Supporting Information

Methylene C(sp³)–H Arylation of Aliphatic Ketones

Using a Transient Directing Group

Kai Hong, Hojoon Park, Jin-Quan Yu⁺

The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA.

[†]Corresponding author. Email: yu200@scripps.edu

Table of Contents

S3
S3
S6
S10
S11

General Information

Unless otherwise noted all commercial materials were used without further purification. Solvents were obtained from Oakwood and Acros and used directly without further purification. Analytical thin layer chromatography was performed on 0.25 mm silica gel 60-F254. Visualization was carried out with UV light and Vogel's permanganate. ¹H NMR spectra were recorded on Bruker DRX-500 (500 MHz) or Bruker DRX-600 instrument (600 MHz). Chemical shifts were quoted in parts per million (ppm) referenced to 0.0 ppm for tetramethylsilane. The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, qi = quintet, m = multiplet, br = broad. Coupling constants, *J*, were reported in Hertz unit (Hz). ¹³C NMR spectra were recorded on Bruker DRX-500 (125 MHz) or Bruker DRX-600 instrument (150 MHz), and were fully decoupled by broad band proton decoupling. Chemical shifts were reported in ppm referenced to the center line of a triplet at 77.0 ppm of chloroform-d. ¹⁹F NMR spectra were recorded on Bruker DPX-400 instrument (376 MHz) and Chemical shifts were reported in ppm. High-resolution mass spectra (HRMS) were recorded on an Agilent Mass spectrometer using ESI-TOF (electrospray ionization-time of flight).

Experimental Section

I. Synthesis of β-Amino Acids

 β -Amino acids in **Table 1** were either purchased or prepared according to literature procedures or the following methods:

Method A:

To a solution of lithium diisopropylamide in THF (40 mL, 0.66 M, 2.2 equiv.) was added a THF solution (10 mL) of methyl 3-((tert-butoxycarbonyl)amino)propanoate (2.43 g, 12.0 mmol, 1.0 equiv.) dropwise at -78 °C. The reaction was stirred at -78 °C for 1 h, followed by the addition of benzyl bromide (5.71 mL, 4.0 equiv.). After being stirred at -78 °C for 2 h, the reaction was allowed to warm to 0 °C, then quenched with saturated aqueous solution of NH₄Cl. The reaction mixture was concentrated *in vacuo*, then extracted with EtOAc (50 mL×3). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated. The crude mixture was purified on silica gel to afford **S1** in 73% yield.

To a solution of **S1** (2.50 g, 8.50 mmol) in THF/H₂O (1:1, 40 mL) was added LiOH·H₂O (714 mg, 2.0 equiv.) at rt. The reaction was stirred at rt and monitored by TLC. Upon completion, the reaction mixture was acidified by an aqueous solution of citric acid, then extracted with EtOAc (50 mL×3). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated. The crude product was then added into a solution of HCl in 1,4-dioxane (4 M, 6 equiv.) at 0 °C. The reaction mixture was allowed to warm to rt and stir for 3 h. Upon completion, 40 mL of diethyl ether was added, and a white precipitate was formed. The white solid was filtered and washed with diethyl ether, then dissolve in a minimal amount of water. Triethylamine was added dropwise to carefully tune the pH of the solution to 7–8. The volatiles were removed *in vacuo*, and the resulting white solid was washed with copious amounts of DCM to remove the residual Et₃N·HCl to afford the desired β -amino acid **TDG-11** in 80% yield.

3-Amino-2-benzylpropanoic acid (TDG-11)

¹H NMR (D₂O, 600 MHz): δ 7.30 (t, *J* = 7.4 Hz, 2H), 7.24-7.19 (m, 3H), 3.00 (dd, *J* = 12.7, 9.3 Hz, 1H),

2.94-2.90 (m, 2H), 2.80-2.72 (m, 2H); ¹³C NMR (D₂O, 150 MHz): δ 179.13, 138.04, 128.49, 128.22, 126.27, 46.49, 40.18, 35.70; HRMS (ESI-TOF): *m*/*z* calculated for C₁₀H₁₃NO₂⁺ [M+H]⁺ 180.1019, found 180.1024.

Method B:

To a solution of 3-(2-phenylacetyl)oxazolidin-2-one (877 mg, 4.0 mmol, 1.0 equiv.) in DCM (16 mL) was added a solution of TiCl₄ (1 M in DCM, 4.4 mL, 1.1 equiv.) dropwise at 0 °C. The reaction was stirred for 10 min, followed by the slow addition of *N*,*N*-diisopropylethylamine (0.73 mL, 4.2 mmol, 1.05 equiv.). After stirred at 0 °C for 45 min, *N*-(chloromethyl)benzamide was added in one portion. The reaction was allowed to stir at 0 °C for 1 h, then quenched with a saturated aqueous solution of NH₄Cl. The reaction mixture was extracted with DCM (20 mL×3). The combined organic layers were washed with saturated NaHCO₃ solution and brine, dried over anhydrous Na₂SO₄, filtered and concentrated. The crude mixture was purified on silica gel to afford **S2** in 75% yield.

To a solution of **S2** (1.06 g, 3.00 mmol) in THF/H₂O (4:1, 20 mL) was added H₂O₂ (35 wt%, 2.2 mL) and an aqueous solution of LiOH•H₂O (380 mg, 2.4 equiv., in a minimal amount of water) at 0 °C. The reaction was stirred at 0 °C for 2 h and monitored by TLC. Upon completion, the reaction was quenched with an aqueous solution of Na₂SO₃. After removal of the volatiles *in vacuo*, the reaction mixture was washed with DCM (20 mL×3), acidified by 1 M HCl, then extracted with EtOAc (50 mL×3). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated. The crude product was then purified on silica gel or recrystallized in hot EtOAc/AcOH to afford the desired acid product. To remove the Bz protecting group, the acid was refluxed in a mixture of conc. HCl and AcOH at 110 °C for 48 h. Upon completion, the volatiles were removed *in vacuo*, and the solid was dissolved in 10 mL of water, and washed with DCM (20 mL×3). Triethylamine was added dropwise to the aqueous solution to carefully tune the pH to 7–8. The volatiles were removed *in vacuo*, and the resulting white solid was washed with copious amounts of DCM to remove the residual Et₃N•HCl to afford the desired β-amino acid in 70% yield.

3-Amino-2-phenylpropanoic acid (TDG-15)

¹H NMR (D₂O, 600 MHz): δ 7.36 (t, *J* = 7.5 Hz, 2H), 7.30 (t, *J* = 7.5 Hz, 1H), 7.26 (d, *J* = 7.5 Hz, 2H), 3.72 (t, *J* = 7.5 Hz, 1H), 3.39 (dd, *J* = 12.9, 7.8 Hz, 1H), 3.21 (dd, *J* = 12.9, 7.1 Hz, 1H); ¹³C NMR (D₂O, 150 MHz): δ 177.76, 136.72, 128.77, 127.65, 127.46, 50.89, 41.83; HRMS (ESI-TOF): *m*/*z* calculated for $C_9H_{12}NO_2$ [M+H]⁺ 166.0863, found 166.0865.

3-Amino-2-cyclohexylpropanoic acid (TDG-12)

TDG-12 was prepared according to **Method B**. ¹H NMR (D₂O, 600 MHz): δ 3.09-3.01 (m, 2H), 2.26 (ddd, J = 9.7, 6.3, 3.9 Hz, 1H), 1.66-1.64 (m, 2H), 1.58-1.51 (m, 4H), 1.21-1.11 (m, 2H), 1.08-0.91 (m, 3H); ¹³C NMR (D₂O, 150 MHz): δ 179.92, 50.93, 38.47, 37.73, 30.20, 28.97, 25.54, 25.44, 25.24; HRMS (ESI-TOF): m/z calculated for C₉H₁₈NO₂⁺ [M+H]⁺ 172.1332, found 172.1337.

