital, Tongji University School of Medicine, Department of General Medicine Lu, Yuan; Yangpu Hospital, Tongji University School of Medicine, Department of General Medicine Zhang, Bin; Yangpu Hospital, Tongji University School of Medicine, Department of General Medicine Zhang, Bin; Yangpu Hospital, Tongji University School of Medicine, Department of General Medicine Pan, Ying; Yangpu Hospital, Tongji University School of Medicine Wang, Bo; Yangpu Hospital, Tongji University School of Medicine, Department of General Medicine
Primary Subject Heading :	Health services research
Secondary Subject Heading:	Evidence based practice, Global health, Health services research, Public health
Keywords:	Non-communicable diseases, Electronic Health Record, Eastern coastal China, Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

SCHOLARONE[™] Manuscripts

1		
2		
3		Identifiing nottonng of non-communicable discoses in
4	1	Identifying patterns of non-communicable diseases in
5 6 7	2	developed eastern coastal China: A longitudinal study of
8 9	3	electronic health records from 12 public hospitals
10		Define V_{i} $\mathbb{D} \mathbb{D} \mathbb{D}^{\frac{1}{2}}$ $\mathbb{D} \mathbb{D}^{\frac{1}{2}}$ $\mathbb{D} \mathbb{D}^{\frac{1}{2}}$ $\mathbb{D} \mathbb{D}^{\frac{1}{2}}$
11 12	4 5	Yuan Lu, MD^1 , Bin Zhang, MD^1 , Ying Pan, MD^1 , Bo Wang, PhD^1 , Pengfei Sun, BD^2
13	6	1 Department of General Medicine, Yangpu Hospital, Tongji University School of
14 15	7	Medicine, Shanghai, 200090, China
16 17	8	2 Tongji University School of Medicine, Shanghai, 200092, China
18		
19	9	
20	10	DehuaYu: vdn1404@sina.com
21	10	JianweiShi: shijianwei amv@126.com
22	11	Harris Thenese dasher 001 (21.2) com
23	12	Hanzni Zhang: drenan001@163.com
24	13	Zhaoxin Wang: supercell002@sina.com
26	14	Yuan Lu: lussy@126.com
27	15	Bin Zhang: metamophore@aliyun.com
28	16	Ying Pan: hshpanying@163.com
29	17	Bo Wang: bowang13241@163.com
30 31	18	Pengfei Sun: 18817599414@163.com
32 33	19	
34 35	20	# These authors are co-first authors on this paper.
36 27	21	*Corresponding author:
38	22	Zhaoyin Wang
39	22	Associate Drafessor, DhD
40	25	Associate Fibressol, Filid
41	24	
42	25	I ongji University
43	26	Address: 1239 Si Ping RD, Yangpu District, Shanghai, 200092, China
44 15	27	Email: supercell002@sina.com
46	28	Tel: 86-13918537473
47		
48		
49		
50		
51		
52		
54		
55		
56		
57		
58		

Identifying patterns of non-communicable diseases in

developed eastern coastal China: A longitudinal study of electronic health records from 12 public hospitals Dehua Yu, PhD^{1#}, Jianwei Shi, PhD^{1,2#}, Hanzhi Zhang, MD¹, Zhaoxin Wang, PhD^{1,2*}, Yuan Lu, MD¹, Bin Zhang, MD¹, Ying Pan, MD¹, Bo Wang, PhD¹, Pengfei Sun, BD² 1 Department of General Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China 2 Tongji University School of Medicine, Shanghai, 200092, China #: Dehua Yu and Jianwei Shi are co-first authors on this paper * Corresponding author: Zhaoxin Wang, Email: supercell002@sina.com ABSTRACT **Objective:** Few studies have examined the spectrum and trends of non-communicable diseases (NCDs) in inpatients in eastern coastal China, which is transforming from an industrial economy to a service-oriented economy and is the most economically developed region in the country. This study aimed to dynamically elucidate the spectrum and characteristics of severe NCDs in eastern coastal China by analysing patients' longitudinal electronic health records (EHRs). Setting: To monitor the spectrum of NCDs dynamically, we extracted the EHR data from 12 general tertiary hospitals in eastern coastal China from 2003 to 2014. The rankings of and trends in the proportions of different NCDs presented by inpatients in different gender and age groups were calculated and analysed. Participants: We obtained a total sample of 1,907,484 inpatients with NCDs from

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2
3
1
- -
5
6
7
8
9
10
11
12
12
13
14
15
16
17
18
10
20
20
21
22
23
24
25
26
20
21
28
29
30
31
32
22
33
34
35
36
37
38
30
40
40
41
42
43
44
45
46
40 17
47
48
49
50
51
52
52
55
54
55
56
57
58
59
60
00

51 2003 to 2014, 50.05% of whom were male and 81.53% were aged 50 years or older. 52 **Results:** There was an increase in the number of total NCD inpatients in eastern coastal China from 2003 to 2014. However, the proportion of chronic respiratory 53 diseases and cancer inpatients decreased over the 12-year period. Compared with men, 54 women displayed a significant increase in the proportion of mental and behavioural 55 56 disorders (P<0.001) over time. Additionally, digestive diseases and sensory organ 57 diseases significantly decreased among men, but not women. The older group 58 accounted for a larger and growing proportion of the NCD inpatients, and the most common conditions in this group were cerebral infarctions, coronary heart disease and 59 60 hypertension. In addition, the proportion of 21- to 50-year-old inpatients with diabetes, blood diseases or endocrine diseases skyrocketed from 2003 to 2014 (P<0.001). 61 62 **Conclusions:** The burden of inpatients' NCDs increased rapidly, particularly among 63 women and younger people. The NCD spectrum observed in eastern coastal China is a good source of evidence for developing prevention guides for regions experiencing 64 transition. 65 Keywords: Non-communicable diseases; Electronic Health Record; Eastern coastal 66 China; Health policy 67 68 **Strengths and limitations** The concept of using longitudinal EHRs to document the proportion of NCD 69 admissions in eastern coastal China hospitals can provide a reasonably simple and 70 71 precise method of examining NCD trends over time. 3

