
Supplementary Note 1. Error structure in SIRS model

An SIRS model with transmission potential modulated by observed humidity conditions

has previously been used to explain the observed seasonal cycle of excess pneumonia and

influenza mortality in the United States during 1972 to 2002 [1]. This humidity-driven SIRS

model is a reliable, albeit simple, mathematical description of the transmission process for

influenza. In the SIRS model, a population is sub-divided into three categories: those

susceptible (S) to, infected (I) with, and recovered (R) from influenza. Suppose the total

population is N , the contact rate at time t is β(t), the average duration of immunity is L,

the mean infectious period is D, and the rate of infection imported from external sources is

α. The dynamical evolution of influenza within this population can then be described as:

dS

dt
=
N − S − I

L
− β(t)IS

N
− α, (1)

dI

dt
=
β(t)IS

N
− I

D
+ α. (2)

Here, the contact rate β(t) is related to absolute humidity (AH) through the basic reproduc-

tive number R0(t) = β(t)D. Laboratory experiments indicate that R0(t) has an exponential

relationship with humidity [2], which affects the survival and transmission of the influenza

virus:

R0(t) = exp(a× q(t) + b) +R0min, (3)

where q(t) is daily observed specific humidity (a measure of AH), a = −180, b = log(R0max−

R0min), and R0max and R0min are the maximal and minimal daily basic reproductive number,

respectively. In the following analysis, we fix the total population at N = 500, 000 and

the external import of infection at α = 0.1 (one infection every 10 days), thus the state

vector is xt = (S(t), I(t), L,D,R0max, R0min). In a realistic setting, the ranges of the model

parameters are 2y ≤ L ≤ 10y, 2d ≤ D ≤ 7d, 1.3 ≤ R0max ≤ 4 and 0.8 ≤ R0min ≤ 1.3 [1].

For this non-autonomous dynamical system in which AH varies with time, it is difficult

to analyze the exact error structure using linear techniques. As an alternative, we adopt

the breeding method to inspect the relationship between errors in variables/parameters and

observation I [3, 4]. Unlike linear approximation, the breeding method fully preserves the

nonlinear dynamics of the system. In numerical weather prediction (NWP), it has been
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used to estimate fast-growing directions of errors [3, 4]. In our study, thanks to the low

dimensionality of the humidity-forced SIRS model, we are able to explore the detailed error

structure by breeding a small perturbation on variables and parameters. Specifically, for

a variable or parameter x ∈ xt at time t, we impose small random perturbations on x,

obtaining a perturbed state xt
p. Then both the unperturbed trajectory xt and the perturbed

xt
p are integrated forward following the nonlinear dynamics (Equations 1-S2) for a period of

time ∆t. The bred error at time t+∆t is calculated as the difference between the perturbed

and unperturbed trajectories: δxt+∆t = xt+∆t
p − xt+∆t.

In order to produce a typical influenza outbreak, we use a combination of model parame-

ters, L = 3.86y, D = 2.27d, R0max = 3.79 and R0min = 0.97, which generates representative

seasonal cycles of 1972-2002 influenza outbreaks in New York State [1]. The SIRS model is

initiated on October 1, 1972 with initial conditions S(0) = 250, 000 and I(0) = 1, and is

forced by observed daily AH for New York State. To inspect the error structure between the

state variables/parameters S, R0max, R0min, D, L and I, we impose random perturbations

on a specific state variable/parameter and the observed variable I at different phases of the

outbreak. For example, for the combination (S, I) at 6 weeks, 3 weeks, 1 week prior to peak

and 1 week after peak, we repeatedly add 1,000 random errors uniformly distributed in the

region [−20%,+20%]× [−20%,+20%] to (S, I). The perturbed trajectories are then evolved

according to the SIRS dynamics for one week, and the bred errors (δS, δI) are calculated as

the difference between the perturbed trajectories and the unperturbed.

In Fig. 1, we present the evolution of these random errors at different stages of SIRS

spreading. The initial errors are displayed by red dots, while the bred errors after one week

are indicated by blue dots. The solid red and blue lines highlight the cases for which initial

perturbations were only imposed on the unobserved state variable/parameter. It is seen

that, for perturbations imposed before the peak (Fig. 1A-C), errors in the observed state

variable I for sensitive unobserved state variables/parameters such as S and R0max expand

quickly, and a clear nonlinear relationship for (δS, δI) and (δR0max, δI) emerges. For R0min

and D, there also exists a nonlinear trend; however, the relationship is not clear enough

to determine errors in R0min and D as a function δI, as the observational error is large

compared to the true value of I. For the least sensitive parameter L, the error has almost

no relationship with errors in the observed variable. After the peak (Fig. 1D), while most

errors decay due to the contracting dynamics of the SIRS model, the clear error structure
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of (δS, δI) and (δR0max, δI) remains.

We note that the smooth and continuous error manifold in Fig. 1 is constructed under

the assumption that the system state is far from criticality in parameter space. However, it

is well established that epidemic dynamics may evolve in the neighborhood of critical points

that mark the onset of phase transitions. Around these points, even small perturbations in

the state variables can produce significant qualitative changes in system dynamics. These

changes may include abrupt transitions from low to high endemicity, oscillations and chaotic

behaviors [5, 6]. Indeed, previous theoretical works have confirmed that oscillations and even

chaos can be present in simple nonlinear epidemic models with periodic forcing [7–11]. Such

complexity, confirmed by real-world observations, makes mathematical prediction of future

infectious disease incidence challenging.

In this work, we focus on short-range forecasts in real-time during one influenza season.

Therefore, extremely complex dynamical behaviors, such as oscillations and chaos, that

appear over multiple outbreak cycles are not present. In other work, multiannual forecasts

of qualitative features of seasonal influenza have been made using a metapopulation model

that incorporates information on temperature, humidity, antigenic drift and immunity loss

[12]. Over these time scales, error growth will saturate, due to system nonlinear dynamics,

which prevents the one-to-one mapping between errors in the observations and unobserved

state variables. As a consequence, the error breeding approach introduced here should only

be applied to short-term predictions.