2-(Aminomethyl)-3,3-dimethylbutanoic acid (TDG-13)

TDG-13 was prepared according to **Method B**. ¹H NMR (D₂O, 600 MHz): δ 3.13-3.06 (m, 2H), 2.24 (dd, J = 10.9, 4.0 Hz, 1H), 0.90 (s, 9H); ¹³C NMR (D₂O, 150 MHz): δ 178.54, 55.97, 38.76, 31.06, 26.92; HRMS (ESI-TOF): m/z calculated for C₇H₁₆NO₂⁺ [M+H]⁺ 146.1175, found 146.1173.

2-((3r,5r,7r)-Adamantan-1-yl)-3-aminopropanoic acid (TDG-14)

TDG-14 was prepared according to **Method B**. ¹H NMR (D₂O, 600 MHz): δ 3.11 (d, *J* = 7.5 Hz, 2H), 2.12-2.09 (m, 1H), 1.88 (s, 3H), 1.64-1.54 (m, 9H), 1.47 (d, *J* = 12.2 Hz, 3H); ¹³C NMR (D₂O, 150 MHz): δ 185.13, 57.13, 39.29, 37.62, 35.71, 33.36, 27.84. HRMS (ESI-TOF): *m/z* calculated for C₁₃H₂₂NO₂⁺

[M+H]⁺ 224.1645, found 224.1653.

3-Amino-2-(2,6-difluorophenyl)propanoic acid (TDG-16)

TDG-16 was prepared according to **Method B**. ¹H NMR (D₂O, 600 MHz): δ 7.34-7.29 (m, 1H), 6.98-6.95 (m, 2H), 4.10 (dd, J = 8.4, 6.6 Hz, 1H), 3.50 (dd, J = 12.9, 8.4 Hz, 1H), 3.18 (dd, J = 12.8, 6.6 Hz, 1H); ¹³C NMR (D₂O, 150 MHz): δ 176.38, 160.59 (dd, $J_{CF} = 246.0$, 8.2 Hz), 129.71 (t, $J_{CF} = 10.6$ Hz), 112.98 (t, $J_{CF} = 19.3$ Hz), 111.26 (dd, $J_{CF} = 21.9$, 4.0 Hz), 39.82 (t, $J_{CF} = 1.8$ Hz), 38.78 (t, $J_{CF} = 1.6$ Hz); ¹⁹F NMR (CDCl₃, 376 MHz): δ –114.92; HRMS (ESI-TOF): m/z calculated for C₉H₁₀F₂NO₂⁺ [M+H]⁺ 202.0674, found 202.0681.

II. Substrate Preparation

The ketone substrates were prepared according to either literature procedures or the following methods:

Method A:

To a solution of 3-phenylbutanoic acid (1.00 g, 6.09 mmol) in DCM (12 mL) was added (COCl)₂ (0.57 mmol, 1.1 equiv.) and one drop of DMF at 0 °C. The reaction was allowed to warm to rt and stir for 3 h, then concentrated *in vacuo*. The reaction mixture was dissolved in 24 mL of DCM and cooled to 0 °C. MeONHMe·HCl (536 mg, 1.2 equiv.) was added in one portion, followed by triethylamine (1.92 mmol, 3.0 equiv.). The reaction was allowed to warm to rt and stirred overnight. Upon completion, 100 mL of diethyl ether was added, and a white precipitate was formed. The white solid (**S3**) was filtered and washed with diethyl ether, then used in the next step without further purification.

To a solution of amide **S3** in THF was added *n*-propylmagnesium chloride (2.0 M in ether, 1.5 equiv.) at 0 °C. The reaction was slowly warmed to rt and stirred for 1h, then quenched with 1 M HCl solution. The reaction mixture was extracted with EtOAc (30 mL×3), and the combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated. The crude product was then purified on silica gel to afford the desired ketone product.

2-Phenylheptan-4-one (3n)

¹H NMR (CDCl₃, 600 MHz): δ 7.30-7.27 (m, 2H), 7.22-7.17 (m, 3H), 3.35-3.29 (m, 1H), 2.71 (dd, *J* = 16.2, 6.4 Hz, 1H), 2.62 (dd, *J* = 16.2, 7.9 Hz, 1H), 2.33-2.23 (m, 2H), 1.57-1.50 (m, 2H), 1.26 (d, *J* = 6.9 Hz, 3H), 0.84 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 210.02, 146.31, 128.48, 126.77, 126.23, 51.12, 45.43, 35.40, 21.94, 17.06, 13.66; HRMS (ESI-TOF): *m*/*z* calculated for C₁₃H₁₉O⁺ [M+H]⁺ 191.1430, found 191.1430.

7-Methyloctan-4-one (3p)

¹H NMR (CDCl₃, 600 MHz): δ 2.39 (t, *J* = 7.8 Hz, 1H), 1.63-1.57 (m, 2H), 1.56-1.50 (m, 1H), 1.46 (q, *J* = 7.5 Hz, 2H), 0.91 (t, *J* = 7.5 Hz, 3H), 0.89 (d, *J* = 6.6 Hz, 6H); ¹³C NMR (CDCl₃, 150 MHz): δ 211.67, 44.68, 40.86, 32.65, 27.73, 22.34, 17.33, 13.77; HRMS (ESI-TOF): *m*/*z* calculated for C₉H₁₉O⁺ [M+H]⁺ 143.1430, found 143.1426.

Method B:

A 250 mL round-bottom flask with magnetic stir bar was charged with ethyl acetoacetate (0.95 mL, 7.5 mmol), 1-bromo-4-(2-bromoethyl)benzene (0.99 g, 3.75 mmol), K_2CO_3 (1.56 g, 11.25 mmol), KI (0.62 g, 3.75 mmol), DMF (3.75 mL) and acetone (50 mL). The reaction mixture was stirred at 70 °C for 16 h, then the volatiles were removed *in vacuo*. Water was added to dissolve the solids and the mixture was extracted with EtOAc (30 mL×3). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated. The crude product was then purified on silica gel to afford **S4** with ethyl acetoacetate as the impurity.

The mixture of **S4** and ethyl acetoacetate were added into a mixture of MeOH (4 mL) and 10% KOH aqueous solution (4 mL). After refluxed for 30 min, the reaction was cooled to rt and stirred overnight. The mixture were concentrated *in vacuo*, and diluted with water and EtOAc. After extracted with EtOAc (30 mL×3), the combined organic layers were dried over anhydrous Na_2SO_4 , filtered and concentrated.

The crude product was then purified on silica gel to afford **3h**.

5-(4-Bromophenyl)pentan-2-one (3h)

¹H NMR (CDCl₃, 600 MHz): δ 7.41-7.39 (m, 2H), 7.06-7.03 (m, 2H), 2.57 (t, *J* = 7.5 Hz, 2H), 2.42 (t, *J* = 7.4 Hz, 2H), 2.12 (s, 3H), 1.90-1.85 (m, 2H); ¹³C NMR (CDCl₃, 150 MHz): δ 208.43, 140.51, 131.41, 130.18, 119.67, 42.59, 34.37, 29.98, 24.94; HRMS (ESI-TOF): *m*/*z* calculated for C₁₁H₁₄BrO⁺ [M+H]⁺ 241.0222, found 241.0228.

6-(Benzyloxy)hexan-2-one (3j)

¹H NMR (CDCl₃, 600 MHz): δ 7.36-7.32 (m, 4H), 7.30-7.27 (m, 1H), 4.49 (s, 2H), 3.47 (t, *J* = 6.2 Hz, 2H), 2.45 (t, *J* = 7.2 Hz, 2H), 2.12 (s, 3H), 1.70-1.65 (m, 2H), 1.64-1.59 (m, 2H); ¹³C NMR (CDCl₃, 150 MHz): δ 208.91, 138.49, 128.35, 127.62, 127.52, 72.91, 69.95, 43.39, 29.86, 29.15, 20.60; HRMS (ESI-TOF): *m/z* calculated for C₁₃H₁₉O₂⁺ [M+H]⁺ 207.1379, found 207.1378.

Compound S5 was prepared according to Method B. It was then acylated using the general condition.

