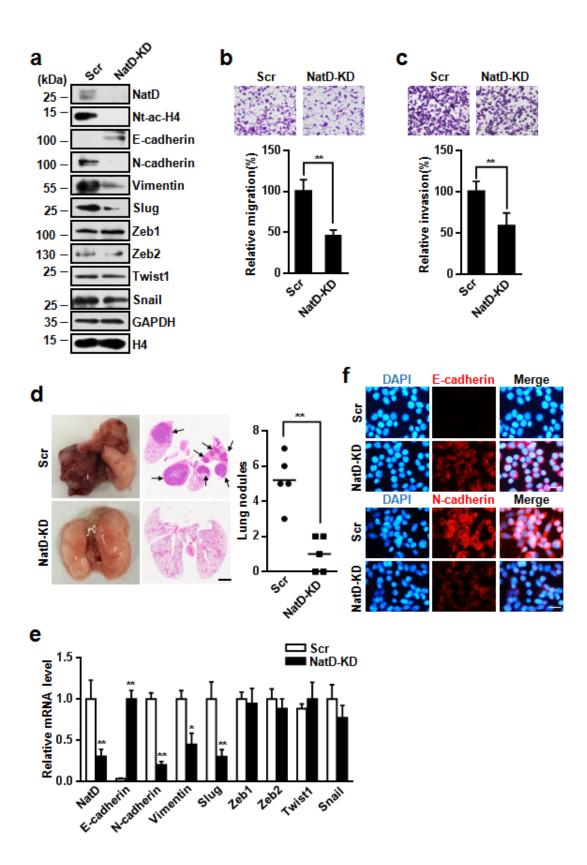
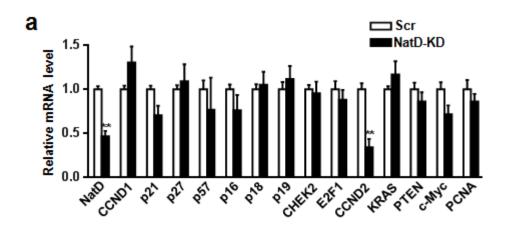

Description of Supplementary Files

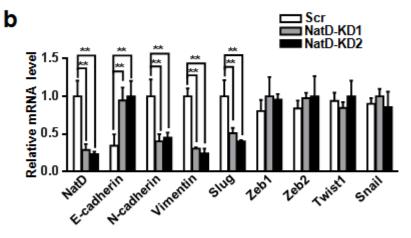
File Name: Supplementary Information Description: Supplementary Figures, Supplementary Tables and Supplementary Reference

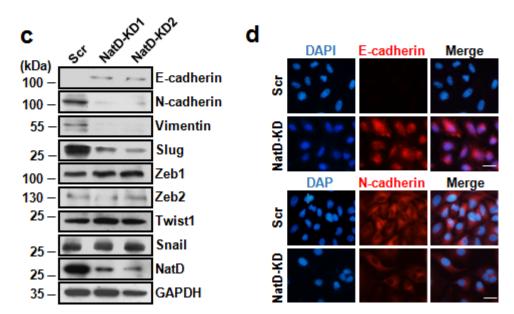

File Name: Peer Review File

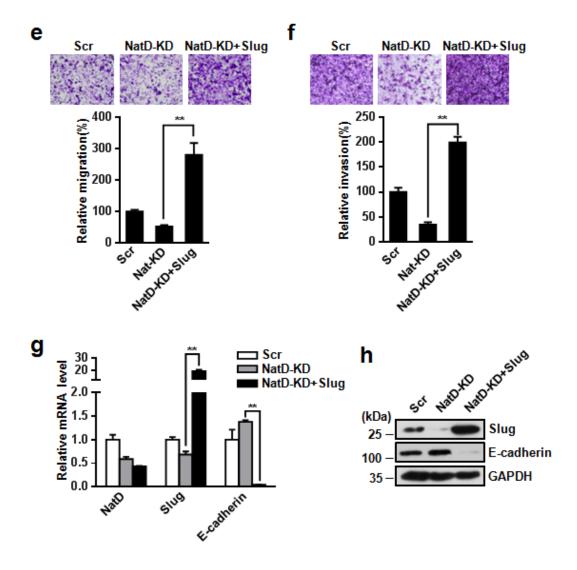
Supplementary Figure 1. Knockdown of NatD has no effect on cell proliferation, apoptosis, or cell cycle in H1299 cells. (a) Growth curve of Scr, NatD-KD1, and NatD-KD2 H1299 cells from three independent experiments. (b and c) Representative images from three independent experiments of apoptosis (b) and cell cycle analysis (c) of Scr and NatD-KD H1299 cells analyzed by flow cytometry.