In a single influenza season, however, a second-order (or continuous) transition from

an outbreak-free phase to an outbreak phase may occur. To examine the error structure

around such transition points, we performed the same error breeding procedure for the

maximum basic reproductive number, R0max. Starting with the same initial conditions as

in Fig. 1a in the main text, we varied the value of R0max and found the critical point

R0max ≈ 3.0 through simulations. We then imposed perturbations on R0max to construct

the error structure between R0max and weekly incidence observations. As shown in Fig. 2,

the error structure appears to be a step-function. This is because, below the critical value,

the error in the observations is constant. In this case, the error structure can still be fitted

using a 3rd-order polynomial after discarding the constant part, as shown in Fig. 2. This

special circumstance, however, rarely exists in realistic influenza outbreaks.
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Supplementary Note 2. Robustness of error structure

The above analysis is performed assuming that all variables/parameters but the perturbed

are perfectly known. Such an assumption does not apply to real-world applications. In a

more realistic setting, a natural question arises as to whether the error structure is stable

against perturbations on other state variables. To answer this question, a robustness analysis

of the error structure (δS, δI) is performed as follows. At 3 weeks prior to peak, we impose

uniformly distributed errors in the range [−20%,+20%] to variable S, and then display

the structural errors (δS, δI) after one week of breeding. In order to explore the effect of

perturbations on other state variables, additional shocks are applied to I, R0max, R0min and

D separately 3 weeks before the peak. The magnitude of these shocks ranges from −15%

to +15% with a 5% step. Finally we compare the original error structure and the ones with

perturbed state variables in Fig. 3A. The same analysis can be applied to (δR0max, δI),

(δR0min, δI) and (δD, δI) (see Fig. 3B-D). Here we exclude the parameter L as we have

already shown that system dynamics are insensitive to a change in L at these time scales.

In Fig. 3, the title of each panel indicates the state variable/parameter with the additional

shock, and the structural errors of the y-axis variable/parameter as a function of these

various additional shocks are displayed by different colored lines. We mark the ±20% error

boundary for the observed state variable, I, with vertical dash lines for better reference.

The error structure of the sensitive state variable S and parameter R0max is quite robust

against error applied to the other variables/parameters (top 2 rows of Fig. 3), especially

for perturbations on I, R0min and D. In contrast, for the relatively less sensitive state

variables R0min and D, the error structure is shifted dramatically by perturbations to the

other variables/parameters (bottom 2 rows of Fig. 3). Moreover, the curves for R0min and

D incline to align with the y-axis when S bears errors (left column bottom 2 rows of Fig.

3), which makes for unreliable inference of the errors in R0min and D from the errors in the

observation. We repeated this analysis for other typical combinations at different phases

of the outbreak and found that the observed robustness of error structure for S and R0max

remains. This finding implies that the error correction should be effective for S and R0max

even in the presence of error in other state variables and parameters.
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Supplementary Note 3. Error correction in perturbed SIRS simulations

Given the clear nonlinear relationship between the errors in state variable S, parameter

R0max and the observed variable I, it is natural to use this error structure to diagnose existing

errors in S and R0max. In the following analysis, we will focus on variable S, though the

same analysis on R0max can be applied. For the nonlinear error structure (δS, δI), observed

in Fig. 1, we can fit the data points with a 3rd-order polynomial, as shown in Fig. 1a in

the main text. The obtained curve can be used to infer the error δS in variable S from the

error δI of the observed state variable relative to the observation. In applications, since δS

and δI have different scales, it is convenient to normalize the bred errors by corresponding

largest absolute values before conducting the curve fitting. This procedure helps to avoid a

badly conditioned polynomial fit, in which the δI data points are clustered within a narrow

region.

Algorithm 1 Error correction of perturbed SIRS trajectory

1: Input: State vector estimation at week t − 1, xt−1 = (St−1, It−1, Rt−1
0max, R

t−1
0min, D

t−1, Lt−1)T ,

observation Itobs at t week.

2: Breeding method: impose Gaussian-distributed random errors on St−1 to form multiple per-

turbed trajectories xt−1
p , integrate both xt−1 and xt−1

p for one week.

3: The bred errors at t week are δS = St
p − St and δI = Itp − It. Normalize δS and δI with

respect to their corresponding maximal absolute value, and then fit the error structure with a

3rd-order polynomial.

4: The discrepancy in observed variable is ∆I = It−Itobs. Calculate the structural error ∆S using

the fitted error structure with proper scaling.

5: Output: The adjusted state vector at t week is xt
adj = (St −

∆S, Itobs, R
t−1
0max, R

t−1
0min, D

t−1, Lt−1)T .

Specifically, at each observation time, the error structure between S and I is obtained by

performing the breeding method from the previous observation time point. The discrepancy

of the observed variable I with the observation is then computed as the difference between

the I value predicted by the SIRS integration (the prior) and the true observation. After

the error in S is estimated through the nonlinear error structure fitted by a 3rd-order poly-

nomial (see Fig. 1a in the main text), both the inferred structural error in S and observed
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discrepancy in I are subtracted from the prior trajectory to form an updated state vector.

The pseudo-code for error correction in S-perturbed SIRS trajectory is shown in Algorithm

1.

To evaluate the accuracy of the diagnosed error ∆S, we performed an error correction

procedure on a trajectory with a slightly perturbed variable S. Precisely, at 4 weeks before

the peak, we imposed a +15% shock on variable S but kept the other state variables intact.

After one week of model integration, we observed the exact infected population Ir, and get

the predictive value Ip on the perturbed trajectory. Therefore, the error for the observed

variable was the discrepancy between these two quantities: ∆I = Ip − Ir. Since we have no

prior knowledge of the true state variable trajectory, we performed the breeding diagnosis on

the perturbed trajectory at 4 weeks prior to peak, obtaining the polynomial function, from

which we can estimate the error ∆S from ∆I at 3 weeks before the peak. In the corrected

trajectory, at 3 weeks prior to peak (i.e. after one week breeding the random errors imposed

4 weeks before the peak), the variables S and I were adjusted by subtracting ∆S and ∆I

from S and I in the perturbed trajectory. As shown in Fig. 4, in the case of perfect

observations without observational noise, a one-time correction procedure is sufficient to

effectively recover the true dynamics by driving S and I close to their real values.