7-Oxooctyl acetate (3k)

¹H NMR (CDCl₃, 600 MHz): δ 4.05 (t, *J* = 6.7 Hz, 1H), 2.43 (t, *J* = 7.4 Hz, 1H), 2.14 (s, 1H), 2.05 (s, 1H), 1.65-1.56 (m, 4H), 1.39-1.29 (m, 4H); ¹³C NMR (CDCl₃, 150 MHz): δ 209.01, 171.19, 64.42, 43.57, 29.88, 28.75, 28.41, 25.72, 23.61, 20.99. HRMS (ESI-TOF): *m*/*z* calculated for C₁₀H₁₉O₃⁺ [M+H]⁺ 187.1329, found 187.1332.

Method C:

A 50 mL round-bottom flask with magnetic stir bar was charged with ethyl acetoacetate (0.51 mL, 4.0 mmol), 1-bromo-5-chloropentane (0.53 mL, 4.0 mmol), K_2CO_3 (1.66 g, 12.0 mmol) and ethanol (20 mL). The reaction mixture was stirred at 90 °C for 12 h, then the volatiles were removed *in vacuo*. Water was added to dissolve the solids and the mixture was extracted with EtOAc (30 mL×3). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated. The crude product was then purified on silica gel to afford **S6**.

To a solution of **S6** (317 mg, 1.3 equiv.) in DMF (1.5 mL) was added phthalimide potassium salt (278 mg, 1.5 mmol). The reaction mixture was stirred at 90 $^{\circ}$ C and monitored by TLC. Upon completion, the reaction was diluted with diethyl ether, filtered and concentrated. The crude mixture was purified on silica gel to afford the desired product **3**.

2-(7-Oxooctyl)isoindoline-1,3-dione (3l)

¹H NMR (CDCl₃, 600 MHz): δ 7.86-7.82 (m, 2H), 7.73-7.70 (m, 2H), 3.67 (t, J = 7.3 Hz, 2H), 2.42 (t, J = 7.4 Hz, 2H), 2.13 (s, 3H), 1.68 (qi, J = 7.4 Hz, 2H), 1.57 (qi, J = 7.4 Hz, 2H), 1.38-1.30 (m, 4H); ¹³C NMR (CDCl₃, 150 MHz): δ 208.98, 168.38, 133.82, 132.09, 123.11, 43.55, 37.83, 29.82, 28.62, 28.37, 26.56, 23.57; HRMS (ESI-TOF): m/z calculated for C₁₆H₂₀NO₃⁺ [M+H]⁺ 274.1438, found 274.1443.

III. Preliminary Optimization Using β-Alanine (TDG-2)

Me ^{-C₆H} H	H_{13} + CO_2Me - 2.0 equiv.	Pd(OAc) ₂ (10 mol%) TDG-2 (30 mol%) AgTFA (3.0 equiv.) solvent 120 °C, 48 h	n-C ₆ H ₁₃ CO ₂ Me
entry	solvent	conversion (%)	NMR yield (%)
1	HFIP:AcOH (1:1)	56	19
2	HFIP:AcOH (3:1)	47	41
3	HFIP:AcOH (5:1)	32	26
4	HFIP:AcOH (9:1)	30	10
5	HFIP	-	<2
6	AcOH	25	3
7	TFA	-	<2
8	HFIP:TFA (3:1)	-	<2
9	C ₆ F ₆ :AcOH (3:1)	40	9
10	C ₇ F ₈ :AcOH (3:1)	43	11
11	toluene:AcOH (3:1)	-	<2
12	DCE:AcOH (3:1)	-	<2
13	MeCN:AcOH (3:1)	-	<2
14	dioxane:AcOH (3:1)	-	<2

Table S1. Screening of Solvents^{*a,b*}

^{*a*} Conditions: 0.2 mmol of **1**, 2.0 equiv. of methyl 4-iodobenzoate, 10 mol% of Pd(OAc)₂, 30 mol% of **TDG-2**, 3.0 equiv. of AgTFA, 2.0 mL of solvent, 120 °C, under air, 48 h. ^{*b*} The yield was determined by ¹H NMR analysis of the crude product using CH₂Br₂ as the internal standard.

Me 1	$H^{n-C_6H_{13}} + U_{2.0}$	Pd(II) (10 TDG-2 (30 Ag(I) (3.0 HFIP:AcC 120 °C,	0 mol%) 0 mol%) equiv.) DH (3:1) , 48 h	<i>n</i> -C ₆ H ₁₃ CO ₂ Me 2a
entry	Pd(II) catalyst	Ag(I) salt	conversion (%)	NMR yield (%)
1	Pd(OAc) ₂	AgTFA	47	41
2	Pd(MeCN)Cl ₂	AgTFA	47	39
3	Pd(TFA) ₂	AgTFA	49	41
4	Pd(OAc) ₂	AgOAc	38	25
5	Pd(OAc) ₂	AgF	15	10
6	Pd(OAc) ₂	AgOTs	-	<2
7	Pd(OAc) ₂	AgOBz	-	<2
8	Pd(OAc) ₂	Ag ₂ O	20	12
9	Pd(OAc) ₂	AgBF ₄	-	<2
10	Pd(OAc) ₂	Ag ₂ CO ₃	20	14
11	Pd(OAc) ₂	AgTFA:AgOAc (2:1)	52	45
12	Pd(OAc) ₂	AgTFA:AgOAc (1:1)	58	49
13	Pd(OAc) ₂	AgTFA:AgOAc (1:2)	63	57
14	Pd(OAc) ₂	AgTFA:AgOAc (1:5)	57	48

Table S2. Screening of Silver Salt and Palladium Catalyst^{*a,b*}

^{*a*} Conditions: 0.2 mmol of **1**, 2.0 equiv. of methyl 4-iodobenzoate, 10 mol% of Pd(II) catalyst, 30 mol% of **TDG-2**, 3.0 equiv. of Ag(I) salt, 1.5 mL of HFIP, 0.5 mL of acetic acid, 120 °C, under air, 48 h. ^{*b*} The yield was determined by ¹H NMR analysis of the crude product using CH₂Br₂ as the internal standard.

IV. Pd-Catalyzed Methylene C(sp³)–H Arylation of Ketones

General Procedure

In air, a reaction tube (15 mL) with magnetic stir bar was charged with ketone substrate (0.20 mmol), aryl iodide (0.40 mmol), silver trifluoroacetate (44 mg, 0.20 mmol), silver acetate (67 mg, 0.40 mmol), palladium acetate (4.5 mg, 0.020 mmol) and the transient directing group **TDG-11** (10.8 mg, 0.060 mmol), followed by the mixture of HFIP (1.5 mL) and acetic acid (0.5 mL). The reaction tube was sealed and allowed to stir at ambient temperature for 10 minutes, then heated to 120 °C for 72 hours. Upon completion, the reaction mixture was cooled to room temperature, diluted with EtOAc, filtered through a silica gel plug, and concentrated *in vacuo*. The crude reaction mixture was purified on silica gel using hexanes/EtOAc or toluene/EtOAc as the eluent to afford the desired product.

Full Characterization of Reaction Products

Methyl 4-(2-oxodecan-4-yl)benzoate (2a)

The compound **2a** was prepared according to the general procedure and was purified on silica gel to give a colorless oil in 76% yield (44.2 mg).

¹H NMR (CDCl₃, 600 MHz): δ ; 7.96 (d, *J* = 8.3 Hz, 2H), 7.25 (d, *J* = 8.3 Hz, 2H), 3.90 (s, 3H), 3.19 (dtd, *J* = 9.5, 7.1, 5.3 Hz, 1H), 2.73 (d, *J* = 7.1 Hz, 2H), 2.02 (s, 3H), 1.66-1.60 (m, 1H), 1.58-1.52 (m, 1H), 1.27-1.11 (m, 7H), 1.08-1.02 (m, 1H), 0.83 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 207.30, 166.99, 150.21, 129.78, 127.52, 51.97, 50.45, 41.09, 36.21, 31.60, 30.62, 29.09, 27.24, 22.52, 13.99; HRMS (ESI-TOF): *m*/*z* calculated for C₁₈H₂₇O₃⁺ [M+H]⁺ 291.1955, found 291.1951.

Methyl 3-(2-oxodecan-4-yl)benzoate (2b)

The compound **2b** was prepared according to the general procedure and was purified on silica gel to give a colorless oil in 77% yield (44.7 mg).

