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Figure S1. BioID of Nesprin-1α identifies known and novel proximal proteins. Related to Figure 1. (A) C2C12 myoblasts or 
myotubes stably expressing myc-BirA*-Nesprin-1ɑ were treated with or without doxycycline and biotin, harvested and subjected to 
affinity purification using streptavidin-beads. Expression of myc-BirA*-Nesprin-1α after doxycycline addition was confirmed by 
Western Blot using anti-Nesprin-1 (clone 9F10) antibody. Biotinylated proteins were detected using fluorescent conjugates of 
streptavidin. Arrows point to BioID-Nesprin-1α. (B) C2C12 myotubes were transfected with the indicated siRNAs and stained for 
Nesprin-1 (MANNES1A) or Klc1/2 and nuclei (DAPI). Arrowheads indicate myonuclei with loss of Klc1/2 localisation to the NE 
following Nesprin-1 knockdown. Scale bar, 10 µm. (C) 48 h differentiated C2C12 cells were transfected with the indicated siRNAs 
and stained for Nesprin-1 (MANNES1E) and nuclei (DAPI). Scale bar, 10 µm. (D) C2C12 myotubes were transfected with the 
indicated siRNAs and stained for Klc1/2 and nuclei (DAPI). Arrowheads indicate myonuclei with loss of Klc1/2 localisation to the 
NE following double Sun1/Sun2 knockdown. Scale bar, 10 µm. (E) Wild type or Nesprin-1 CRISPR mutant C2C12 myotubes were 
stained for Pericentrin (Pcnt, red), Cep170 (green), or Nesprin-1 (blue, 9F10). Scale bar, 10 µm.
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Figure S2. Nesprin-1α-containing LINC complex recruits centrosomal proteins to the myotube NE. Related to Figure 2.  
(A) 48 h differentiated C2C12 cells were transfected with the indicated siRNAs and stained for Pericentrin (Pcnt, red), nuclei (DAPI, 
blue) and myosin heavy chain (MHC, green). Scale bar, 20 µm. (B, C, D, E) Western Blot of 48 h differentiated C2C12 cells trans-
fected with the indicated siRNAs, stained for Nesprin-1α (MANNES1E) (B), Pericentrin (Pcnt) (C), Sun1 (D) or Sun2 (E), respective-
ly, and for GAPDH or tubulin (YL 1/2) as a loading control. (F) C2C12 cells were treated with non-targeting control siRNA#1 or 
Nesprin-1 siRNA#1, differentiated for the indicated time points (hours of differentiation), subjected to SDS-PAGE and Western Blot 
analysis using anti-Pericentrin (Pcnt), anti-Nesprin-1α (MANNES1E) and anti-GAPDH antibodies. (G) Differentiated human immor-
talized myotubes from a healthy control (wild type) or from a patient carrying a nonsense mutation within the SYNE1 (23560 G>T) 
gene immunostained for Nesprin-1α/Nesprin-1 (MANNES1E, green) and nuclei (DAPI, blue). Scale bar, 10 µm. (H) C2C12 wild 
type or Nesprin-1 CRISPR mutant cells transduced with mycBirA*-Nesprin-1α without and with 1 µg/ml doxycycline (-/+DOX) were 
differentiated for 48 h, fixed and stained for Nesprin-1 (green, clone 9F10), Akap450 (red), and Myogenin (MYOG, grey) Scale bar, 
10 µm. (I) Quantification of Akap450 recruitment to the NE in Myogenin (MYOG)-positive nuclei as described in (H). Error bars ± 
SEM. n represents total number of nuclei from three independent experiments. ***p<0.001, *p<0.05, one-way ANOVA with Tukey’s 
multiple comparisons test. (J) Nesprin-1 CRISPR mutant C2C12 myotubes transduced with mycBirA*-Nesprin-1α were incubated 
with differentiation media containing doxycycline (DOX) for at least 24 hours and then switched to differentiation media lacking (-) 
doxycycline (DOX) for 0-7 days as indicated. Cells were then fixed and stained for Nesprin-1 (green, 9F10), Pericentrin (Pcnt, red) 
and nuclei (DAPI, blue). Scale bar, 10 µm. (K) C2C12 wild type, untransduced Nesprin-1 CRISPR mutant cells or CRISPR mutant 
cells transduced with mycBirA*-Nesprin-1α  (N1α ), mycBirA*-Nesprin-1α with the LEWD motif mutated to LEAA (N1α (WD/AA)), 
or mycBirA*-Nesprin-2β (N2β) were incubated with doxycycline and differentiated for 48 h, fixed and stained for Kif5b (red), Myc 
(green) and myosin heavy chain (clone MF20, blue). Scale bar, 10 µm.
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Figure S3. Disruption of LINC complex does not affect overall microtubule or actin organization. Related to Figure 3. 
(A) 48 h differentiated C2C12 cells, treated with non-targeting control (NC) siRNA#1, two different siRNAs to Nesprin-1 
(Nesprin-1 #1 or Nesprin-1 #2), Sun1, Sun2 or both Sun1 and Sun2 (Sun1/2) siRNAs, were incubated with or without (untreated) 
nocodazole and immunostained for Pericentrin (Pcnt, red), microtubules (MTs, green) and Myogenin (MYOG, grey). Scale bar, 
10 µm. (B) Human immortalized myotubes from a healthy control (wild type) or from a patient carrying a nonsense mutation 
within the SYNE1 (23560 G>T) gene were treated with or without (untreated) nocodazole and immunostained for PCM1 (red), 
microtubules (MTs, green) and nuclei (DAPI, blue). Scale bar, 10 µm. (C) Human immortalized myotubes from a healthy control 
(wild type) or from a patient carrying a nonsense mutation within the SYNE1 (23560 G>T) gene were stained for Akap450 (red), 
actin (green, phalloidin) and nuclei (DAPI, blue). Scale bar, 10 µm.
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Figure S4. Computer simulations reveal role for Akap450-mediated MT nucleation in nuclear positioning independent of 
other centrosomal proteins. Related to Figure 4. (A) C2C12 cells were transfected with the indicated siRNAs, differentiated into 