To generalize the above application, it is necessary to examine the performance of error

correction for other combinations of parameters and initial conditions, as well as perturba-

tions with different magnitudes at different times. Therefore, using a broad distribution of

possible variable/parameter combinations, we randomly grabbed 1,000 different initial state

vectors, which contained the SIRS variables S, I and parameters R0max, R0min, D and L.

The distribution was generated by integrating 100,000 independent simulations of the SIRS

model forced with New York State AH from 1972 to 2012. The unique initial set of param-

eters in each integration was selected with a Latin hypercube sampling strategy from the

parameter space 1.3 ≤ R0max ≤ 4, 0.8 ≤ R0min ≤ 1.3, 2d ≤ D ≤ 7d, 2y ≤ L ≤ 10y. Then

the state vectors were randomly selected from the collection of October 1 combinations.

For each combination, we perturbed the variable S at different lead times ranging from

10 weeks to 2 weeks prior to the peak. The magnitude of the shock on S lies in the interval

[−15%,+15%] with a step of 1.5%. One week after the perturbation, we used the accurate

observation Ir and the perturbed predicted value Ip to diagnose and performed a one-time

correction of error in S. In Fig. 5, we use a heat map to display the accuracy of the corrected
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trajectory for each combination of perturbation time and magnitude. Each data point is

the average result for 1,000 independent realizations of SIRS dynamics. In particular, we

are interested in whether the peak timing and peak intensity can be restored. To this end,

we measure the following quantities of the corrected trajectories: A) the mean error in peak

timing, B) the fraction of simulations accurate for peak timing within ±1 week, C) the

mean error for peak intensity, and D) the fraction of simulations accurate for peak intensity

within ±25%. With perfect observations, peak timing can be recovered within the ±1 week

discrepancy with a probability over 90% in most cases. Peak intensity can also be restored

within ±25% accuracy for a large collection of perturbation times and magnitudes. Notice

that, the performance of the correction is asymmetric: the correction is more effective for

negative perturbations on S. The reason for this asymmetry is that, given the same absolute

magnitude of shocks on S, the positive shocks will create much larger trajectory deviations

than negative shocks due to the nonlinear dynamics of SIRS model. Thus, it is more difficult

to counterbalance the positive perturbations. Even so, the deviations can still be effectively

narrowed after the correction.

Next, we performed an error correction procedure on trajectories with perturbed S (dif-

ferent magnitudes at different times), in the presence of observational error and uncertainty

in the other state variables/parameters. For each combination, we perturbed the variable S

at different lead times ranging from 10 weeks to 2 weeks prior to the peak. The magnitude

of the shock on S lies in the interval [−15%,+15%] with a step of 1.5%. At the same time,

a Gaussian distributed noise with zero mean and standard deviation of 15% was added to

other state variables simultaneously. The weekly error-laden observations I were generated

by adding random noise drawn from a Gaussian distribution with zero mean and predefined

variance 105. The error correction procedure on the perturbed trajectories was applied se-

quentially at the time of weekly observation. In Fig. 6, the peak timing and peak intensity

of perturbed trajectories can be restored with high probability even though the observations

are not accurate and other state variables are not perfectly known.

Supplementary Note 4. Error correction in EAKF

Suppose the observation from a synthetic outbreak is the infected population, I. Ba-

sically, for each ensemble member, the EAKF calculates the adjustment of the observed
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state variable δI using a Bayesian method. The adjustments of unobservable variables

and parameters are computed through their prior covariance with the observed state vari-

able. After the update, the trajectory is constrained closer to the truth and can be in-

tegrated forward to make forecasts, as shown in Fig. 7A. In fact, the negative increment

−δx = −(δS, δI, δR0max, δR0min, δD, δL)T of the prior state can be interpreted as the esti-

mated errors of the state variables and parameters, which are subtracted during the EAKF

update.

In order to obtain a more accurate estimate of the errors in the sensitive state variable S

and parameter R0max, we diagnose the structural errors of S and R0max using the breeding

method starting from time t − 1 (See Fig. 7B). In a realistic setting, the discrepancy of

the observation is collectively caused by the errors in all the state variables/parameters.

Therefore, these errors should be considered when diagnosing structural errors in S and

R0max. Instead of performing the diagnosis regardless of the errors in other state variables,

we conducted an adjoint diagnosis by subtracting the EAKF-estimated errors from the

trajectory at time t − 1 before carrying out the breeding method. For instance, when

diagnosing the structural error of S, we first removed the EAKF-estimated errors −δR0max,

−δR0min, −δD and −δL from the prior trajectory (or equivalently, use the posterior of

R0max, R0min, D and L in EAKF), and then imposed random errors on S, which evolve

following the full model nonlinear dynamics, to find the error structure with observation at

time t (See Fig. 7C). In operation, because the error structure is quite smooth, 20 Gaussian

distributed perturbations (zero mean and standard deviation of 40%) were sufficient to

capture the nonlinear relationship.

Suppose the infected population of the unperturbed trajectory at time t is Ibred. Note

that, Ibred is not the prior state Iprior at time t predicted before EAKF adjustment, as the

unperturbed trajectory in the breeding method is obtained by removing the EAKF-estimated

errors from the prior trajectory. In practice, we treat the EAKF posterior observation Ipost

as the truth since it is a weighted average of the ensemble prior and the observation, which

alleviates the abrupt change caused by observational error. The discrepancy of the observed

variable is simply ∆I = Ibred−Ipost. The structural error ∆S or ∆R0max can then be inferred

using the 3rd-order polynomial fitting of the nonlinear error structure at time t, as shown in

Fig. 7C. To prevent violent perturbations, we limit ∆S and ∆R0max to within ±25% of their

prior values at time t. Finally, we substitute for δS and δR0max from the EAKF adjustment
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δx with −∆S and −∆R0max to form the EAKFC adjustment ∆x (See Fig. 7D).

In the structural error correction, ∆S and ∆R0max can be diagnosed in different order: i.e.

the first diagnosed error can be either ∆S or ∆R0max. Here we compared the performance of

these two implementations for peak timing prediction in the realistic retrospective forecasts.

In Fig. 8, there is no clear difference between the prediction accuracy for peak timing;

however, because the dynamics are more sensitive to S, we chose to first correct errors in

R0max. Once ∆R0max is diagnosed, it can be used in the subsequent adjoint diagnosis of ∆S,

where ∆R0max compensates for a further fraction of the error in the observed state variable.