¹H NMR (CDCl₃, 600 MHz): δ 7.88-7.86 (m, 2H), 7.39-7.34 (m, 2H), 3.92 (s, 3H), 3.18 (dtd, *J* = 9.5, 7.1, 5.4 Hz, 1H), 2.75 (d, *J* = 7.1 Hz, 2H), 2.03 (s, 3H), 1.66-1.53 (m, 2H), 1.28-1.02 (m, 8H), 0.83 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 207.46, 167.16, 145.11, 132.51, 130.29, 128.45, 128.25, 127.59, 52.06, 50.61, 40.90, 36.34, 31.62, 30.62, 29.10, 27.27, 22.53, 14.00; HRMS (ESI-TOF): *m*/*z* calculated for C₁₈H₂₇O₃⁺ [M+H]⁺ 291.1955, found 291.1950.

4-(4-(Trifluoromethyl)phenyl)decan-2-one (2c)

The compound **2c** was prepared according to the general procedure and was purified on silica gel to give a colorless oil in 77% yield (46.0 mg).

¹H NMR (CDCl₃, 600 MHz): δ 7.54 (d, J = 8.1 Hz, 2H), 7.29 (d, J = 8.1 Hz, 2H), 3.20 (dtd, J = 9.5, 7.1, 5.4 Hz, 1H), 2.74 (d, J = 7.1 Hz, 2H), 2.04 (s, 3H), 1.66-1.60 (m, 1H), 1.58-1.52 (m, 1H), 1.27-1.03 (m, 8H), 0.84 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 207.13, 148.90, 128.56 (q, $J_{CF} = 32.4$ Hz), 125.36 (q, $J_{CF} = 3.8$ Hz), 124.23 (q, $J_{CF} = 271.7$ Hz), 50.46, 40.83, 36.23, 31.62, 30.59, 29.11, 27.25, 22.55, 14.00; ¹⁹F NMR (CDCl₃, 376 MHz): δ -62.65; HRMS (ESI-TOF): m/z calculated for C₁₇H₂₄F₃O⁺

4-(3-(Trifluoromethyl)phenyl)decan-2-one (2d)

The compound **2d** was prepared according to the general procedure and was purified on silica gel to give a colorless oil in 76% yield (45.7 mg).

¹H NMR (CDCl₃, 600 MHz): δ 7.46-7.44 (m, 1H), 7.42-7.36 (m, 3H), 3.21 (dtd, J = 9.4, 7.1, 5.5 Hz, 1H), 2.78-2.70 (m, 2H), 2.04 (s, 3H), 1.66-1.60 (m, 1H), 1.58-1.52 (m, 1H), 1.30-1.13 (m, 7H), 1.09-1.03 (m, 1H), 0.84 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 207.12, 145.77, 131.13 (q, $J_{CF} = 1.3$ Hz), 130.72 (q, $J_{CF} = 31.9$ Hz), 128.83, 124.19 (q, $J_{CF} = 272.2$ Hz), 123.97 (q, $J_{CF} = 3.8$ Hz), 123.18 (q, $J_{CF} = 3.7$ Hz), 50.50, 40.80, 36.24, 31.60, 30.60, 29.07, 27.23, 22.53, 13.99; ¹⁹F NMR (CDCl₃, 376 MHz): δ -62.79; HRMS (ESI-TOF): m/z calculated for C₁₇H₂₄F₃O⁺ [M+H]⁺ 301.1774, found 301.1775.

4-(4-Nitrophenyl)decan-2-one (2e)

The compound **2e** was prepared according to the general procedure and was purified on silica gel to give a colorless oil in 66% yield (36.6 mg).

¹H NMR (CDCl₃, 600 MHz): δ 8.16-8.14 (m, 2H), 7.36-7.34 (m, 2H), 3.29-3.25 (m, 1H), 2.81-2.73 (m, 2H), 2.06 (s, 3H), 1.68-1.62 (m, 1H), 1.59-1.53 (m, 1H), 1.28-1.13 (m, 7H), 1.08-1.01 (m, 1H), 0.84 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 206.59, 152.74, 146.53, 128.37, 123.72, 50.18, 40.75, 36.13, 31.58, 30.55, 29.05, 27.24, 22.52, 13.99; HRMS (ESI-TOF): *m*/*z* calculated for C₁₆H₂₄NO₃⁺ [M+H]⁺ 278.1751, found 278.1750.

4-(3-Nitrophenyl)decan-2-one (2f)

The compound **2f** was prepared according to the general procedure and was purified on silica gel to give a colorless oil in 76% yield (42.2 mg).

¹H NMR (CDCl₃, 600 MHz): δ 8.07-8.04 (m, 2H), 7.54 (dt, *J* = 7.7, 1.4 Hz, 1H), 7.45 (t, *J* = 7.7 Hz, 1H), 3.30-3.25 (m, 1H), 2.82-2.75 (m, 2H), 2.07 (s, 3H), 1.69-1.63 (m, 1H), 1.60-1.54 (m, 1H), 1.29-1.13 (m, 7H), 1.10-1.03 (m, 1H), 0.84 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 206.68, 148.42, 147.03, 134.34, 129.26, 121.98, 121.47, 50.23, 40.51, 36.20, 31.58, 30.56, 29.04, 27.23, 22.52, 13.99; HRMS (ESI-TOF): *m/z* calculated for C₁₆H₂₄NO₃⁺ [M+H]⁺ 278.1751, found 278.1749.

4-(4-Fluorophenyl)decan-2-one (2g)

The compound 2g was prepared according to the general procedure and was purified on silica gel to give a colorless oil in 65% yield (32.4 mg).

¹H NMR (CDCl₃, 600 MHz): δ 7.14-7.11 (m, 2H), 6.98-6.95 (m, 2H), 3.10 (dtd, J = 9.6, 7.2, 5.3 Hz, 1H), 2.68 (d, J = 7.2 Hz, 2H), 2.01 (s, 3H), 1.62-1.56 (m, 1H), 1.54-1.47 (m, 1H), 1.27-1.03 (m, 8H), 0.84 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 207.74, 161.33 (d, $J_{CF} = 243.9$ Hz), 140.22 (d, $J_{CF} = 3.3$ Hz), 128.78 (d, $J_{CF} = 7.7$ Hz), 115.18 (d, $J_{CF} = 21.2$ Hz), 50.97, 40.47, 36.54, 31.66, 30.65, 29.12, 27.26, 22.56, 14.02; ¹⁹F NMR (CDCl₃, 376 MHz): δ –117.29; HRMS (ESI-TOF): m/z calculated for C₁₆H₂₄FO⁺ [M+H]⁺ 251.1806, found 251.1805.

4-(3-Fluorophenyl)decan-2-one (2h)

The compound **2h** was prepared according to the general procedure and was purified on silica gel to give a colorless oil in 79% yield (39.7 mg).

¹H NMR (CDCl₃, 600 MHz): δ 7.25-7.21 (m, 1H), 6.95 (d, J = 7.7 Hz, 1H), 6.89-6.86 (m, 2H), 3.12 (dtd, J = 9.6, 7.0, 5.2 Hz, 1H), 2.73-2.66 (m, 2H), 2.03 (s, 3H), 1.62-1.57 (m, 1H), 1.55-1.49 (m, 1H), 1.27-1.05 (m, 8H), 0.84 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 207.44, 162.92 (d, $J_{CF} = 245.4$ Hz), 147.39 (d, $J_{CF} = 6.9$ Hz), 129.81 (d, $J_{CF} = 8.2$ Hz), 123.26 (d, $J_{CF} = 2.7$ Hz), 114.12 (d, $J_{CF} = 21.1$ Hz), 113.14 (d, $J_{CF} = 21.1$ Hz), 50.63, 40.90 (d, $J_{CF} = 2.0$ Hz), 36.30, 31.64, 30.62, 29.12, 27.25, 22.55, 14.01; ¹⁹F NMR (CDCl₃, 376 MHz): δ –113.68; HRMS (ESI-TOF): m/z calculated for C₁₆H₂₄FO⁺ [M+H]⁺ 251.1806, found 251.1808.

4-(4-Chlorophenyl)decan-2-one (2i)

The compound **2i** was prepared according to the general procedure and was purified on silica gel to give a colorless oil in 78% yield (41.5 mg).