Supplementary Figure 2. NatD knockdown inhibits cell migration and invasion of A549 cells. (a) Western blot analysis of NatD and Nt-ac-H4 in Scr, NatD-KD1 and NatD-KD2 A549 cells. Blots are representative of three independent experiments. (b and c) (top) Images (×100 magnification) from transwell assay of migration (b) and invasion (c) of Scr, NatD-KD1 and NatD-KD2 A549 cells representative of three independent experiments. (bottom) Quantification of cell migration and invasion expressed as a percentage of Scr control; mean \pm s.d. from three independent experiments; two-tailed Student's *t*-test, ***P*<0.01 compared to Scr control.

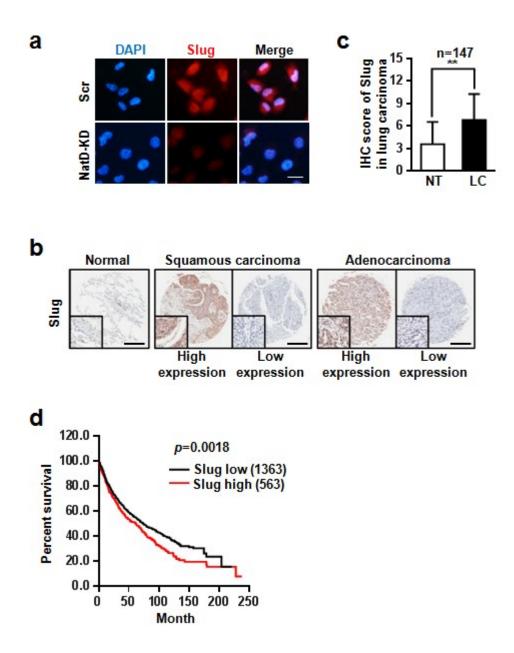



Supplementary Figure 3. NatD knockdown inhibits mouse LLC cell migration

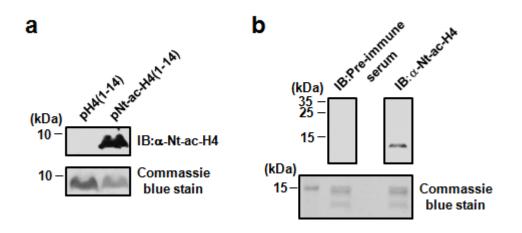

and invasion in vivo. (a) Western blot analysis of NatD, Nt-ac-H4, and key EMT-


related proteins in Scr control and NatD-KD murine Lewis lung carcinoma (LLC) cells. Human NatD shRNA KD2 targeting sequence (NatD-KD2) was used in mouse. Representative blots from three independent experiments. (**b** and **c**) (top) Representative images of transwell assay of the migration (b) and invasion (c) of Scr control and NatD-KD LLC cells. Images are representative of three independent experiments. (bottom) Cell migration and invasion expressed as a percentage of Scr control. Calculation based on cell counts for the corresponding assays of at least four random individual fields visualized at ×100 magnification. Results are shown as mean \pm s.d. from three independent experiments; two-tailed Student's *t*-test, ***P*<0.01 compared to Scr control. (d) (left) Representative images of lung nodules of C57BL/6 mice 30 days after intravenous injection of Scr or NatD-KD LLC cells. (middle) Representative histological images of H&E stained lung from corresponding mice. Scale bars, 2 mm. The arrows indicate major metastatic nodules. (right) Box plot showing numbers of lung nodules from corresponding mice; n=5 mice per group. Results are shown as mean \pm s.d. from 5 mice; two-tailed Student's *t*-test, ***P*<0.01 compared to Scr control. (e) Quantitative real-time PCR analysis of mRNA levels of NatD and key EMT-related genes in Scr control and NatD-KD LLC cells normalized to GAPDH. Results are shown as mean \pm s.d. from three independent experiments; two-tailed Student's *t*-test, *P < 0.05, **P < 0.01 compared to Scr control. (f)