This order helps to avoid overly large ∆S in the subsequent diagnosis.

The pseudo-code for error correction in conjunction with EAKF is shown in Algorithm

2. Suppose the prior and posterior states in EAKF at t week are xt
prior and xt

post. If the

EAKF adjustment is δxt, the posterior state at t week is simply xt
post = xt

prior + δxt.

Algorithm 2 Error correction in EAKF

1: Input: xt−1
post, x

t
prior, x

t
post.

2: Diagnosis of ∆R0max: Perform breeding method for R0max from t− 1 week around the trajec-

tory xt−1
bred = (St−1

adj , I
t−1
post, R

t−1
0maxpost

, Rt
0minpost

, Dt
post, L

t
post)

T , where the EAKF-adjusted S value

at week t− 1 St−1
adj is obtained by integrating xt

post backward for one week. ∆I = Itbred − Itpost.

∆R0max can be solved from the fitted error structure. The updated R0max at week t is

Rt
0maxprior

−∆R0max.

3: Diagnosis of ∆S: Perform breeding method for S from week t − 1 around the trajectory

x̄t−1
bred = (St−1

post, I
t−1
post, R

t
0maxprior

−∆R0max, R
t
0minpost

, Dt
post, L

t
post)

T . ∆I = Ītbred − Itpost. ∆S can

be solved from the fitted error structure. The updated S at week t is St
prior −∆S.

4: The updated state at week t is xt
EAKFC = (St

prior − ∆S, Itpost, R
t
0maxprior

−

∆R0max, R
t
0minpost

, Dt
post, L

t
post)

T .

In the above implementation, we first diagnose the structural error ∆R0max. Before

conducting the breeding method, we remove the EAKF-estimated errors in S, R0min, D

and L from the posterior state at week t− 1 in order to compensate for the discrepancy of

the observed variable I caused by these errors. This procedure is straightforward for the

parameters R0min, D and L: we are actually using their posterior values at week t, i.e.,

Rt
0minpost

, Dt
post and Lt

post. However, for the evolving variable S, the EAKF-estimated error
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in S is for week t, not t− 1, when the breeding method starts. To find the EAKF-adjusted

S at t − 1, we integrate the posterior trajectory at week t backward for one week and use

the obtained St−1
adj as the S value input for the breeding method. Once ∆R0max is estimated,

the updated R0max value should be Rt
0maxprior

−∆R0max. Similarly, in the diagnosis of ∆S,

the parameters R0min, D and L in breeding method are also set as their posterior values.

Because we have already diagnosed ∆R0max, the R0max value is assigned as the updated

value Rt
0maxprior

− ∆R0max. After the diagnosis, R0max and S are updated by subtracting

∆R0max and ∆S from their prior values at week t (Rt
0maxprior

and St
prior), while other state

variables are adjusted by EAKF.

Supplementary Note 5. Application to historical influenza outbreaks

Here we report the statistical significance of the improvement provided by error correction

in Fig. 2c, Fig. 3a and Fig. 3b in the main text. The traditional way to assess the confidence

interval depends on an assumed probability model for the available data. However, this

approach depends on a set of assumptions that often lead to inaccurate approximations.

The bootstrap overcomes the above drawbacks by repeatedly estimating the desired quantity

in multiple random samples of the available data. In practice, bootstrap analysis performs

quite well in moderate and large data sets. In larger samples, bootstrap-estimated confidence

intervals can be more accurate than confidence intervals based on standard asymptotic

approximations.

From available samples of forecast accuracy for each predicted lead week, A1, · · · , An,

we generated another set of random samples A∗1, · · · , A∗n by drawing the same number of

observations independently with replacement. We then calculated the average accuracy Ā∗

of the new samples. By repeating this resampling process for m = 105 times, we obtained a

set of m estimates Ā∗1, · · · , Ā∗m and used this distribution to assess the likelihood of observing

a specific value Ā. Here, we first constructed the distribution of average forecast accuracy

for the EAKF forecasts with 105 bootstrap resampling, and then calculated the p-values of

corresponding EAKFC forecast accuracy according to this distribution for each predicted

lead week. The p-values of EAKFC forecast accuracy for peak week, peak intensity and

attack rate are listed in Table 1.

To test whether the EAKFC forecasts are significantly different from EAKF forecasts at
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each week, we performed a two-sided Wilcoxon signed-rank tests on the forecast MAE of

peak week, peak intensity and attack rate. The null hypothesis is that the difference between

the matched samples (EAKFC and EAKF MAE in each forecast) comes from a distribution

whose median is zero. If p-values are lower than a certain significance level (e.g., 0.05), the

difference between these two forecasts is statistically significant. We report the test results

for the forecasts of 30 consecutive weeks starting from Oct. 1st in Table 2.

It was previously found that the forecast skill of the EAKF could be discriminated by

the spread of ensemble predictions [13]. The same relationship between prediction accuracy

and ensemble spread also holds for EAKFC and EAKFIC: decreased ensemble variance

indicates increased forecast certainty. To better illustrate this, we stratified retrospective

forecasts based on the ensemble variance of peak timing and compared their accuracy in

Fig. 9. Grouped by how many weeks in the future the peak is predicted, predictions for 95

cities in the United States (100 independent forecasts generated, each with a 300-member

ensemble, for each city and each week during each season) were first sorted in ascending

order of ensemble variance for peak timing, and then the 50% of forecasts with lower spread

were selected to compare prediction accuracy against all forecasts. We present peak timing

accuracy (±1 week) and the predictive probability of the real peak (±1 week) in Fig. 9(A-B)

for the EAKF, EAKFC and EAKFIC. Both measures of prediction certainty are improved

for the stratified group with smaller ensemble spread. Moreover, the stratified EAKFC and

EAKFIC predictions exhibit greater forecast accuracy than the stratified EAKF forecasts,

confirming the effectiveness of structural error correction.

For the individual influenza seasons from 2003-2004 to 2013-2014, excluding 2008-2009

and 2009-2010 pandemic seasons, we report the reduction of forecast MAE due to error

correction for peak timing, peak intensity and attack rate in Table 3. Positive values in

Table 3 indicate reduced MAE achieved by error correction. The results are averaged over

the forecasts for all 95 cities. For the predicted lead time from 6 weeks to 0 week, the

error correction procedure effectively decreases forecast MAE in most cases (see the positive

values in Table 3).