¹H NMR (CDCl₃, 600 MHz): δ 7.26-7.24 (m, 2H), 7.11-7.09 (m, 2H), 3.10 (dtd, *J* = 9.6, 7.2, 5.3 Hz, 1H), 2.69 (d, *J* = 7.2 Hz, 2H), 2.02 (s, 3H), 1.62-1.56 (m, 1H), 1.54-1.47 (m, 1H), 1.27-1.03 (m, 8H), 0.84 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 207.50, 143.12, 131.85, 128.81, 128.54, 50.74, 40.54, 36.36, 31.64, 30.65, 29.12, 27.25, 22.56, 14.02; HRMS (ESI-TOF): *m*/*z* calculated for C₁₆H₂₄ClO⁺ [M+H]⁺ 267.1510, found 267.1508.

4-(4-Bromophenyl)decan-2-one (2j)

The compound **2j** was prepared according to the general procedure and was purified on silica gel to give a colorless oil in 83% yield (51.4 mg).

¹H NMR (CDCl₃, 600 MHz): δ 7.41-7.39 (m, 2H), 7.06-7.04 (m, 2H), 3.09 (dtd, J = 9.6, 7.2, 5.3 Hz, 1H), 2.68 (d, J = 7.2 Hz, 2H), 2.02 (s, 3H), 1.62-1.56 (m, 1H), 1.53-1.47 (m, 1H), 1.28-1.03 (m, 8H), 0.84 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 207.46, 143.66, 131.49, 129.23, 119.91, 77.22, 40.59, 36.30, 31.64, 30.65, 29.12, 27.25, 22.56, 14.02; HRMS (ESI-TOF): m/z calculated for C₁₆H₂₄BrO⁺ [M+H]⁺ 311.1005, found 311.1000.

4-Phenyldecan-2-one (2k)

The compound $2\mathbf{k}$ was prepared according to the general procedure and was purified on silica gel to give a colorless oil in 75% yield (35.0 mg).

¹H NMR (CDCl₃, 600 MHz): δ 7.29-7.26 (m, 2H), 7.19-7.16 (m, 3H), 3.10 (dtd, J = 9.4, 7.2, 5.4 Hz, 1H), 2.74-2.67 (m, 2H), 2.01 (s, 3H), 1.63-1.52 (m, 2H), 1.27-1.05 (m, 8H), 0.84 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 208.06, 144.58, 128.41, 127.43, 126.26, 50.94, 41.30, 36.47, 31.66, 30.63, 29.18, 27.32, 22.57, 14.02; HRMS (ESI-TOF): m/z calculated for C₁₆H₂₅O⁺ [M+H]⁺ 233.1900, found 233.1899.

4-(p-Tolyl)decan-2-one (2l)

The compound **2l** was prepared according to the general procedure and was purified on silica gel to give a colorless oil in 68% yield (33.7 mg).

¹H NMR (CDCl₃, 600 MHz): δ 7.09 (d, *J* = 7.9 Hz, 2H), 7.05 (d, *J* = 8.1 Hz, 2H), 3.06 (dtd, *J* = 9.5, 7.2, 5.3 Hz, 1H), 2.72-2.65 (m, 2H), 2.31 (s, 3H), 2.01 (s, 3H), 1.61-1.49 (m, 2H), 1.27-1.05 (m, 8H), 0.84 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 208.23, 141.49, 135.70, 129.10, 127.28, 51.07, 40.94, 36.55, 31.69, 30.63, 29.21, 27.35, 22.60, 21.00, 14.04; HRMS (ESI-TOF): *m*/*z* calculated for C₁₇H₂₇O⁺ [M+H]⁺ 247.2056, found 247.2056.

4-(*m*-Tolyl)decan-2-one (2m)

The compound **2m** was prepared according to the general procedure and was purified on silica gel to give a colorless oil in 70% yield (34.7 mg).

¹H NMR (CDCl₃, 600 MHz): δ 7.16 (t, *J* = 7.5 Hz, 1H), 7.00-6.95 (m, 3H), 3.06 (dtd, *J* = 9.3, 7.2, 5.4 Hz, 1H), 2.73-2.65 (m, 2H), 2.32 (s, 3H), 2.01 (s, 3H), 1.62-1.50 (m, 2H), 1.28-1.06 (m, 8H), 0.84 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 208.15, 144.57, 137.89, 128.27, 128.25, 127.02, 124.37, 109.96, 50.97, 41.25, 36.49, 31.68, 30.64, 29.21, 27.37, 22.59, 21.48, 14.04; HRMS (ESI-TOF): *m/z* calculated for C₁₇H₂₇O⁺ [M+H]⁺ 247.2056, found 247.2055.

4-([1,1'-Biphenyl]-4-yl)decan-2-one (2n)

The compound **2n** was prepared according to the general procedure and was purified on silica gel to give a colorless oil in 48% yield (29.8 mg).

¹H NMR (CDCl₃, 600 MHz): δ 7.58-7.57 (m, 2H), 7.52 (d, *J* = 8.2 Hz, 2H), 7.42 (t, *J* = 7.7 Hz, 2H), 7.32 (t, *J* = 7.4 Hz, 1H), 7.24 (d, *J* = 8.2 Hz, 2H), 3.16 (dtd, *J* = 9.3, 7.2, 5.5 Hz, 1H), 2.78-2.71 (m, 2H), 2.04 (s, 3H), 1.66-1.65 (m, 2H), 1.30-1.10 (m, 8H), 0.84 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 207.99, 143.75, 140.90, 139.10, 128.68, 127.85, 127.11, 127.04, 126.93, 50.90, 40.90, 36.47, 31.69, 30.67, 29.21, 27.37, 22.60, 14.04; HRMS (ESI-TOF): *m*/*z* calculated for C₂₂H₂₉O⁺ [M+H]⁺ 309.2213, found 309.2214.

4-(3-Methoxyphenyl)decan-2-one (20)

The compound **20** was prepared according to the general procedure and was purified on silica gel to give a colorless oil in 39% yield (20.5 mg).

¹H NMR (CDCl₃, 600 MHz): δ 7.20 (t, *J* = 7.6 Hz, 1H), 6.77 (d, *J* = 7.6 Hz, 1H), 6.74-6.71 (m, 2H), 3.79 (s, 3H), 3.08 (dtd, *J* = 9.4, 7.2, 5.4 Hz, 1H), 2.73-2.65 (m, 2H), 2.02 (s, 3H), 1.62-1.50 (m, 2H), 1.28-1.06 (m, 8H), 0.84 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 208.01, 159.60, 146.36, 129.36, 119.85, 113.46, 111.21, 55.11, 50.89, 41.33, 36.40, 31.67, 30.65, 29.20, 27.34, 22.59, 14.03; HRMS (ESI-TOF): m/z calculated for C₁₇H₂₇O₂⁺ [M+H]⁺ 263.2005, found 263.2000.

4-(2-Fluorophenyl)decan-2-one (2p)

The compound **2p** was prepared according to the general procedure and was purified on silica gel to give a colorless oil in 50% yield (25.2 mg).

¹H NMR (CDCl₃, 600 MHz): δ 7.18-7.14 (m, 2H), 7.08-7.05 (m, 1H), 7.01-6.98 (m, 1H), 3.44-3.40 (m, 1H), 2.81-2.74 (m, 2H), 2.06 (3H), 1.63-1.60 (m, 2H), 1.29-1.06 (m, 8H), 0.84 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 207.62, 160.97 (d, J = 244.9 Hz), 131.05 (d, J = 14.4 Hz), 129.12 (d, J = 5.3 Hz), 127.70 (d, J = 8.3 Hz), 124.07 (d, J = 3.4 Hz), 115.55 (d, J = 22.8 Hz), 49.39 (d, J = 1.7 Hz), 35.14 (d, J = 1.6 Hz), 31.66, 30.27, 29.12, 27.36, 22.56, 14.02; ¹⁹F NMR (CDCl₃, 376 MHz): δ -117.96; HRMS (ESI-TOF): m/z calculated for C₁₆H₂₄FO⁺ [M+H]⁺ 251.1806, found 251.1804.