72	•	This evidence provides a good foundation for the development of NCD
73		prevention guides or policies for similar developing regions that are undergoing
74		or will undergo an economic transformation.
75	•	The generalisability and reliability of the findings of this study are a concern, and
76		more hospitals from other parts of China should be included in future studies to
77		make a persuasive comparison

79 INTRODUCTION

In recent years, an epidemiological shift in morbidity and mortality from infectious diseases and malnutrition to non-communicable diseases(NCDs) has occurred in many countries, including China[1-3]. NCDs have become the major causes of death in China and globally. According to the 2012 WHO data repository, 87% of deaths in China were associated with NCDs[1]. The Global Burden of Disease Study(GBD) revealed that of the 8.3 million deaths in China in 2010, 7.0 million resulted from NCDs[3]. Stroke, ischaemic heart disease, cancers, and chronic obstructive pulmonary disease are now the leading causes of premature death in China, and the burden of these diseases is substantial[4].

Previous research on the epidemiological patterns of NCDs in China has primarily focused on the entire nation or cross-sectional studies of specific regions[1-6]. However, both the WHO and the GBD have acknowledged that a national analysis conducted in a country as large and diverse as China can mask substantial variations

93	in key outcomes[3,5]. In addition, few studies have examined the NCD spectrum in
94	inpatients, which can reflect the severe state of NCDs. In this study, we conducted a
95	longitudinal study of NCD patterns in five provinces in eastern coastal China:
96	Shandong, Jiangsu, Zhejiang, Shanghai and Guangdong provinces. Geographically
97	speaking, these provinces are located in the three most productive and dynamic
98	regions of China: the Bohai Sea, the Yangtze River Delta and the Pearl River Delta.
99	The gross regional domestic product in these five provinces accounts for
100	approximately half that of the 32 provinces/autonomous regions/municipalities in
101	China. These provinces' gross domestic product(GDP) per capita far exceeded the
102	average value in China from 2005 to 2014[7] and was similar to the GDP of other
103	developed countries in Asia. Moreover, since the 2000s, this region has experienced
104	dramatic changes in both the economic and health sectors[8]. According to the Health
105	Statistics Yearbook, in 2015, the average life expectancy in eastern coastal China was
106	around 78 years old, which is greater than the national average of approximately 76
107	years old[7]. Due to the rapid urbanisation, economic development and population
108	ageing in eastern coastal China, NCDs and disabilities are becoming more
109	prevalent[1,3], and the spectrum of inpatients' diseases in this area is speculated to
110	largely differ from that in other regions of China. More specific guidelines for
111	preventing and curing NCDs that are tailored to the disease patterns observed in
112	eastern coastal China must be developed.

In exploring disease patterns, particularly in longitudinal studies based on a largesample, second-hand data may be regarded as a good source. In particular, data from

115	hospitals' electronic health record(EHR) systems have unique advantages. For
116	instance, Upshur et al. applied time series methods to a population-based retrospective
117	cohort for the 52 most common causes of hospital admissions in the province of
118	Ontario from 1988 to 2001 and showed that hospital admissions displayed systematic
119	patterns that are understandable, predictable, and reasonably accurate[9]. Using data
120	from the admission and discharge/death register, Sani et al.[10] conducted a
121	three-year review of mortality patterns. Their result supported the emerging trend of a
122	combined burden of communicable diseases and NCDs. In China, disease surveillance
123	is conducted by the National Disease Surveillance Points System, which was founded
124	in 1978; however, this system reports primarily on communicable diseases and reports
125	on only a small subset of NCDs, such as cancer[11,12]. Given these factors, the
126	current study used the hospital-based EHR system as a data source. This relatively
127	new database compiles clinical information from a large number of patients in a
128	computationally accessible form. The EHR system provides us with a unique
129	opportunity to elucidate the relatively severe NCD epidemiology and includes a
130	diverse array of NCDs[13].

The aim of this study was to dynamically elucidate the spectrum and characteristics of severe NCDs in eastern coastal China by analysing hospitals' longitudinal EHR data. The results can provide insight into the aetiology of NCDs and aid in the development of evidence-based clinical guidelines for preventing and curing NCDs. In addition, the distribution of NCDs in eastern coastal China can inform the development of clinical guidelines for NCDs in other regions or countries in transition.

137 METHODS

138 Study design and data collection

Longitudinal data(2003-2014) on NCDs were extracted from the EHR systems of 12
general tertiary hospitals in Shandong(2 hospitals), Jiangsu(2 hospitals), Zhejiang(2
hospitals), Shanghai(3 hospitals) and Guangdong Provinces(3 hospitals).

A multistage sample was obtained. To obtain a representative sample, when choosing the sites, we first selected 3 cities that represented high, middle, and low socioeconomic statuses, as defined by GDP level, in each of the 5 provinces. Second, in each city, we selected the largest general tertiary hospital, resulting in 15 sampled hospitals. However, we did not obtain consent from three tertiary hospitals in some cities in Shandong, Jiangsu and Zhejiang Provinces due to political reasons regarding EHR data collection. In China, EHR data are not openly available but can be obtained from consenting hospitals with the help of health authorities. However, for several reasons, the health authorities cannot support us in the future. Thus, 12 general tertiary hospitals were included in the study. In this study, one hospital in Shandong Province in the low socioeconomic group, one hospital in Jiangsu Province in the middle socioeconomic group, and one hospital in Zhejiang Province in the high group were missing from the dataset. However, due to the distribution of the missing hospitals, it was thought that lack of participation of these hospitals would not influence the final results. In most large cities in China, EHRs have used a uniform version composed of two parts since 2001. The first part contains the patients'

158	personal information, including their gender, age, identification card number,
159	profession, address, etc. This information is usually provided by the patients or their
160	family. The second part contains the inpatients' hospitalisation information, including
161	their diagnosis code, discharge status, pathologic diagnosis (if possible), operation
162	code (if possible), etc. This information is provided by the patient's physician, which
163	ensures its reliability. In terms of the diagnosis code, each inpatient is coded with an
164	ICD-9 disease code by their physician. In addition, the GBD has well defined
165	categories for NCDs. Therefore, we extracted the inpatients' NCDs using their ICD-9
166	codes and classified them into different categories.
167	We selected tertiary hospitals for this study. In China, hospitals are classified into
168	three categories according to their major functions. Although community institutions
169	are intended to serve as gatekeepers, a patient's freedom to select medical facilities
170	and doctors is not restricted by policies or health insurance coverage. Consequently,
171	patients with acute or chronic diseases frequently visit the higher-tier, more
172	sophisticated or specialised, and more expensive hospitals rather than community
173	health centres, and many of the community health centres do not have hospital beds.
174	In addition, their EHR systems are defective and incomplete, limiting the use of the
175	information they contain[14]. Typically, the largest tertiary hospitals see most of the
176	patients discharged in their cities.