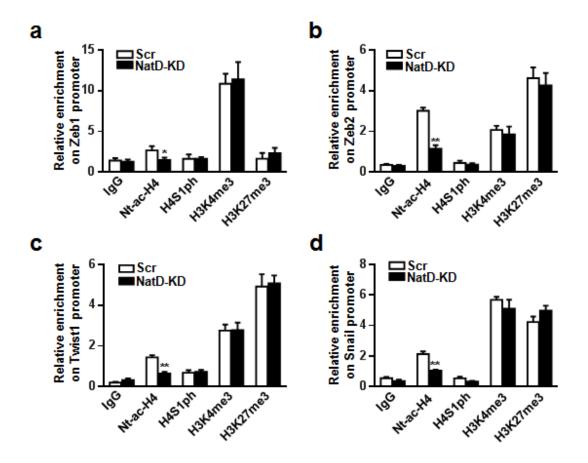
Immunofluorescence analysis of Scr and NatD-KD LLC cells stained for E-cadherin and N-cadherin. Data are representative of three independent experiments. Scale bar, 20 μm.



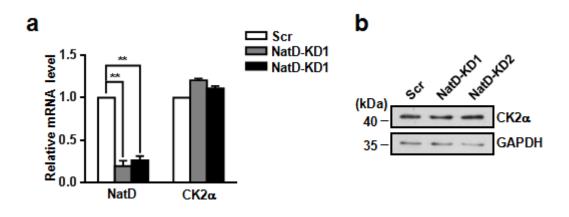
Supplementary Figure 4. NatD knockdown suppresses cell migration and invasion by downregulating Slug in A549 cells. (a) Quantitative real-time PCR analysis of mRNA levels of NatD, CCND1, p21, p27, p57, p16, p18, p19, CHEK2, E2F1, CCND2, KRAS, PTEN, c-Myc, and PCNA in scrambled (Scr) and NatD knockdown (NatD-KD) H1299 cells normalized to GAPDH. Results are shown as mean \pm s.d. of three independent experiments; two-tailed Student's *t*-test, ***P*<0.01 compared to Scr control. (b) Quantitative real-time PCR analysis of mRNA levels of NatD and key EMT-related genes in Scr and NatD-KD A549 cells normalized to

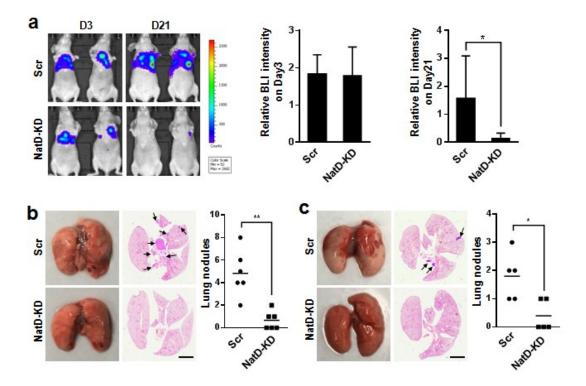

GAPDH. Results are shown as mean \pm s.d. of three independent experiments; twotailed Student's *t*-test, ***P*<0.01 compared to Scr control. (c) Western blot analysis of expression of NatD and key EMT-related proteins in Scr and NatD-KD A549 cells. GAPDH served as a loading control. Blots are representative of three independent experiments. (d) Immunofluorescence analysis of Scr and NatD-KD A549 cells stained for E-cadherin and N-cadherin. Data are representative of three independent experiments. Scale bar, 20 µm. (e and f) (top) Representative images of transwell assay of migration (e) and invasion (f) of scrambled (Scr), NatD knockdown (NatD-KD) and Slug-expressing NatD-KD (NatD-KD+Slug) A549 cells from three independent experiments. (bottom) Cell migration and invasion expressed as a percentage of control. Calculations based on cell counts from the corresponding assays of at least four random fields at ×100 magnification from three independent experiments. Results are shown as mean \pm s.d. of three independent experiments; twotailed Student's t-test, **P<0.01 compared to indicated control. (g) Quantitative realtime PCR analysis of the mRNA levels of NatD, Slug, and E-cadherin normalized to GAPDH in Scr, NatD-KD, and Slug-expressing NatD-KD A549 cells. Results are shown as mean \pm s.d. of three independent experiments; two-tailed Student's *t*-test, **P < 0.01 compared to indicated control. (h) Western blot analysis of Slug and Ecadherin in scrambled, NatD-KD, and Slug- expressing NatD-KD A549 cells.