To further examine the forecast quality with error growth correction, we can explore

how the realistic observations distribute with respect to the predicted values. If the fore-

casts are providing a good estimate of the truth, the observations (single realization of a

stochastic process) should be normally distributed around the predictions with zero mean-
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that is an accurate forecast. If on the other hand the mean error is non-zero, there remains

bias/inaccuracy in the prediction. By looking at the scatter of observations around many

predictions, we can obtain an estimate of that inaccuracy.

In Fig. 10-12, we show the distributions of the distance from realistic observations (peak

week, peak intensity and attack rate, respectively) to the predicted values across all 95 cities

and 9 seasons. In particular, we first grouped the forecasts according to their predicted lead

to peak from 6 weeks to -2 weeks, and then plotted the distribution of the discrepancy of

true observations from corresponding predictions within each category, for both EAKF and

EAKFC predictions. Compared with the distribution of EAKF, the EAKFC forecast has

less bias than the EAKF for all three targets. That is, by diagnosing nonlinear error growth,

we can obtain a better estimate of forecast initial conditions and reduce forecast inaccuracy.

Supplementary Note 6. Iterative application of error correction

In a naive iterative application of error correction, when the ensemble is not well trained

by EAKF, error correction may introduce large errors that can propagate following updates.

To avoid such improper updating in the EAKFIC, we control the condition for the iterative

application of error correction. A simple and practical strategy is to update the prior

trajectories with error correction only if the EAKF predicted lead time is smaller than a

specified threshold. We tested various choices of lead time threshold (3-10 weeks) and display

the results in Fig. 13. Per this comparison, we selected an 8-week threshold for presentation

in the main text, although all threshold choices improved peak timing accuracy at long lead

times.

Supplementary Note 7. Error correction in a stochastic model

In previous implementation of error correction, we used a deterministic SIRS model to

simulate influenza dynamics. To address whether error growth correction would similarly

improve forecast accuracy for a stochastic model, we also performed error growth correction

and retrospective forecast using a stochastic version of the SIRS model. In this form, new

infection, recovery and immunity loss populations were generated by a Poisson process with

mean values determined by the model equations. This stochastic model form adds another
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level of uncertainty to the model system. In Fig. 14, the average forecast accuracy of peak

timing, peak intensity and attack rate is presented. As for the deterministic model, error

correction with the stochastic model improves forecast accuracy for all 3 metrics in advance

of the peak. In the deterministic model, uncertainty is derived from model misspecification

and error in the initial conditions, whereas in the stochastic model, additional uncertainty

is derived from random noise.

In a dynamical model, random noise can be critical in defining the long-term predictabil-

ity of the system. For instance, with enough stochasticity, a simple nonlinear deterministic

model can generate complex time series that look chaotic [14]. Before the 1990s, there was

great interest in understanding irregular biological dynamics through chaos theory. How-

ever, recent advances indicate that such dynamics can be better explained by nonlinearity

plus stochasticity, or “noise-induced chaos” [14]. For the purposes of forecasting, a deter-

ministic model can predict a system’s short term dynamics with high accuracy, whereas the

long term deterministic dynamics may be very different from those generated with random

noises. Given the role of random noise, good representation of noise may be important

for understanding error growth when generating longer-term forecasts (e.g. more than one

season).

In this work, the forecast scope is limited to a relatively short range of up to several

months. At this time scale, the behaviour of the observations is dominated by signal pro-

duced by influenza outbreak transmission dynamics. Random noise in the model caused by

stochasticity may grow during integration, but will not generally produce qualitative differ-

ences over such a short time interval. Indeed, complex behaviors such as chaos are unlikely

to appear in the weakly nonlinear SIRS model over such short time periods, particularly

over the week-long time period we use for diagnosing error growth. Therefore, error correc-

tion predominantly makes use of the nonlinear initial error growth pattern. Further, note

that the breeding method diagnosis of this nonlinear initial error growth pattern performed

on both deterministic and stochastic models produced similar error growth patterns. That

error correction based on these diagnoses improves forecast accuracy for both stochastic

and deterministic model structures indicates that nonlinear initial error growth is a factor

corrupting forecasts made with either model structure.
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Supplementary Note 8. Sensitivity to the scaling parameter

To examine the sensitivity of forecast results to the scaling parameter, we performed

retrospective forecasts with different scaling parameter γ, ranging from 0.5 to 1.5. For peak

timing, peak intensity and attack rate, we report the improvement of EAKFC accuracy over

EAKF in Table 4 at each predicted lead week. A positive value means EAKFC outperforms

EAKF, while a negative value implies the opposite. From Table 4, it is concluded that the

improvement achieved by error correction is not particularly sensitive to the specific choice

of scaling parameter. Note that the scaling parameter γ is important for both forecasts

and the scientific interpretation of the model. Additional care might be required if one is

interested in metrics other than prediction quality.
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Metric 10 week 9 week 8 week 7 week 6 week 5 week 4 week 3 week 2 week 1 week 0 week

Pw < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5

Pi 10−5 < 10−5 < 10−5 0.4184 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5

Ar 0.0754 0.4913 0.0829 0.0013 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5

SUPPLEMENTARY TABLE 1. We report the p-values of EAKFC forecast accuracy for peak week 

(Pw), peak intensity (Pi) and attack rate (Ar) obtained by bootstrap analysis. We first constructed 

the distribution of average forecast accuracy for the EAKF forecasts with 105 bootstrap resampling, 

and then calculated the p-values of corresponding EAKFC forecast accuracy according to this 

distribution for each predicted lead week.
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Metric 1 week 2 week 3 week 4 week 5 week 6 week 7 week 8 week 9 week 10 week

Pw 0.5269 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5

Pi < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5

Ar < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5

Metric 11 week 12 week 13 week 14 week 15 week 16 week 17 week 18 week 19 week 20 week

Pw < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5

Pi < 10−5 0.8881 0.0002 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5

Ar < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5

Metric 21 week 22 week 23 week 24 week 25 week 26 week 27 week 28 week 29 week 30 week

Pw < 10−5 < 10−5 < 10−5 0.0018 < 10−5 < 10−5 < 10−5 0.0439 < 10−5 0.7576

Pi < 10−5 < 10−5 < 10−5 0.0877 0.6787 1 0.0003 1 1 1

Ar < 10−5 < 10−5 0.2332 0.9316 < 10−5 < 10−5 0.0465 0.0282 0.8342 < 10−5

SUPPLEMENTARY TABLE 2. We present the p-values of forecast MAE for peak week (Pw), peak 

intensity (Pi) and attack rate (Ar) obtained using two-sided Wilcoxon signed-rank tests at each 

forecast week, beginning the first week of October.