myotubes for 48 hours and stained for Akap450, Pcm1, Pericentrin (Pcnt) or Cdk5Rap2 (red), myosin heavy chain (MHC, green) 

and nuclei (DAPI, blue). Scale bar, 10 µm. (B) The myotube area was plotted over the number of nuclei for C2C12 myotubes (blue 

dots) or for simulated myotubes generated using Cytosim (red dots). (C) EB1-GFP-expressing myotubes were imaged using 

stream acquisition (250 ms/frame). We used a maximum projection of 100 frames to measure the angle of each comet compared 

to the long axis of the myotube. (D) All comet angles were then normalized over a 90° quadrant and distributed in 5° steps, thus 

revealing a preferential orientation of EB1 comets towards the long axis of the myotube. (E) Two-dimensional representations of 

nuclear distributions in myotubes after computer simulations. We compared nuclear positioning in myotubes with MT nucleation 

activity and Kif5b motor proteins at the NE (control; MTs from NE+, Kif5b at NE+), without MT nucleation activity but Kif5b motor 

proteins at the NE (MTs from NE-; Kif5b at NE+) or without both MT nucleation activity and Kif5b motor proteins at the NE (MTs 

from NE-; Kif5b at NE-). Thereby, each myotube is represented on a single line with blue dots representing the myotube edges and 

black dots the nuclei. 



Name Value Note

Time step 0.05s Computational parameter

Viscosity 0.1pN s/mm² Estimate viscosity of the cytoplasm, [S1]

kT 0.0042 pN mm Thermal energy at 25°C

Cell geometry R=7um L=190 mm / 5 nuclei Ellipse

L=228 mm / 6 nuclei

L=266mm / 7 nuclei

L=304mm / 8 nucleis

L=342mm / 9 nuclei

Rigidity 20 pN mm² Flexural rigidity [S2-S4] 

Segmentation 4 mm computational parameter

Dynamics growing speed= 0.4 mm/s measures (growing speed only)

Shrinking speed= 0.8 mm/s [S5]

hydrolysis rate= 0.5 mm/s [S5]

Growing forces fg=1.5pN growing velocity is slowed down by antagonostic force on plus end.

Stiffness = 500 pN/ mm

Total polymer 7000 per nucleus to limit the length of MTs

Binding Range= 0.05 mm Maximal distance to which a binder can bind a filament

Rate = 5 s-1 Rate at which possible binding can occur

Unbinding Force= 5 pN Unbinding increases with load exponentially

Rate= 0.1 s-1 [S6]

Stiffness 200pN/mm

Motility Max speed vm= 0.8 mm/s [S6]

stall force fs=5 pN

Diffusion 20 mm²/s

Stiffness 500pN

Activity Slide Map7 moves in the direction of the applied force, with the specified mobility

Binding Range= 0.1mm Maximal distance to which a binder can bind a filament

Rate = 10 s-1 Rate at which possible binding can occur

Unbinding Force = 1 pN Load force needed to unbind

Rate = 10 s-1 Rate at which possible unbinding can occur

Motility 0.1 mm.s-1.pN-1

Quantity 200 per nucleus

Binding Range= 0.1 mm Maximal distance to which a binder can bind a filament

Rate = 2 s-1 Rate at which possible binding can occur

Unbinding Force= 3 pN Load force needed to unbind

Rate= 1 s-1 Rate at which possible unbinding can occur

Diffusion 20 mm²/s

Stiffness k=200pN

Activity Bridge [S7]

Specificity Antiparallel [S7]

Quantity 400 per nucleus

Binding Range= 0.05 mm [S8], [S9]

Rate = 5 s-1

Unbinding Force= 3 pN [S10]

Rate= 0.1 s-1 motors unbinding rate is deduced from measurements of dynein processivity ~ 1-2 μm

(reviewed in [S9]) and dynein velocity ~ 1.5 μm s-1

Stiffness k=200 pN/mm

Motility Max speed vm= 1 mm/s [S11], [S12], [S3]; reviewed in [S9]

stall force fs=5 pN Measurements ~1-7 ([S11], [S13]; reviewed in [S12] and [S9]

Quantity 5 to 9 Density is 1 nuclei/ 700um² of myotube (measured)

Radius 5 mm

Nucleator (Gamma-tubulin) Quantity = 58 / nucleus The nucleators nucleate independently.

Nucleation rate = 0.02 s-1 50 possible new MTs per second and per nucleator

Unbinding rate = 0.1s-1

Unbinding force= 3 pN

Stiffness = 1000pN/mm

Kif5b Quantity = 30 / nucleus Fixed at the NE, stiffness = 200pN/um

Dynein Quantity = 18 / nucleus Fixed at the NE, stiffness = 200pN/um

Quantity 5 per nucleus

Radius 0.2 mm

MT nucleation sites 11

Table S1. Parameters for the Cytosim computer simulations. Related to Figure 4G.

Dynein

Nuclei

Centrioles (when no Nesprin-1)

Global

Microtubules

Kinesin (Kif5b)

Crossslider kif5b/Map7 like

Map4

Crosslinker Map4/Map4
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