GAPDH served as a loading control. Blots are representative of three independent experiments.

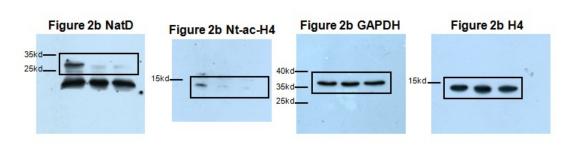


Supplementary Figure 5. Slug expression in human lung cancer tissues. (a) Immunofluorescence analysis of Scr and NatD-KD H1299 cells stained for Slug. Data are representative of three independent experiments. Scale bar, 20 μ m. (b) Representative images of immunohistochemical (IHC) staining of Slug in normal tissues (n=147), human lung squamous carcinoma (n=74), and lung adenocarcinoma (n=73) tissue samples. Scale bars, 500 μ m. (c) Total IHC score of Slug in matched

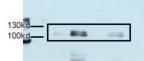

normal tissues (NT) and lung carcinoma (LC); mean \pm s.d. of 147 pairs of tissue samples. two-tailed Student's *t*-test, ***P*<0.01 compared to matched normal tissue control. (**d**) Kaplan–Meier plots of overall survival of patients with lung cancer, stratified by Slug expression. Data were obtained from Kaplan-Meier plotter database; log-rank test, *P*=0.0018.


Supplementary Figure 6. Validation of anti-Nt-ac-H4 antibody. (**a**) Western blot analysis of acetylated (pNt-ac-H4) or non-acetylated (pH4) peptides with anti-Nt-ac-H4 antibody. (**b**) (top) Western blot analysis of histones from H1299 cells with preimmune serum or with anti-Nt-ac-H4 antibody. Coomassie blue staining of histones isolated from H1299 cells (bottom panel). Blots in (**a**) and (**b**) are representative of three independent experiments.

Supplementary Figure 7. Knockdown of NatD has no effect on enrichment of H4S1ph on some EMT-related gene promoters. (a-d) ChIP analysis of the enrichment of Nt-ac-H4, H4S1ph, H3K4me3 and H3K27me3 on the promoter of Zeb1(a), Zeb2(b), Twist1(c), and Snail (d) in Scr and NatD-KD H1299 cells. IgG served as a negative control. Results are shown as mean \pm s.d. of three independent experiments; two-tailed Student's *t*-test, ***P*<0.01 or **P*<0.05 compared to Scr control.



Supplementary Figure 8. Knockdown of NatD has no effect on expression of CK2 α . (a) Quantitative real-time PCR analysis of NatD and CK2 α mRNA levels in scrambled and NatD-KD H1299 cells normalized to GAPDH. Results are shown as mean \pm s.d. of three independent experiments; two-tailed Student's *t*-test, ***P*<0.01 compared to Scr control. (b) Western blot analysis of CK2 α protein in Scr and NatD-KD H1299 cells. GAPDH served as a loading control. Blots are representative of three independent experiments.