17



Season Metric 6 week 5 week 4 week 3 week 2 week 1 week 0 week

2013

Pw 1.06(34.0%) 0.63(22.3%) 0.24(9.8%) 0.18(8.8%) 0.19(9.4%) 0.09(4.7%) 0.10(6.2%)

Pi 62(2.2%) 238(8.4%) 618(20.8%) 518(18.6%) -273(-11.0%) -100(-5.1%) 121(19.7%)

Ar 1585(10.0%) 2106(13.3%) 3615(22.9%) 2304(15.9%) -212(-1.6%) -44(-0.4%) 387(6.0%)

2012

Pw 0.76(17.1%) 0.68(14.6%) 1.22(24.8%) 1.63(34.4%) 1.25(29.5%) 1.09(29.4%) 0.30(17.6%)

Pi 131(1.6%) 746(8.8%) 2049(23.7%) 2362(28.6%) 1102(15.3%) 1222(18.0%) 631(18.7%)

Ar 5179(8.6%) 9379(15.5%) 13871(23.1%) 12786(22.6%) 9108(17.3%) 6864(14.3%) 4780(13.3%)

2011

Pw 2.07(16.6%) 3.44(29.0%) 3.93(36.1%) 3.61(37.8%) 2.13(29.3%) -0.72(-15.5%) -1.25(-38.7%)

Pi 14(1.4%) 49(4.9%) -16(-1.6%) 77(7.0%) 328(25.4%) 53(5.5%) -100(-18.3%)

Ar -508(-5.3%) 739(7.9%) 818(8.7%) 1804(16.1%) 4132(33.1%) 1388(15.5%) 504(7.8%)

2010

Pw 2.46(29.3%) 2.53(31.9%) 2.41(34.3%) 1.88(30.4%) 1.06(20.3%) 0.85(20.9%) 0.08(4.2%)

Pi 297(13.1%) 225(10.2%) 455(20.5%) 521(23.7%) 113(6.0%) 81(4.5%) 16(1.4%)

Ar 3793(19.5%) 3416(18.4%) 5733(31.1%) 6053(33.6%) 3024(19.7%) 1613(12.2%) 1207(11.8%)

2007

Pw 2.11(26.9%) 3.26(43.3%) 3.10(47.9%) 1.72(34.9%) 0.52(14.0%) 0.10(3.0%) -0.86(-56.5%)

Pi 272(7.0%) 400(9.8%) 578(13.8%) 1009(22.9%) 870(21.9%) 156(5.2%) -407(-31.2%)

Ar 78(0.4%) 2329(10.2%) 5068(20.7%) 7926(30.7%) 5454(25.0%) 1573(9.7%) -1889(-19.7%)

2006

Pw 2.57(30.7%) 2.62(32.8%) 2.60(36.7%) 1.11(20.5%) 0.58(12.8%) 0.72(17.8%) 0.27(10.2%)

Pi -32(-2.6%) 220(16.6%) 181(12.4%) 242(16.0%) -380(-30.4%) 97(7.4%) 143(18.1%)

Ar -363(-4.1%) 694(7.6%) 752(7.7%) 378(3.7%) -2759(-29.4%) 1086(9.8%) 1208(15.7%)

2005

Pw 1.09(15.5%) 1.01(15.1%) 1.16(18.7%) 0.83(16.6%) 0.17(4.1%) -0.62(-18.5%) -0.70(-31.1%)

Pi 249(17.4%) 382(27.8%) 109(9.9%) -166(-16.3%) -299(-26.6%) 161(13.5%) -69(-13.9%)

Ar 1725(15.7%) 2059(19.5%) 1140(12.3%) -464(-5.5%) -1053(-11.6%) 1013(11.6%) 391(6.3%)

2004

Pw 2.15(28.4%) 2.17(30.9%) 2.29(35.9%) 1.56(29.5%) 0.58(14.0%) -0.79(-22.6%) -0.60(-25.5%)

Pi 160(8.7%) -101(-5.6%) 190(9.6%) -18(-0.8%) 326(14.4%) 32(1.8%) -161(-21.0%)

Ar 748(6.3%) -612(-5.3%) 1640(12.6%) 920(6.8%) 1766(13.2%) -1036(-10.6%) -1206(-19.7%)

2003

Pw -0.69(-61.8%) -0.58(-48.2%) -0.24(-17.7%) 0.17(11.1%) 0.31(23.1%) 0.08(7.2%) 0.06(6.9%)

Pi 1077(15.4%) 1761(25.8%) 2074(33.9%) 1447(28.9%) 743(16.5%) 477(10.7%) 579(38.4%)

Ar 4495(19.7%) 5122(23.3%) 4417(22.2%) 4449(23.9%) 2033(11.2%) -506(-2.8%) 856(7.0%)

SUPPLEMENTARY TABLE 3. EAKFC improvement of forecast MAE versus EAKF for different 

seasons. The results for peak week (Pw), peak intensity (Pi) and attack rate (Ar) are averaged over 

all 95 cities in each season. The predicted lead time to peak is obtained from the EAKF and EAKFC 

forecasts, respectively. Numbers in the parenthesis are the percentage of EAKF MAE reduced by 

error correction. In the table, positive values represent the reduction (improvement) of MAE 

achieved by EAKFC.
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Scaling Metric 10 week 9 week 8 week 7 week 6 week 5 week 4 week 3 week 2 week 1 week 0 week

0.5

Pw 0.0270 0.0666 0.0657 0.0460 0.0459 0.0815 0.1067 0.1500 0.0961 0.0267 -0.0243

Pi -0.0769 -0.0541 -0.0590 -0.0532 0.0027 0.0172 0.0172 0.0404 0.0535 0.0790 -0.0502