177 Study subjects

178 In this study, information on inpatients with NCDs was extracted from the 2003-2014

BMJ Open

179	hospital EHR data of each hospital, and only individuals who had been admitted to
180	these hospitals during this period were included. We chose 2003 as the starting point
181	because the first EHR system was formally launched in these hospitals in that year. In
182	our study, the EHR systems of the tertiary hospitals include the admission information
183	of patients who received their first diagnosis of an NCD between 2003 and 2014. We
184	excluded any duplicated patients by searching and analysing their Identification Card
185	number in the EHRs. In addition, because these hospitals may also attract patients
186	from other districts or provinces, the inclusion criteria stipulated that participants must
187	have a fixed address in the relevant region, regardless of whether they were registered
188	or nonregistered residents. After excluding non-residents, NCD information for a total
189	of 1,907,484 inpatients was stripped of identifying information and extracted from the
190	hospitals' EHR systems. These patients were admitted to a variety of hospital
191	divisions, and according to the ICD-9 and GBD NCD classification, we extracted the
192	NCD patients from all of the inpatients and classified them into various disease
193	groups based on their first-list diagnosis. The final data set included the residents'
194	basic demographic information(gender and age) and the presence of chronic
195	diseases(disease system/category, disorder and year of admission). Because there was
196	no significant difference in disease spectrum between regions with high, middle and
197	low socioeconomic status within eastern coastal China, we did not include region as a
198	factor.

199 Statistical analysis

200 All data were analysed by using SAS Software 9.20. Basic descriptive statistics were

used to analyse the inpatients' personal characteristics(gender, age, and year of
admission). The NCD systems and the most common disorders within each disease
system were ranked according to their relative proportions. The Cochran-Armitage
Chi-square test was then used to examine significant increases or decreases in the
proportions of NCDs in disease systems across different gender and age groups
between 2003 and 2014.

207 Ethics statement

All research activities were conducted with integrity according to generally accepted ethical principles and were approved by the Ethics Committees of Tongji University(ref: LL-2016-ZRKX-017). This study presented minimal risk of harm to its subjects, and the data were collected anonymously. None of the inpatients' personal information included in the database was available to individuals outside of the research team.

RESULTS

215 Description of the personal characteristics of inpatients with NCDs

The personal characteristics of the studied population are summarised in Table 1. This

- 217 population included 1,907,484 inpatients with NCDs, 50.05% of whom were male.
- 218 Most of these patients were aged 50 years or older(81.53%). Furthermore, the number
- of inpatients with NCDs increased from 2003 to 2014.

220 Ranking of the disorders in all NCDs categories within gender and age groups
BMJ Open

The ranks and proportions of all NCDs for each gender group are presented in Table 2. Among males, each of the five most common disorders represented more than 4.0%of the total NCDs from 2003 to 2014. The three most frequently occurring disorders among male inpatients were cerebral infarction(12.61%), coronary heart disease (6.94%) and hypertension (6.05%). Similarly, those for women showed that cerebral infarction (9.63%) occurred most frequently. However, hypertension (6.84%) and uterine fibroids(4.15%) were the second and third most frequently occurring NCDs among women, respectively.

Table 2 also shows the ranks of the most frequently occurring disorders across age groups. The older group(>41 years of age) accounted for a larger proportion of NCD inpatients, and the most common conditions in this group were cerebral infarction, coronary heart disease and hypertension. In the 11- to 50-year-old group, urogenital diseases, endocrine diseases and neoplasms including redundant prepuce, benign neoplasm of the breast and endometrial hyperplasia occurred frequently in men and women. In addition, hypertension, chronic obstructive pulmonary disease and diabetes were more common among the elderly than among individuals in the other age groups.

238 Distribution of NCDs across the different groups from 2003 to 2014

Table 3 shows the changes in the proportions of the 12 NCD categories from 2003 to 2014. A significant decrease in the occurrence of cancer(Z=-20.525, P<0.001), other neoplasms(Z=-20.525, P<0.001), chronic respiratory diseases(Z=-18.290, P<0.001),

urogenital diseases(Z=-5.329, P<0.001) and sensory organ diseases(Z=-2.403, P=0.008) was found. In contrast, the proportions of other NCDs increased to various extents over the 12-year period. Notably, the proportion of patients with diabetes and blood and endocrine diseases increased approximately four-fold(from 1.36% to 6.74%).

As shown in Figure 1, the 12-year NCD percentages recorded in the hospitals varied widely by gender. The percentage of both men and women who were diagnosed with diabetes or blood and endocrine diseases increased substantially. We found a significant increase in mental and behavioural disorders (Z=5.130, P<0.001), and musculoskeletal disorders(Z=6.896, P<0.001) among women but no significant changes among men. Also, it is worth noting that the percentage of men who were diagnosed with digestive diseases(Z=-4.284, P<0.001) and sensory organ diseases(Z=-3.342, P<0.001) reduced significantly from 2003 to 2014, but there was no significant change for women. In addition, although the proportion of cancer and other neoplasms decreased in women, this decrease was less pronounced than that found in men.