4-(o-Tolyl)decan-2-one (2q)

The compound **2q** was prepared according to the general procedure and was purified on silica gel to give a colorless oil in 33% yield (16.6 mg).

¹H NMR (CDCl₃, 600 MHz): δ 7.17-7.11 (m, 3H), 7.07 (td, J = 7.5, 1.6 Hz, 1H), 3.46-3.41 (m, 1H), 2.74-2.65 (m, 2H), 2.36 (s, 3H), 2.01 (s, 3H), 1.62-1.51 (m, 2H), 1.26-1.06 (m, 8H), 0.84 (t, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 208.14, 143.06, 136.03, 130.35, 126.15, 125.80, 125.46, 50.57, 36.51, 35.65, 31.69, 30.65, 29.40, 27.23, 22.60, 19.85, 14.04; HRMS (ESI-TOF): m/z calculated for C₁₇H₂₇O⁺ [M+H]⁺ 247.2056, found 247.2053.

4-(6-(Trifluoromethyl)pyridin-2-yl)decan-2-one (2r)

The compound $2\mathbf{r}$ was prepared according to the general procedure with 1.0 equiv. of 2-iodo-6-(trifluoromethyl)pyridine and was purified on silica gel to give a colorless oil in 35% yield (21.2 mg).

¹H NMR (CDCl₃, 600 MHz): δ 7.73 (t, *J* = 7.8 Hz, 1H), 7.46 (dd, *J* = 7.8, 0.9 Hz, 1H), 7.36 (d, *J* = 7.8 Hz, 1H), 3.39 (dddd, *J* = 9.3, 8.1, 6.3, 4.8 Hz, 1H), 3.22 (dd, *J* = 17.2, 9.3 Hz, 1H), 2.69 (dd, *J* = 17.2, 4.8 Hz, 1H), 2.10 (s, 3H), 1.72-1.66 (m, 1H), 1.61-1.56 (m, 1H), 1.26-1.18 (m, 7H), 1.14-1.07 (m, 1H), 0.85 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 208.33, 164.78, 147.50 (q, *J*_{CF} = 34.1 Hz), 137.09, 126.34, 121.58 (q, *J*_{CF} = 274.0 Hz), 117.76 (q, *J*_{CF} = 2.8 Hz), 47.46, 42.17, 35.46, 31.61, 30.58, 29.16, 27.09, 22.53, 14.01. ¹⁹F NMR (CDCl₃, 376 MHz): δ –68.44; HRMS (ESI-TOF): *m/z* calculated for C₁₆H₂₃F₃NO⁺

Methyl 4-(4-oxopentan-2-yl)benzoate (4a)

The compound **4a** was prepared according to the general procedure and was purified on silica gel to give a colorless oil in 74% yield (32.6 mg).

¹H NMR (CDCl₃, 600 MHz): δ 7.97 (d, *J* = 8.3 Hz, 2H), 7.28 (d, *J* = 8.3 Hz, 2H), 3.90 (s, 3H), 3.40-3.35 (m, 1H), 2.77 (dd, *J* = 16.7, 6.6 Hz, 1H), 2.69 (dd, *J* = 16.7, 7.6 Hz, 1H), 2.07 (s, 3H), 1.27 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 207.12, 166.94, 151.56, 129.88, 128.25, 126.82, 51.98, 51.45, 35.28, 30.54, 21.72; HRMS (ESI-TOF): *m/z* calculated for C₁₃H₁₇O₃⁺ [M+H]⁺ 221.1172, found 221.1175.

Methyl 4-(1-cyclohexyl-3-oxobutyl)benzoate (4b)

The compound **4b** was prepared according to the general procedure and was purified on silica gel to give a colorless oil in 39% yield (22.7 mg).

¹H NMR (CDCl₃, 600 MHz): δ ;7.94 (d, J = 8.3 Hz, 2H), 7.21 (d, J = 8.3 Hz, 2H), 3.89 (s, 3H), 3.04-3.01 (m, 1H), 2.87 (dd, J = 16.4, 5.1 Hz, 1H), 2.77 (dd, J = 16.4, 9.3 Hz, 1H), 1.99 (s, 3H), 1.79-1.72 (m, 2H), 1.63-1.59 (m, 2H), 1.50-1.43 (m, 1H), 1.40-1.38 (m, 1H), 1.26-1.17 (m, 1H), 1.13-1.02 (m, 2H), 0.96-0.89 (m, 1H), 0.82-0.75 (m, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ 207.72, 167.02, 149.20, 129.50, 128.30, 128.18, 51.97, 47.13, 47.01, 42.86, 31.08, 30.73, 30.61, 26.38, 26.25; HRMS (ESI-TOF): m/z calculated for C₁₈H₂₅O₃⁺ [M+H]⁺ 289.1798, found 289.1808.

Dimethyl 4,4'-(3-oxobutane-1,1-diyl)dibenzoate (4c)

The compound 4c was prepared according to the general procedure and was purified on silica gel to give

a colorless oil in 41% yield (27.7 mg).

¹H NMR (CDCl₃, 600 MHz): δ 7.95 (d, *J* = 8.3 Hz, 4H), 7.28 (d, *J* = 8.3 Hz, 4H), 4.71 (t, *J* = 7.4 Hz, 1H), 3.89 (s, 6H), 3.22 (d, *J* = 7.4 Hz, 2H), 2.11 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 205.66, 166.72, 148.22, 130.03, 128.67, 127.75, 52.07, 48.89, 45.68, 30.62; HRMS (ESI-TOF): *m*/*z* calculated for C₂₀H₂₁O₅⁺ [M+H]⁺ 341.1384, found 341.1383.

Methyl 4-(1-cyclohexyl-4-oxopentan-2-yl)benzoate (4d)

The compound **4d** was prepared according to the general procedure and was purified on silica gel to give a colorless oil in 72% yield (42.1 mg).

¹H NMR (CDCl₃, 600 MHz): δ ;7.96 (d, J = 8.5 Hz, 2H), 7.25 (d, J = 8.5 Hz, 2H), 3.90 (s, 3H), 3.38-3.30 (m, 1H), 2.74-2.63 (m, 2H), 2.00 (s, 3H), 1.80 (d, J = 11.9 Hz, 1H), 1.66-1.40 (m, 6H), 1.12-0.82 (m, 6H); ¹³C NMR (CDCl₃, 150 MHz): δ 207.31, 167.01, 150.31, 129.82, 128.25, 127.54, 51.98, 50.98, 43.91, 38.13, 34.74, 33.98, 32.47, 30.66, 26.48, 26.11, 26.00; HRMS (ESI-TOF): m/z calculated for C₁₉H₂₇O₃⁺ [M+H]⁺ 303.1955, found 303.1965.

Methyl 4-(4-oxo-1-phenylpentan-2-yl)benzoate (4e)

The compound **4e** was prepared according to the general procedure and was purified on silica gel to give a colorless oil in 50% yield (29.8 mg). The starting material **3e** was recovered in 25% yield.

¹H NMR (CDCl₃, 600 MHz): δ 7.92 (d, *J* = 8.3 Hz, 2H), 7.21-7.19 (m, 4H), 7.16-7.14 (m, 1H), 7.01 (d, *J* = 8.3 Hz, 2H), 3.89 (s, 3H), 3.56-3.51 (m, 1H), 2.91 (dd, *J* = 13.5, 7.1 Hz, 1H), 2.86 (dd, *J* = 13.5, 7.9 Hz, 1H), 2.84-2.75 (m, 2H), 2.01 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 206.94, 166.96, 149.27, 139.05, 129.72, 129.13, 128.39, 128.24, 127.64, 126.27, 51.99, 48.74, 42.80, 42.73, 30.60; HRMS (ESI-TOF): *m*/*z* calculated for C₁₉H₂₁O₃⁺ [M+H]⁺ 297.1485, found 297.1484.

Methyl 4-(4-oxo-1-(o-tolyl)pentan-2-yl)benzoate (4f)

The compound **4f** was prepared according to the general procedure and was purified on silica gel to give a colorless oil in 50% yield (31.2 mg). The starting material **3f** was recovered in 36% yield.