Ar -0.0881 -0.0079 0.0052 0.0007 0.0813 0.0454 0.0044 -0.0252 -0.0326 -0.0171 -0.0600

0.6

Pw -0.0355 0.0976 0.0559 0.0266 0.0558 0.0786 0.1176 0.1662 0.1356 0.0451 -0.0008

Pi -0.0252 -0.0715 -0.0126 0.0099 0.0081 0.0494 0.0282 0.0493 0.0994 0.0528 -0.0184

Ar 0.0427 -0.0113 -0.0074 0.0743 0.0791 0.0960 0.0575 0.0391 -0.0092 -0.0169 -0.0010

0.7

Pw 0.0059 0.1047 0.0495 0.0404 0.0546 0.0749 0.1026 0.1612 0.1705 0.0742 -0.0027

Pi 0.0361 0.0046 0.0083 0.0042 0.0375 0.0248 0.0250 0.0606 0.1065 0.0794 -0.0003

Ar -0.0124 -0.0466 0.0337 0.1144 0.0888 0.0568 0.0333 0.0701 0.0222 0.0059 0.0189

0.8

Pw 0.0247 0.0287 0.0401 0.0515 0.0543 0.0544 0.1078 0.1693 0.1878 0.1180 0.0106

Pi -0.0087 0.0104 -0.0109 0.0068 0.0302 0.0460 0.0326 0.0593 0.0896 0.0939 0.0126

Ar 0.0170 0.0598 0.0555 0.0970 0.0691 0.0722 0.0898 0.1134 0.0825 0.0718 0.0126

0.9

Pw 0.0766 0.0184 0.0433 0.0472 0.0480 0.0554 0.0854 0.1438 0.1940 0.1270 0.0286

Pi 0.0032 -0.0151 0.0063 0.0132 0.0346 0.0366 0.0463 0.0621 0.1107 0.0962 0.0273

Ar -0.0589 0.0586 0.0827 0.1265 0.0949 0.0732 0.1296 0.1238 0.0964 0.0897 0.0497

1.0

Pw 0.0101 0.0835 0.0325 0.0236 0.0596 0.0491 0.0662 0.1643 0.1806 0.1309 0.0334

Pi 0.0144 0.0941 0.0774 -0.0025 0.0332 0.0408 0.0715 0.0641 0.1173 0.0944 0.0378

Ar 0.0370 0.1769 0.1409 0.0884 0.0857 0.0845 0.1079 0.1442 0.1224 0.0927 0.0713

1.1

Pw 0.0428 0.0471 0.0624 0.0292 0.0329 0.0450 0.0691 0.1385 0.1781 0.1214 0.0375

Pi -0.0440 -0.0226 0.0062 0.0740 0.0217 0.0239 0.0729 0.0763 0.1092 0.0891 0.0370

Ar 0.0162 0.0736 0.1714 0.1497 0.0374 0.0557 0.1184 0.1545 0.1387 0.0737 0.0742

1.2

Pw 0.0130 0.0602 0.0365 0.0420 0.0663 0.0520 0.0535 0.1228 0.1673 0.1285 0.0376

Pi -0.0097 0.0659 0.0257 0.0188 0.0254 0.0349 0.0775 0.0783 0.1028 0.0771 0.0329

Ar -0.0040 0.1826 0.1672 0.0919 0.0816 0.0456 0.1264 0.1429 0.1330 0.1055 0.0750

1.3

Pw 0.1090 -0.0159 0.0387 0.0289 0.0350 0.0331 0.0642 0.1208 0.1662 0.1365 0.0429

Pi 0.0181 0.0457 0.0336 0.0450 0.0314 0.0184 0.0406 0.0828 0.1140 0.0932 0.0409

Ar 0.0322 0.0949 0.1415 0.1198 0.0406 0.0586 0.1191 0.1485 0.1539 0.1188 0.0734

1.4

Pw 0.0529 0.0896 0.0517 0.0245 0.0508 0.0459 0.0490 0.1084 0.1640 0.1312 0.0382

Pi 0.0094 0.0770 0.0307 0.0290 0.0330 0.0338 0.0762 0.0873 0.1181 0.0854 0.0381

Ar -0.0032 0.0902 0.0685 0.0795 0.0656 0.0614 0.1220 0.1437 0.1582 0.1021 0.0593

1.5

Pw 0.0096 0.1105 0.0268 0.0317 0.0505 0.0513 0.0382 0.1101 0.1406 0.1393 0.0424

Pi 0.0810 0.0017 0.0360 0.0233 0.0192 0.0211 0.0546 0.0784 0.1099 0.1075 0.0443

Ar 0.0147 0.0859 0.1020 0.0833 0.0462 0.0208 0.0964 0.1592 0.1646 0.1103 0.0725

SUPPLEMENTARY TABLE 4. Forecast accuracy improvement of EAKFC over EAKF for peak week 

(Pw), peak intensity (Pi) and attack rate (Ar), with different scaling parameter γ from 0.5 to 1.5. For 

predicted leads between 10 weeks to 0 week, we report the difference of forecast accuracy between 

EAKFC and EAKF. Positive values indicate EAKFC outperforms EAKF.
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SUPPLEMENTARY FIG. 1. Error structure in the humidity-forced SIRS model at different times. For 

the SIRS model with parameters L = 3.86y, D = 2.27d, R0max = 3.79, R0min = 0.97 and initial 

condition S(0) = 250, 000, I(0) = 1, we impose 1,000 random perturbations on both the unobserved 

state variable and parameters (S, R0max, R0min, D, L) and the observed variable I at the following 

times: 6 weeks, 3 weeks, 1 week prior to peak and 1 week after peak. The initial perturbations are 

uniformly distributed in the region [−20%, 20%] × [−20%, 20%], displayed by the red dots. After one 

week, we present the bred errors as blue dots. The solid red and blue lines show the cases in which we 

only perturb the unobserved state variable or parameters but keep the observed variable I 

unchanged.
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SUPPLEMENTARY FIG. 2. Error structure near the critical point. Error structure between the 

unobserved parameter R0max and weekly incidence following perturbations imposed 3 weeks prior 

to peak in a synthetic outbreak (N = 105, S(0) = 0.5N, I(0) = 1, L = 3.86y, D = 2.27d, R0max = 