Changes in NCDs proportions across age groups were also examined(Figure 2). NCDs were relatively rare among patients aged 10 years or younger, but chronic respiratory diseases occurred most frequently in this group. For 11-20-year-old subjects, sensory organ diseases(Z=3.304, P<0.001) and cardiovascular and circulatory diseases(Z=2.090, P=0.018) occurred more frequently over time. We

BMJ Open

noted the proportions of patients with diabetes or blood and endocrine diseases increased in these two groups and in the below 30-year-old group. For the 41- to 50-year-old group, the number of patients diagnosed with cancer decreased significantly but the proportions of patients with cardiovascular, circulatory(Z=7.918, P<0.001) and digestive diseases(Z=3.086, P<0.01) increased to a greater extent than in the younger population. In the \geq 50-year-old group, the proportion of patients with diabetes or blood and endocrine diseases increased substantially(P<0.001).

DISCUSSION

By analysing the EHR information of inpatients with NCDs at 12 hospitals in eastern coastal China, our research team was able to elucidate the severe NCD patterns in a relatively unbiased fashion and to confirm that NCDs displayed regional heterogeneity to some extent. The increase in the number of NCD inpatients in eastern coastal China from 2003 to 2014 may be due to several reasons. First, owning to improvements in economics, health insurance and convenient transportation in China, even people with minor diseases may go to larger hospitals because they are equipped with better devices and doctors and do not adhere to strict referral policies. Second, the increase in the number of severe NCD patients appears to mainly result from the higher pressure, lack of exercise, and increased air pollution, among other factors in rapidly developed cities [14,15], which is consistent with the findings of Allen et al.(2017) who, in a systematic review, showed that NCD behavioural risk factors is well established in high-income countries. For example, high socioeconomic groups were found to be less physically active and to consume more fats, salt, and processed

food than low socioeconomic status individuals[16].

In order of ranks, cardiovascular and circulatory diseases, urogenital diseases, chronic respiratory diseases, and digestive diseases were the most common NCDs in this region. In eastern coastal China, severe cardiovascular and circulatory diseases may occur more frequently because of the greater degree of urbanisation and greater proportion of ageing population in the region [2,3]. Goryakin et al. (2017) studied the contribution of urbanisation to NCDs in 173 countries and found that when shifting from rural to urban areas, the average body mass index (BMI), total cholesterol level and systolic blood pressure, increased[17], demonstrating that high urbanisation increases the occurrence of cardiovascular and circulatory diseases, which is in consistent with this study. In addition, the frequency of urogenital diseases (second) and digestive diseases (fourth) in this region is potentially because of the more rapid pace of modern life, more sedentary lifestyle and longer working hours. In our search of existing studies on inpatients with NCDs, we rarely found this spectrum at the top of the list in other regions [18]. However, interestingly, this study revealed that the proportion of chronic respiratory diseases and cancer inpatients decreased over the 12-year period, in stark contrast to the changes in the incidence observed throughout China[19,20]. Often, previous studies have concluded that the incidence of respiratory diseases is increasing, likely due to ambient air pollution and tobacco use, resulting in tremendous threats to respiratory health [3,21]. This difference may be a result of the data because the reported incidence also includes mild respiratory diseases. However, the opposite trend found in inpatients in eastern coastal China may have also resulted

BMJ Open

from this region's transition from a heavy industrial district to a technologically focused area, which has been associated with a substantial reduction in environmental pollution. Moreover, regional public health media campaigns have focused on cancer prevention and the regional government has promoted early screening and the treatment of major cancers since the 2000s, particularly in these developed areas in China where the government can invest more money into public health activities[22], which likely explains the reduced proportion of cancer patients. However, PM 2.5 air pollution, household pollution, tobacco use, residents' insufficient knowledge of NCD prevention, etc. remain persistent risk factors in eastern coastal China and deserve considerable attention[23,24].

Concerning the distribution of NCDs among the different age groups, we found that the older age group accounted for the largest proportion of individuals with NCDs, with cerebral infarction, coronary heart disease and hypertension being the most common conditions. This result is consistent with the epidemiological features of NCDs[25,26] and indicates that these NCDs represent a significant burden on the Chinese government. Interestingly, in addition to the nearly fourfold increase in the proportion of older patients suffering from NCDs such as diabetes or blood and endocrine diseases between 2003 and 2014, the proportion of individuals with these diseases between the ages of 30 and 50 also increased significantly. However, this result could have been due to suboptimal nutrient intake and the high level of psychological pressure on the young population in this fast-paced area, a relationship that warrants further attention.

BMJ Open

329	Additionally, the observation that an increasing proportion of women exhibit severe
330	mental and behavioural disorders may indicate that, currently, women in China are
331	employed in the same fast-paced jobs or roles as men[27]. Furthermore, women are
332	expected to devote more effort to balancing family and work[28,29] in developed
333	areas or cities, which is undoubtedly challenging for them and may induce the onset
334	of these diseases. These factors imply that specific risk factors for frequently
335	occurring NCDs in different gender groups should be monitored in addition to the
336	diseases or groups that are currently monitored and screened for due to their
337	significant burden. Other frequently occurring NCD diseases and a wider population
338	should also be targeted, such as the prevention and screening of digestive diseases in
339	females or increased preventative measures for diabetes and blood, endocrine,
340	cardiovascular and circulatory diseases among the younger and population. In
341	addition, these observations call for an improvement and greater investment in the
342	prevention and control of NCDs by community health institutions, which has lagged
343	even in the economically well-developed eastern coastal regions of China as well as
344	in China as a whole compared with western countries[30]. For instance, community
345	health institutions typically compete with hospitals to attract patients, and only public
346	health physicians (different from general physicians) take the responsibility of
347	providing health education and follow-up visits for NCD patients. According to a
348	survey conducted at a representative community health institution in Shanghai,
349	public health physicians accounted for only 7.94% of total health personnel, and are
350	therefore in great shortage. Undoubtedly, reducing the incidence of NCDs and

BMJ Open

improving national health are significant political and public issues for China[31].