¹H NMR (CDCl₃, 600 MHz): δ 7.92 (d, J = 8.3 Hz, 2H), 7.19 (d, J = 8.3 Hz, 2H), 7.12-7.05 (m, 2H), 7.01 (d, J = 7.3, 1.6 Hz, 1H), 6.90 (d, J = 7.4 Hz, 1H), 3.89 (s, 3H), 3.61-3.42 (m, 1H), 2.91 (dd, J = 13.7, 7.4 Hz, 1H), 2.88-2.77 (m, 3H), 2.24 (s, 3H), 2.01 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 206.88, 166.95, 149.55, 137.31, 136.34, 130.34, 130.01, 129.73, 128.39, 127.53, 126.43, 125.66, 51.99, 48.70, 41.53, 40.27, 30.57, 19.37; HRMS (ESI-TOF): m/z calculated for C₂₀H₂₃O₃⁺ [M+H]⁺ 311.1642, found 311.1637.

Methyl 4-(1-(4-fluorophenyl)-4-oxopentan-2-yl)benzoate (4g)

The compound **4g** was prepared according to the general procedure and was purified on silica gel to give a colorless oil in 55% yield (34.5 mg). The starting material **3g** was recovered in 27% yield.

¹H NMR (CDCl₃, 600 MHz): δ 7.91 (d, J = 8.3 Hz, 2H), 7.16 (d, J = 8.3 Hz, 2H), 6.95-6.91 (m, 2H), 6.89-6.85 (m, 2H), 3.89 (s, 3H), 3.51-3.46 (m, 1H), 2.91 (dd, J = 13.6, 6.6 Hz, 1H), 2.84-2.76 (m, 3H), 2.03 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 206.79, 166.90, 161.43 (d, $J_{CF} = 244.4$ Hz), 148.90, 134.73 (d, $J_{CF} = 3.1$ Hz), 130.47 (d, $J_{CF} = 7.7$ Hz), 129.75, 128.49, 127.65, 115.01 (d, $J_{CF} = 21.0$ Hz), 52.02, 48.73, 42.89, 41.83, 30.63; ¹⁹F NMR (CDCl₃, 376 MHz): δ –117.09; HRMS (ESI-TOF): *m*/*z* calculated for C₁₉H₂₀FO₃⁺ [M+H]⁺ 315.1391, found 315.1388.

Methyl 4-(1-(4-bromophenyl)-4-oxopentan-2-yl)benzoate (4h)

The compound **4h** was prepared according to the general procedure and was purified on silica gel to give a colorless oil in 50% yield (37.8 mg). The starting material **3h** was recovered in 37% yield. ¹H NMR (CDCl₃, 600 MHz): δ 7.92 (d, *J* = 8.3 Hz, 2H), 7.30 (d, *J* = 8.3 Hz, 2H), 7.15 (d, *J* = 8.3 Hz, 2H), 6.85 (d, J = 8.4 Hz, 2H), 3.89 (s, 3H), 3.51-3.46 (m, 1H), 2.90 (dd, J = 13.6, 6.4 Hz, 1H), 2.84-2.75 (m, 3H), 2.04 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 206.68, 166.87, 148.70, 138.05, 131.29, 130.81, 129.78, 128.55, 127.63, 120.13, 52.03, 48.74, 42.60, 41.98, 30.63; HRMS (ESI-TOF): m/z calculated for C₁₉H₂₀BrO₃⁺ [M+H]⁺ 375.0590, found 375.0593.

Methyl 4-(5-oxo-1-phenylhexan-3-yl)benzoate (4i)

The compound **4i** was prepared according to the general procedure and was purified on silica gel to give a colorless oil in 70% yield (43.6 mg).

¹H NMR (CDCl₃, 600 MHz): δ 7.99 (d, *J* = 8.3 Hz, 2H), 7.28 (d, *J* = 8.3 Hz, 2H), 7.26-7.23 (m, 2H), 7.16 (t, *J* = 7.4 Hz, 1H), 7.07 (d, *J* = 7.0 Hz, 2H), 3.91 (s, 3H), 3.25 (dtd, *J* = 9.9, 7.1, 4.8 Hz, 1H), 2.79-2.72 (m, 2H), 2.47-2.38 (m, 2H), 2.03-1.97 (m, 1H), 2.01 (s, 3H), 1.92-1.86 (m, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ 206.95, 166.95, 149.56, 141.55, 129.93, 128.52, 128.34, 128.25, 127.67, 125.87, 52.03, 50.47, 40.68, 37.73, 33.50, 30.58; HRMS (ESI-TOF): *m*/*z* calculated for C₂₀H₂₃O₃⁺ [M+H]⁺ 311.1642, found 311.1641.

Methyl 4-(1-(benzyloxy)-5-oxohexan-3-yl)benzoate (4j)

The compound **4j** was prepared according to the general procedure and was purified on silica gel to give a colorless oil in 56% yield (38.0 mg).

¹H NMR (CDCl₃, 600 MHz): δ 7.95 (d, *J* = 8.3 Hz, 2H), 7.34-7.31 (m, 2H), 7.28-7.24 (m, 5H), 4.41-4.36 (m, 2H), 3.90 (s, 3H), 3.44 (dtd, *J* = 9.6, 7.2, 5.4 Hz, 1H), 3.35-3.31 (m, 1H), 3.26-3.22 (m, 1H), 2.81-2.74 (m, 2H), 2.04-1.98 (m, 1H), 2.01 (s, 3H), 1.85-1.80 (m, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ 206.88, 166.94, 149.41, 138.22, 129.85, 128.44, 128.33, 127.66, 127.59, 127.57, 72.92, 67.69, 52.01, 50.13, 37.88, 36.04, 30.45; HRMS (ESI-TOF): *m*/*z* calculated for C₂₁H₂₅O₄⁺ [M+H]⁺ 341.1747, found 341.1745.

Methyl 4-(8-acetoxy-2-oxooctan-4-yl)benzoate (4k)

The compound **4k** was prepared according to the general procedure and was purified on silica gel to give a colorless oil in 60% yield (38.4 mg).

¹H NMR (CDCl₃, 600 MHz): δ 7.97 (d, *J* = 8.3 Hz, 2H), 7.25 (d, *J* = 8.3 Hz, 2H), 4.02-3.92 (m, 2H), 3.90 (s, 3H), 3.28-3.12 (m, 1H), 2.78-2.71 (m, 2H), 2.04 (s, 3H), 2.00 (s, 3H), 1.70-1.64 (m, 1H), 1.63-1.50 (m, 3H), 1.27-1.19 (m, 1H), 1.17-1.09 (m, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ 207.02, 171.09, 166.91, 149.72, 129.86, 128.44, 127.51, 64.08, 52.01, 50.36, 40.86, 35.61, 30.63, 28.33, 23.65, 20.92; HRMS (ESI-TOF): *m/z* calculated for C₁₈H₂₅O₅⁺ [M+H]⁺ 321.1697, found 321.1697.

Methyl 4-(8-(1,3-dioxoisoindolin-2-yl)-2-oxooctan-4-yl)benzoate (4l)

The compound **4I** was prepared according to the general procedure and was purified on silica gel to give a colorless oil in 71% yield (58.1 mg).

¹H NMR (CDCl₃, 600 MHz): δ 7.91 (d, *J* = 8.3 Hz, 2H), 7.83-7.80 (m, 2H), 7.71-7.68 (m, 2H), 7.23 (d, *J* = 8.3 Hz, 2H), 3.89 (s, 3H), 3.59 (t, *J* = 7.3 Hz, 2H), 3.22-3.17 (m, 1H), 2.74 (d, *J* = 7.1 Hz, 2H), 2.03 (s, 3H), 1.73-1.64 (m, 2H), 1.63-1.55 (m, 2H), 1.24-1.17 (m, 1H), 1.16-1.09 (m, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ 207.01, 168.29, 166.85, 149.63, 133.80, 131.99, 129.80, 128.31, 127.48, 123.09, 51.93, 50.27, 40.72, 37.51, 35.40, 30.55, 28.12, 24.35; HRMS (ESI-TOF): *m*/*z* calculated for C₂₄H₂₆NO₅⁺ [M+H]⁺ 408.1807, found 408.1805.