3.0, R0min = 0.97).
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SUPPLEMENTARY FIG. 3. Robustness of error structure in the presence of error among other state 

variables at 3 weeks prior to peak. The bred error structures between S, R0max, R0min, D and the 

observed variable I in the presence of additional perturbations on other state variables are displayed 

in A-D. The pa-rameters and initial condition of the SIRS model are set as in Fig. 1. The additional 

perturbations on other state variables are imposed 3 weeks before the peak. The y-axis is the 

variable/parameter whose robustness of error structure is examined, while the title of each panel 

indicates the state variable that is additionally perturbed. From the blue to red curve, the magnitude 

of perturbation on the additionally perturbed state variable ranges from −15% to +15% with a 5% 

interval. Dif-ferent coloured lines represent the error structure between the y-axis variable/

parameter and the observed variable as a function of additional errors in the title variable/

parameter. The vertical dash lines mark the ±20% error boundary of observation.
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SUPPLEMENTARY FIG. 4. Correction of diagnosed errors in S in a simulated outbreak with perfect 

observation. One-time correction of the +15% error in S imposed 4 weeks before the peak, with 

perfect observation I. The real, perturbed and corrected curves are shown in different colors. The 

SIRS simulation is run with parameters L = 3.86y, D = 2.27d, R0max = 3.79, R0min = 0.97 and initial 

condition S(0) = 250, 000, I(0) = 1.
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SUPPLEMENTARY FIG. 5. One-time correction of diagnosed errors in S in the presence of perfect 

observations. For SIRS model simulations using 1,000 different combinations of parameters and 

initial conditions, we impose shocks ranging from −15% to +15% on S at different times (2 to 10 

weeks) before peak. One-time error correction of S as diagnosed by the breeding method is then 

performed one week later. For each combination of perturbation magnitude and perturbation time, 

we use a heat map to present the errors for peak timing and intensity of the corrected trajectories 

compared to the truth: A the mean error in peak timing, B the fraction of simulations accurate for 

peak timing within ±1 week, C the mean error for peak intensity, and D the fraction of simulations 

accurate for peak intensity within ±25%.
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SUPPLEMENTARY FIG. 6. Correction of diagnosed errors in S in the case of noisy observations 

and perturbed state variables. The noises applied to I, R0max, R0min, D and L follow a Gaussian 

distribution with zero mean and standard deviation of 15%. The observational error is also 

Gaussian distributed with zero mean and variance of 105. For each combination of perturbation 

magnitude and perturbation time, we use a heat map to present the errors for peak timing and 

intensity of the corrected trajectories compared to the truth: A the mean error in peak timing, B 

the fraction of simulations accurate for peak timing within ±1 week, C the mean error for peak 

intensity, and D the fraction of simulations accurate for peak intensity within ±25%.
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SUPPLEMENTARY FIG. 7. Schematic illustration of EAKFC process. A At time t, the EAKF 

adjusts the prior tra-jectory in conjunction with the observation at t, after which the posterior 

trajectory is constrained closer to the truth. B Application of the breeding method on the trajectory 

from time t − 1. The initial random errors imposed at time t − 1 evolve following the full nonlinear 

dynamics until t. C Use of the obtained bred error structure at time t to infer errors in R0max 

(∆R0max) and S (∆S) sequentially. The error of the observed state variable ∆I is obtained by 

comparing the observation with the posterior observation adjusted by EAKF. The nonlinear error 

structure is estimated using a 3rd-order polynomial. D Substitution of δS and δR0max into the EAKF 

adjustment δx by −∆S and −∆R0max to form the EAKFC adjustment ∆x. Then the prior 

trajectory at time t is adjusted by ∆x to make predictions.
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SUPPLEMENTARY FIG. 8. Effect of the correction order of S and R0max on peak timing prediction. 

EAKFC pre-dictions with different correction order for realistic influenza outbreaks in 95 US cities 

during the 2003-2004 to 2013-2014 seasons (excluding the 2008-2009 and 2009-2010 pandemic 

outbreaks) are performed. Comparison between these two predictions for peak timing accuracy (±1 

week) is displayed.
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SUPPLEMENTARY FIG. 9. Prediction quality is improved by stratification using the ensemble 

variance of predicted peak timing. We consider EAKF, EAKFC and EAKFIC predictions for 

realistic influenza out-breaks in 95 US cities during the 2003-2004 to 2013-2014 seasons, excluding 

the 2008-2009 and 2009-2010 pandemic outbreaks. For each predicted lead time, we rank the 

predictions based on their ensemble variance of peak timing in an ascending order and select the 50% 

with lower ensem-ble variance. Comparisons between the stratified (dash lines) and overall 

predictions (solid lines) for average peak timing accuracy (±1 week) and predictive probability of 

real peak (±1 week) are shown in A-B, respectively.
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SUPPLEMENTARY FIG. 10. Distributions of the distance from the observed peak week to the 

predicted value. For predictions with a given predicted lead from 6 weeks to -2 weeks, the 

distributions of the observed peak week with respect to the predicted values (x-axis is the value 

of observed peak week minus predicted peak week) across all 95 cities and 9 seasons are 

displayed, for both EAKF and EAKFC forecasts.
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SUPPLEMENTARY FIG. 11. Same analysis for peak intensity as in Fig. 10.
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SUPPLEMENTARY FIG. 12. Same analysis for attack rate as in Fig. 10.
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SUPPLEMENTARY FIG. 13. Performance of different thresholds in the iterative application of error 

correction. In EAKFIC, prior trajectories are updated using error correction only if the EAKF 

predicted lead time is smaller than a specified threshold. Peak timing forecast accuracy for 

retrospective forecasts with thresholds of 4, 6, 8 10 weeks are compared.
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SUPPLEMENTARY FIG. 14. Forecast accuracy with a stochastic humidity-driven SIRS model. 

We performed retro-spective forecasts with a stochastic humidity-driven SIRS model for 95 cities 

in the United States for the 2003-2004 through 2013-2014 seasons, excluding the 2008-2009 and 

2009-2010 pandemic seasons. The average forecast accuracy of peak timing (A), peak intensity 

(B) and attack rate (C) is compared for EAKF and EAKFC.
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