352 Limitations

In this study, there were several limitations. First, the sampled hospitals were the largest hospitals in eastern coastal cities. These cities were selected to increase the sample's representativeness of eastern coastal China. However, the generalisability and reliability of the findings are a concern. Because the EHR included a large number of inpatients with NCDs, it was a precise data source for determining the status of and trends in the occurrence of different diseases. To reduce selection bias, more representative hospitals from each of the cities must be investigated. Second, because socioeconomic data was absent in the EHRs, we were unable to compare the differences in socioeconomic groups in this study. Third, because the period of data collection spanned a long time, there may be some bias related to disease diagnosis caused by changes in policy, as well as changes in the availability of new treatments or therapies. Such changes could have resulted in patients with a given condition in the past becoming more or less likely to be inpatients in the present day. Fourth, because few longitudinal studies examining the spectrum of NCDs among many hospitals' inpatients have been conducted in other areas of China, it was difficult to compare the current findings regarding inpatients' NCDs with those in other parts of China.

370 CONCLUSIONS

371 In summary, the spectrum of NCD inpatients from 12 hospitals exhibits the severe

NCDs condition and spectrum in eastern coastal China to a certain extent. Specific NCDs rapidly increased in women and the younger population over the studied 12-year period, underscoring the importance of healthcare policies or guidelines for developing countries or regions such as China. However, due to the limited generalisability and reliability of this study, stronger support must be obtained through future studies on the spectrum of inpatients' NCDs in eastern coastal China and other regions.

379 Abbreviations

- 380 Non-communicable diseases: NCDs
- 381 GDP: Gross domestic product

382 Acknowledgements

383 The authors appreciate the assistance of all the hospitals involved in this research

384 project in collecting the data.

385 Funding

The design of this study was financially supported by the Shanghai Health Policy Program (2016HP043). Data collection, analysis and interpretation were funded as part of a Central University Special Funds for Scientific Research Project (1500219099), and the writing and revision of the manuscript was funded by the National Natural Science Foundation of China (71603182) and the Shanghai Health Bureau Program (201440344).

392 Availability of data and materials

393	All re	levant data are available in the Figshare database under the DOI:
394	https:/	//figshare.com/s/f79b2b4e686d1d477527
395	Autho	ors' contributions
396	Conce	eived and designed the experiments: DHY, JWS and ZXW. Analysed the data:
397	JWS,	HZZ and YL. Contributed reagents/materials/analysis tools: YL, BZ, YP, BW
398	and P	FS. Wrote the paper: DHY and JWS.
399	Comp	peting interests
400	The a	uthors have declared that they have no competing interests.
401		
401		
402	REF	FERENCES
403	1	World Health Organization. Non communicable diseases progress. Monitor.
404		http://apps.who.int/iris/bitstream/10665/184688/1/9789241509459_eng.pdf
405		(accessed: 1 Apr 2016), 2015.
406	2	Lim SS, Vos T, Flaxman AD, et al. A comparative risk assessment of burden
407		of disease and injury attributable to 67 risk factors and risk factor clusters in
408		21 regions, 1990-2010: a systematic analysis for the global Burden of Disease
409		Study 2010. Lancet2012;380:2224-60. doi:10.1016/S0140-6736(12)61766-8.
410	3	Yang G, Wang Y, Zeng Y, et al. Rapid health transition in China, 1990-2010:
411		findings from the Global Burden of Disease Study 2010.
412		Lancet2013;381:1987-2015. doi:10.1016/S0140-6736(13)61097-1.
413	4	Liu Y, Yang G, Zeng Y, et al. Policy dialogue on China's changing burden of
414		disease. Lancet2013;381:1961-2. doi:10.1016/S0140-6736(13)61031-4.
		19

1	
2	
3	
4	
5	
6	
7	
2 2	
a	
10	
11	
10	
12	
10	
14	
10	
10	
17	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34 25	
20	
20	
31 20	
30 20	
39	
40	
41	
42	
43 44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

415	5	Fang P, Dong S, Xiao J, et al. Regional inequality in health and its
416		determinants: evidence from China. Health Policy2010;94:14-25.
417		doi:10.1016/j.healthpol.2009.08.002.
418	6	Tang S, Meng Q, Chen L, et al. Tackling the challenges to health equity in
419		China. Lancet2008;372:1493-501. doi:10.1016/S0140-6736(08)61364-1.
420	7	National Bureau of Statistics of the People's Republic of China. China
421		Statistical Bullletin, 2015. http://www.stats.gov.cn/tjsj/tjgb/ndtjgb/ (accessed:
422		1 Apr 2016)
423	8	Liu GF, Sun MP, Wang ZY, et al. Association analysis between urbanization
424		and non-communicable diseases and health-related behavior. Acta Scientiarum
425		Naturalium Universitatis Pekinensis(Chinese Journal)2016;48:478–82.
426	9	Upshur RE, Moineddin R, Crighton E, et al. Simplicity within complexity:
427		seasonality and predictability of hospital admissions in the province of Ontario
428		1988-2001, a population-based analysis. BMC Health Serv Res2005;5:13.
429		doi:10.1186/1472-6963-5-13.
430	10	Sani MU, Mohammed AZ, Bapp A, et al. A three-year review of mortality
431		patterns in the medical wards of Aminu Kano Teaching Hospital, Kano,
432		Nigeria. Niger Postgrad Med J2007;14:347-51.
433	11	Duan L, Deng X, Wang Y, et al. The National injury surveillance system in
434		China: a six-year review. Injury2015;46:572-9.
435		doi:10.1016/j.injury.2014.12.013.