Methyl 4-(6-cyclohexyl-5-oxohexan-3-yl)benzoate (4m)

The compound **4m** was prepared according to the general procedure with 60 mol% of **TDG-12** and was purified on silica gel to give a colorless oil in 41% yield (25.8 mg).

¹H NMR (CDCl₃, 600 MHz): δ 7.95 (d, J = 8.3 Hz, 2H), 7.24 (d, J = 8.3 Hz, 2H), 3.90 (s, 3H), 3.13 (dtd, J = 9.4, 7.1, 5.3 Hz, 1H), 2.80-2.59 (m, 2H), 2.17 (dd, J = 15.7, 7.1 Hz, 1H), 2.12 (dd, J = 15.7, 6.6 Hz,

1H), 1.75-1.65 (m, 2H), 1.62-1.49 (m, 6H), 1.24-1.15 (m, 2H), 1.12-1.04 (m, 1H), 0.85-0.78 (m, 2H), 0.76 (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 209.26, 167.04, 150.11, 129.72, 128.21, 127.66, 51.97, 51.29, 49.78, 42.67, 33.69, 33.13, 33.07, 29.08, 26.12, 26.02, 26.00, 11.90; HRMS (ESI-TOF): m/z calculated for C₂₀H₂₉O₃⁺ [M+H]⁺ 317.2111, found 317.2115.

Methyl 4-(5-oxo-7-phenyloctan-3-yl)benzoate (4n)

The compound **4n** was prepared according to the general procedure and was purified on silica gel to give a colorless oil in 40% yield (25.8 mg).

¹H NMR (CDCl₃, 600 MHz, 1:1 mixture of diastereomers): δ 7.95-7.91 (m, 2H), 7.29-7.24 (m, 2H), 7.22-7.12 (m, 5H), 3.90 (s, 3H), 3.35-3.29 (m, 1H), 3.28-3.22 (m, 1H), 2.69-2.49 (m, 4H), 1.20 (d, *J* = 7.0 Hz, 1.5H), 1.20 (d, *J* = 7.0 Hz, 1.5H), 1.17 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz, 1:1 mixture of diastereomers): δ 208.11, 208.05, 166.97, 151.63, 151.57, 145.99, 145.95, 129.84, 129.84, 128.50, 128.48, 128.18, 128.15, 126.83, 126.79, 126.74, 126.69, 126.30, 126.27, 51.98, 51.98, 51.76, 51.71, 51.35, 51.27, 35.36, 35.30, 35.07, 35.06, 21.92, 21.91, 21.64, 21.60; HRMS (ESI-TOF): *m/z* calculated for C₂₁H₂₅O₃⁺ [M+H]⁺ 325.1798, found 325.1794.

Methyl 4-(4-oxoheptan-2-yl)benzoate (4omono)

The compound $4o_{mono}$ was prepared according to the general procedure and was purified on silica gel to give a colorless oil in 29% yield (14.5 mg).

¹H NMR (CDCl₃, 600 MHz): δ 7.96 (d, *J* = 8.3 Hz, 2H), 7.28 (d, *J* = 8.3 Hz, 2H), 3.90 (s, 3H), 3.42-3.36 (m, 1H), 2.73 (dd, *J* = 16.5, 6.7 Hz, 1H), 2.65 (dd, *J* = 16.5, 7.5 Hz, 1H), 2.34-2.24 (m, 2H), 1.57-1.50 (m, 2H), 1.27 (d, *J* = 7.0 Hz, 3H), 0.85 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 209.41, 167.00, 151.76, 129.86, 128.21, 126.86, 52.00, 50.63, 45.42, 35.28, 21.73, 17.06, 13.64; HRMS (ESI-TOF): *m*/*z* calculated for C₁₅H₂₁O₃⁺ [M+H]⁺ 249.1485, found 249.1492.

Dimethyl 4,4'-(4-oxoheptane-2,6-diyl)dibenzoate (4odi)

The compound $4o_{di}$ was prepared according to the general procedure and was purified on silica gel to give a colorless oil in 25% yield (19.1 mg).

¹H NMR (CDCl₃, 600 MHz, 1:1 mixture of diastereomers): δ 7.94 (d, *J* = 8.3 Hz, 2H), 7.91 (d, *J* = 8.3 Hz, 2H), 7.22 (d, *J* = 8.3 Hz, 2H), 7.18 (d, *J* = 8.3 Hz, 2H), 3.90 (s, 6H), 3.36-3.28 (m, 2H), 2.70-2.51 (m, 4H), 1.21 (d, *J* = 7.0 Hz, 3H), 1.17 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz, 1:1 mixture of diastereomers): δ 207.52, 166.94, 151.45, 151.37, 129.87, 129.85, 128.26, 128.24, 126.83, 126.78, 52.01, 51.31, 51.29, 35.15, 21.68; HRMS (ESI-TOF): *m*/*z* calculated for C₂₃H₂₇O₅⁺ [M+H]⁺ 383.1853, found 383.1857.

Methyl 4-(7-methyl-4-oxooctan-2-yl)benzoate (4pmono)

The compound $4p_{mono}$ was prepared according to the general procedure and was purified on silica gel to give a colorless oil in 30% yield (16.9 mg).

¹H NMR (CDCl₃, 600 MHz): δ 7.96 (d, *J* = 8.3 Hz, 2H), 7.28 (d, *J* = 8.2 Hz, 2H), 3.90 (s, 3H), 3.42-3.36 (m, 1H), 2.74 (dd, *J* = 16.5, 6.7 Hz, 1H), 2.66 (dd, *J* = 16.6, 7.6 Hz, 1H), 2.38-2.23 (m, 2H), 1.49-1.42 (m, 1H), 1.41-1.37 (m, 1H), 1.27 (d, *J* = 7.0 Hz, 3H), 0.84 (d, *J* = 1.8 Hz, 3H), 0.83 (d, *J* = 1.8 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 209.66, 167.00, 151.77, 129.87, 128.21, 126.87, 52.00, 50.61, 41.56, 35.30, 32.38, 27.60, 22.27, 21.72; HRMS (ESI-TOF): *m*/*z* calculated for C₁₇H₂₅O₃⁺ [M+H]⁺ 277.1798, found 277.1807.

Dimethyl 4,4'-(7-methyl-4-oxooctane-2,6-diyl)dibenzoate (4pdi)

The compound $4p_{di}$ was prepared according to the general procedure and was purified on silica gel to give a colorless oil in 10% yield (8.2 mg).

¹H NMR (CDCl₃, 600 MHz, 1:1 mixture of diastereomers): δ 7.93-7.91 (m, 2H), 7.89-7.87 (m, 2H),

7.17-7.16 (m, 2H), 7.13-7.11 (m, 2H), 3.90 (s, 6H), 3.28-3.20 (m, 1H), 2.96-2.92 (m, 1H), 2.76-2.63 (m, 2.5H), 2.58-2.49 (m, 1H), 2.43 (dd, J = 16.9, 7.2 Hz, 0.5H), 1.82-1.74 (m, 1H), 1.12 (d, J = 6.9 Hz, 1.5H), 1.08 (d, J = 7.0 Hz, 1.5H), 0.90 (d, J = 6.7 Hz, 1.5H), 0.86 (d, J = 6.7 Hz, 1.5H), 0.69 (d, J = 6.7 Hz, 1.5H), 0.67 (d, J = 6.7 Hz, 1.5H); ¹³C NMR (CDCl₃, 150 MHz, 1:1 mixture of diastereomers): δ 207.89, 207.88, 167.01, 166.97, 166.95, 166.93, 151.53, 151.42, 148.94, 148.82, 129.82, 129.80, 129.49, 129.47, 128.26, 128.22, 128.20, 128.18, 126.80, 126.71, 52.00, 51.99, 51.46, 51.34, 47.74, 47.73, 47.07, 47.05, 34.94, 34.92, 33.03, 33.00, 21.60, 21.53, 20.66, 20.61, 20.30, 20.26; HRMS (ESI-TOF): *m/z* calculated for C₂₅H₃₁O₅⁺ [M+H]⁺ 411.2166, found 411.2171.

S47

S49

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

S60

S67

210 200 190 180 170 160 150 140 130 120 110 100