436	12	Zhu M, Ruan W, Fei SJ, et al. Approaches to the evaluation of malaria
437		elimination at county level: case study in the Yangtze River Delta region. Adv
438		Parasitol2014;86:135-82. doi:10.1016/B978-0-12-800869-0.00006-8.
439	13	Melamed RD, Khiabanian H, Rabadan R. Data-driven discovery of seasonally
440		linked diseases from an electronic health records system. BMC
441		Bioinformatics2014;15(Suppl 6):S3. doi:10.1186/1471-2105-15-S6-S3.
442	14	Yang H, Huang X, Zhou Z, et al. Determinants of initial utilization of
443		community healthcare services among patients with major non-communicable
444		chronic diseases in south China. PLoS ONE 2014;9:e116051.
445		doi:10.1371/journal.pone.0116051.
446	15	Zhou L. Analysis of the chronic diseases components of inpatient in a hospital
447		of Wuhan from 2008-2012. Med Soc2014;10:23-5.
448	16	Allen L, Williams J, Townsend N, et al. Socioeconomic status and
449		non-communicable disease behavioural risk factors in low-income and
450		lower-middle-income countries: a systematic review. Lancet Glob
451		Health2017;5:e277-e289. doi: 10.1016/S2214-109X(17)30058-X.
452	17	Goryakin Y, Rocco L, Suhrcke M. The contribution of urbanization to
453		non-communicable diseases: evidence from 173 countries from 1980 to 2008.
454		Econ Hum Biol2017. doi:10.1016/j.ehb.2017.03.004.
455	18	Zhu YJ, Yao YH, Xue SS, et al. Analysis on condition of chronic diseases,
456		distribution of disease spectrum and main risk factors of diseases of elderly in

BMJ Open

457		Jilin Province. Journal Jilin University (Medicine Edition) (Chinese
458		Journal)2013;6:1275-81.
459	19	World Health Organization, Global Health Observatory Data Repository,
460		2016. http://apps.who.int/gho/data/node.main.A865?lang=en (accessed: 3 Apr
461		2016).
462	20	Oyebode O, Pape UJ, Laverty AA, et al. Rural, urban and migrant differences
463		in non-communicable disease risk-factors in middle income countries: a
464		cross-sectional study of WHO-SAGE data. PLoS ONE 2015;10:e0122747.
465		doi:10.1371/journal.pone.0122747.
466	21	Tao Y, Mi S, Zhou S, et al. Air pollution and hospital admissions for
467		respiratory diseases in Lanzhou, China. Environ Pollut2014;185:196-201.
468		doi:10.1016/j.envpol.2013.10.035.
469	22	Li DL, Zheng Y, Lu W. Practice and probe into prevention and control for high
470		incidence cancers in Shanghai. China Cancer (Chinese Journal)2010; 19:80-5.
471	23	Tu ZG. The coordination of industrial growth with environment and resource.
472		Econ Res J (Chinese Journal)2008;2:93-105.
473	24	Wu F. Shanghai, China – study on global ageing and adult health, 2009/10.
474		WAVE, 2013.
475	25	Ding D, Zhong X, Lau JT, et al. Behavioral medicine and prevention of
476		non-communicable diseases in China: current challenges and future directions.
477		Int J Behav Med2014;21:584-9. doi:10.1007/s12529-014-9393-7.

BMJ Open

478	26	Zhai F, Wang H, Du S, et al. Prospective study on nutrition transition in China.
479		Nutr Rev2009;67(Suppl 1):S56–S61. doi:10.1111/j.1753-4887.2009.00160.x.
480	27	Liu LN. Analysis on the overstrain women in the workforce in China. Reform &
481		Openning (Chinese Journal)2013;1:33-4.
482	28	Yang H, He F, Wang T, et al. Health-related lifestyle behaviors among male
483		and female rural-to-urban migrant workers in Shanghai, China. PLoS ONE
484		2015;10:e0117946. doi:10.1371/journal.pone.0117946.
485	29	Du M, Prescott J, Kraft P, et al. Physical activity, sedentary behavior, and
486		leukocyte telomere length in women. Am J Epidemiol2012;175:414-22.
487		doi:10.1093/aje/kwr330.
488	30	Mathur R, Bhaskaran K, Edwards E, et al. Population trends in the 10-year
489		incidence and prevalence of diabetic retinopathy in the UK: a cohort study in
490		the Clinical Practice Research Datalink 2004-2014. BMJ Open2017;7:e014444.
491		doi: 10.1136/bmjopen-2016-014444.
492	31	Zhou XL, Wu KF, Sun BH. Analysis on the current status and development
493		strategies of public health physicians in community health institutions in
494		Shanghai. Chinese Journal of General Practice(Chinese Journal)2012; 10(11):
495		1756-1757.

1
2
3
4
5
6
7
0
0
9
10
11
12
13
14
15
16
17
18
19
20
21
∠ I 22
22
23
24
25
26
27
28
29
30
31
32
33
34
35
26
27
31
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52
55
54
55
56
57
58
59
60

496 Table 1 Demographic Characteristics of Inpatients with NCDs

Variable	Classification	Ν	%
Gender	Male	954612	50.05
	Female	952872	49.95
Age	0-10	1008	0.05
(years)	11-20	14688	0.77
	21-30	47484	2.49
	31-40	70164	3.6
	41-50	219060	11.4
	51-60	320172	16.7
	61-70	268176	14.0
	71-80	523452	27.4
	>80	443280	23.24
Year of admission	2003	110796	5.8
	2004	126744	6.64
	2005	127704	6.6
	2006	135972	7.1.
	2007	141780	7.4.
	2008	145728	7.64
	2009	155220	8.14
	2010	157500	8.2
	2011	171060	8.9
	2012	191004	10.0
	2013	209100	10.90
	2014	234876	12.3
	Total	1907484	100.00

				Table 2 I	Ranking of the Most Co	ommon NCDs by (Group			
Variable	First		Second		Third		Fourth		Fifth	
	Disease	N(%)	Disease	N(%)	Disease	N(%)	Disease	N(%)	Disease	N(%)
Gender										
Male	Cerebral infarction	120396(12.61)	Coronary heart disease	66216(6.94)	Hypertension	57708(6.05)	Chronic obstructive pulmonary disease	53904(5.65)	Chronic bronchitis	45252(4.74
Female	Cerebral infarction	91776(9.63)	Hypertension	65136(6.84)	Uterine fibroid	39564(4.15)	Coronary heart disease	31188(3.27)	Chronic bronchitis	25776(2.71
Age(years)										
0-10	Chronic tonsillitis	264(16.19)	Redundant prepuce	144(14.29)	Adenoid vegetation	72(7.14)	Adenoidal hypertrophy	48(4.76)	Tonsil hypertrophy	24(2.38)
11-20	Redundant prepuce	2064(14.05)	Benign neoplasm of breast	996(6.78)	Spontaneous pneumothorax	648(4.41)	Chronic tonsillitis	552(3.76)	Respiratory failure	444(3.02)
21-30	Redundant prepuce	4704(9.91)	Benign neoplasm of breast	2448(7.51)	Ovarian cyst	3564(5.16)	Ureteral calculi	1632(3.44)	Chronic tonsillitis	1032(2.17
31-40	Uterine fibroid	5484(7.82)	Ovarian cyst	3156(4.50)	Endometrial polyp	2844(4.05)	Ureteral calculi	2556(3.64)	Hyperplasia of mammary glands	2268(3.23
41-50	Uterine fibroid	25644(11.71)	Endometrial hyperplasia	9408(4.29)	Hyperplasia of mammary glands	8052(3.68)	Endometrial polyp	7404(3.38)	Ureteral calculi	5640(2.57
51-60	Cerebral infarction	23124(7.22)	Coronary heart disease	14016(4.38)	Hypertension	12144(3.79)	Ureteral calculi	8364(2.61)	Cerebral haemorrhage	6636(2.07
61-70	Cerebral infarction	29508(11.00)	Coronary heart disease	14016(6.30)	Hypertension	13668(5.10)	Vertebrobasilar insufficiency	6480(2.42)	Diabetes	5640(2.10
71-80	Cerebral infarction	75972(14.51)	Hypertension	45612(8.71)	Coronary heart disease	38808(7.41)	Chronic bronchitis	30720(5.87)	Chronic obstructive pulmonary disease	25536(4.8
>80	Cerebral infarction	46560(17.58)	Hypertension	31488(10.50)	Coronary heart disease	77928(8.51)	Chronic obstructive pulmonary disease	36216(8.17)	Chronic bronchitis	37728(7.1

		Table	3 Distribut	tion of Non	-communic	able Diseas	ses from 20	03 to 2014	in the Total	Sample (%	6)				
	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014			
Disordar	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	7	D voluo	Trand
Disolder	=110796	=126744	=127704	=135972	=141780	=145728	=155220	=157500	=171060	=191004	=209100	=234876	L	r-value	TTellu
Cancer	11.57	10.16	8.15	9.33	8.37	8.28	7.24	7.18	7.19	7.80	6.12	5.78	-20.525	< 0.001	$\downarrow \downarrow \downarrow$
Other neoplasms	6.63	8.05	7.43	7.41	5.58	4.55	5.54	4.45	4.67	4.55	4.36	4.01	-20.527	< 0.001	$\downarrow \downarrow \downarrow$
Cardiovascular and circulatory	28.20	20.28	20.19	20.52	21.42	22.22	21 69	26.21	25.64	25.65	24.97	24.60	10.861	<0.001	***
diseases	28.30	29.38	29.18	29.32	31.43	33.33	34.08	30.21	33.04	33.03	34.87	34.00	19.801	<0.001	
Chronic respiratory diseases	13.43	13.46	13.85	12.98	13.50	12.85	12.52	12.45	11.27	10.89	9.37	9.40	-18.290	< 0.001	$\downarrow \downarrow \downarrow$
Diabetes and blood and	1.26	1.42	1.25	1.26	1 44	1.46	1.25	1 75	1.55	2 67	6 47	674	41 269	<0.001	***
endocrine diseases	1.50	1.45	1.23	1.20	1.44	1.40	1.55	1.75	1.55	5.07	0.47	0.74	41.208	<0.001	
Digestive diseases	10.54	11.57	10.98	11.24	9.58	10.56	10.00	10.81	10.12	9.67	10.00	10.98	-2.757	0.003	$\downarrow \downarrow$
Mental and behavioural disorders	0.17	0.08	0.23	0.19	0.19	0.13	0.26	0.25	0.16	0.12	0.36	0.25	3.130	0.001	$\uparrow\uparrow$
Musculoskeletal disorders	5.44	4.74	4.85	4.64	5.18	4.48	4.58	3.86	4.67	4.54	5.80	6.23	4.668	< 0.001	$\uparrow\uparrow\uparrow$
Urogenital diseases	14.97	13.24	15.95	14.93	15.68	14.65	13.29	13.12	15.34	14.81	13.83	12.72	-5.329	< 0.001	$\downarrow \downarrow \downarrow$
Neurological disorders	2.25	3.78	4.35	3.96	4.58	5.34	5.33	4.97	4.83	3.49	4.13	4.36	3.915	< 0.001	$\uparrow\uparrow\uparrow$
Sensory organ diseases	4.14	3.20	2.69	3.15	3.50	2.97	3.64	3.18	2.84	3.26	3.02	3.15	-2.403	0.008	$\downarrow \downarrow$
Congenital anomalies	0.40	0.44	0.28	0.38	0.37	0.26	0.49	0.41	0.32	0.28	0.60	0.63	3.750	< 0.001	$\uparrow\uparrow\uparrow$
Skin and subcutaneous disease	0.80	0.47	0.82	0.99	0.59	1.14	1.06	1.35	1.38	1.26	1.08	1.15	7.294	< 0.001	$\uparrow\uparrow\uparrow$

 $\downarrow\downarrow$: P<0.01, negative trend; $\downarrow\downarrow\downarrow$: P<0.001, negative trend; $\uparrow\uparrow$: P<0.01, positive trend; $\uparrow\uparrow\uparrow$: P<0.001, positive trend.

Fig.1 Distribution of non-communicable diseases by gender

0: cancer, 1: other neoplasms, 2: cardiovascular and circulatory diseases, 3: chronic respiratory diseases, 4: diabetes and blood and endocrine diseases, 5: digestive diseases, 6: mental and behavioural disorders, 7: musculoskeletal disorders, 8: urogenital diseases, 9: neurological disorders, 10: sensory organ diseases, 11: congenital anomalies, 12: skin and subcutaneous diseases

 \downarrow : P<0.05, negative trend; $\downarrow \downarrow$: P<0.01, negative trend; $\downarrow \downarrow \downarrow$: P<0.001, negative trend;

 \uparrow : P<0.05, positive trend; $\uparrow\uparrow$: P<0.01, positive trend; $\uparrow\uparrow\uparrow$: P<0.001, positive trend.

Fig. 2 Distribution of non-communicable diseases by age

0: cancer, 1: other neoplasms, 2: cardiovascular and circulatory diseases, 3: chronic respiratory diseases, 4: diabetes and blood and endocrine diseases, 5: digestive diseases, 6: mental and behavioural disorders, 7: musculoskeletal disorders, 8: urogenital diseases, 9: neurological disorders, 10: sensory organ diseases, 11: congenital anomalies, 12: skin and subcutaneous diseases

 \downarrow : P<0.05, negative trend; \downarrow \downarrow : P<0.01, negative trend; \downarrow \downarrow \downarrow : P<0.001, negative trend;

 \uparrow : P<0.05, positive trend; $\uparrow\uparrow$: P<0.01, positive trend; $\uparrow\uparrow\uparrow$: P<0.001, positive trend.

Fig.1 Distribution of non-communicable diseases by gender

0: cancer, 1: other neoplasms, 2: cardiovascular and circulatory diseases, 3: chronic respiratory diseases, 4: diabetes and blood and endocrine diseases, 5: digestive diseases, 6: mental and behavioural disorders, 7: musculoskeletal disorders, 8: urogenital diseases, 9: neurological disorders, 10: sensory organ diseases, 11: congenital anomalies, 12: skin and subcutaneous diseases

↓: P<0.05, negative trend; ↓↓: P<0.01, negative trend; ↓↓↓: P<0.001, negative trend; ↑: P<0.05, positive trend; ↑↑: P<0.01, positive trend;↑↑↑: P<0.001, positive trend.</pre>

55x17mm (600 x 600 DPI)

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45 46

47

48

49

50

51

52

53

11-20 1009 12 12 ■ 11 ■ 10 ↑↑ 90% 11 80% 10 .9 70% .9 = 8 = 7 = 6 = 5 = 4 = 3 60% 8 7 50% 40% .5 ∎3 ↓↓ 30% 2 20% 21 1 10% 1. 0 1 0% 0 2003 2004 2008 2012 2013 2014 2005 2007 2009 2010 2011 21-30 31-40 1009 12 †† 12 90% = 11 11
10
9
8↑
7
6↑↑
5
4↑↑↑↑
3↓↓↓
2
1↓↓↓ **1**0 80% =9↓ =8↑ =7 =6 =5 =4↑↑↑ 70% 60% 50% 40% 30% 3 111 20% = 2 † = 1 10% 0% .01 .0111 41-50 51-60 100% 12 1 = 12 tt ■ 11 ↑↑↑ ■ 10 90% 11 80% **10** 1 =9 =8↑ =7↓↓ ■9 ■8↑ ■7↓↓↓ 70% 60% ■6 ■5 ↑↑ ■6 ■5↑ 50% 40% ■ 4 ↑↑↑↑ ■ 3 ↓↓↓ ■ 2 ↑ = 4 ttt 30% = 3 ↓↓↓ = 2 ↑↑↑ 20% 10% ■1↓↓↓ ■0↓↓↓ .1.11 0% 0 111 2014 71-80 61-70 100% 12 1 **12** 111 ■ 11 ■ 10 ■ 9 ■ 8 ↑↑↑↑ ■ 11 ↑↑↑↑ ■ 10 ↓ 90% 80% .9 11 70% 8 t 60% 7 111 7 111 =6 =5↓ =4↑↑↑↑ =3↓↓↓ =2↑ 50% =6 † =5 =4 ††† 40% 30% =3 111 20% = 2 10% • 1 = 1 0% .0111 = 0 111 2012 2013 2014 100% 12
11 ↑
10 ↓↓↓
9 ↑↑
8
7 ↑↑↑
6 ↑
5 ↓↓↓
4 ↑↑↑
3 ↓↓↓
2 ↑↑↑ 90% 80% 70% 60% 50% 40% 30% 20% 10% = 1 0% .0111 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Fig. 2 Distribution of non-communicable diseases by age
0: cancer, 1: other neoplasms, 2: cardiovascular and circulatory diseases, 3: chronic respiratory diseases,
4: diabetes and blood and endocrine diseases, 5: digestive diseases, 6: mental and behavioural disorders,
7: musculoskeletal disorders, 8: urogenital diseases, 9: neurological disorders, 10: sensory organ diseases,
11: congenital anomalies, 12: skin and subcutaneous diseases
↓: P<0.05, negative trend;
↓: P<0.01, negative trend;

 \uparrow : P<0.05, negative trend; $\downarrow\downarrow$: P<0.01, negative trend; $\downarrow\downarrow\downarrow$: P<0.001, negative trend; \uparrow : P<0.01, positive trend; $\uparrow\uparrow$: P<0.01, positive trend; $\uparrow\uparrow$: P<0.001, positive trend.

48x64mm (600 x 600 DPI)

BMJ Open

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cross-sectional studies

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3-5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5-6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5-6
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	7
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	7-8
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	7-8
Bias	9	Describe any efforts to address potential sources of bias	7
Study size	10	Explain how the study size was arrived at	5-6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	7-8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7-8
		(b) Describe any methods used to examine subgroups and interactions	7-8
		(c) Explain how missing data were addressed	7-8
		(d) If applicable, describe analytical methods taking account of sampling strategy	7-8
		(e) Describe any sensitivity analyses	7-8
Results			

BMJ Open

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	N/A
		(b) Give reasons for non-participation at each stage	N/A
		(c) Consider use of a flow diagram	N/A
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	8
		(b) Indicate number of participants with missing data for each variable of interest	N/A
Outcome data	15*	Report numbers of outcome events or summary measures	8-11
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	N/A
		(b) Report category boundaries when continuous variables were categorized	N/A
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	N/A
Discussion			
Key results	18	Summarise key results with reference to study objectives	11-12
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	15
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	12-15
Generalisability	21	Discuss the generalisability (external validity) of the study results	15
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	16

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.