Supplementary Figure 9. NatD knockdown inhibits the migration and invasion of human A549 cells and murine LLC cells in orthotopic lung tumor implantation models. (a) (left) Representative bioluminescent (BLI) images acquired at the indicated time points after orthotopic injection with luciferase-labeled Scr or NatD-KD A549 cells in nude mice. Pseudocolor heat-maps indicate intensity of bioluminescence from low (blue) to high (red) (D, day). (right) Relative BLI signals of lung tumors of corresponding mice (n = 6 for each group) recorded on day 3 and day 21. Results are shown as mean \pm s.d. from 6 mice. Two-tailed Student's t-test was used. **P*<0.05 compared to Scr control. (b) (left) Representative images of lung nodules in nude mice acquired 21 days after orthotopic injection with Scr or NatD-KD A549 cells. (middle) Representative images of H&E stained histological sections

of lungs from nude mice. Scale bars, 2 mm. Arrows indicate major lung nodules. (right) Box plot showing numbers of lung nodules from corresponding mice (n = 6 for each group). Results are shown as mean \pm s.d. from 6 mice. Two-tailed Student's *t*-test was used. **P*<0.05 compared to Scr control. (c) (left) Representative images of lung nodules of C57BL/6 mice 14 days after orthotopic injection of Scr or NatD-KD LLC cells. (middle) Representative histological images of H&E stained lung from corresponding mice. Scale bars, 2 mm. The arrows indicate major metastatic nodules. (right) Box plot showing numbers of lung nodules from corresponding mice (n = 5 mice per group).

Supplementary Figure 10. Original images of Western blot

Figure 4c E-cadherin

40kd 35kd

25kd

25kd

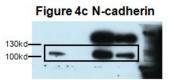
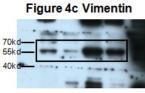
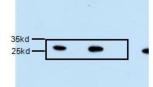
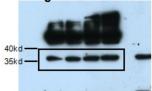
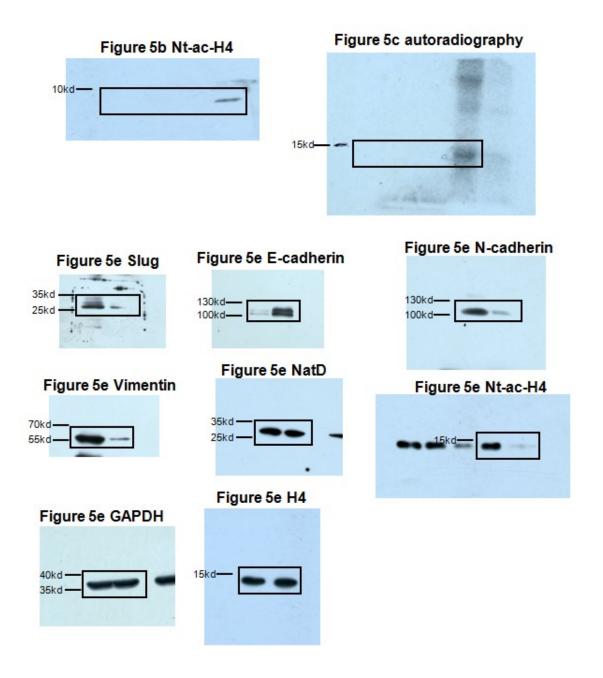
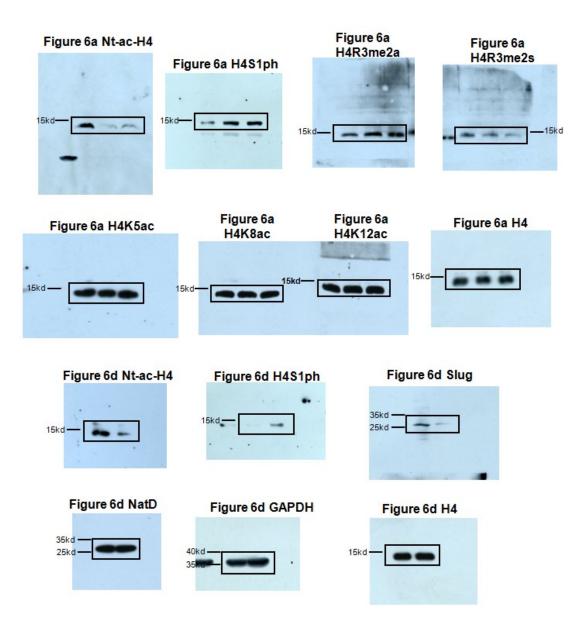



Figure 4c Zeb1

Figure 4c Slug

Figure 4c Zeb2

Figure 4c NatD

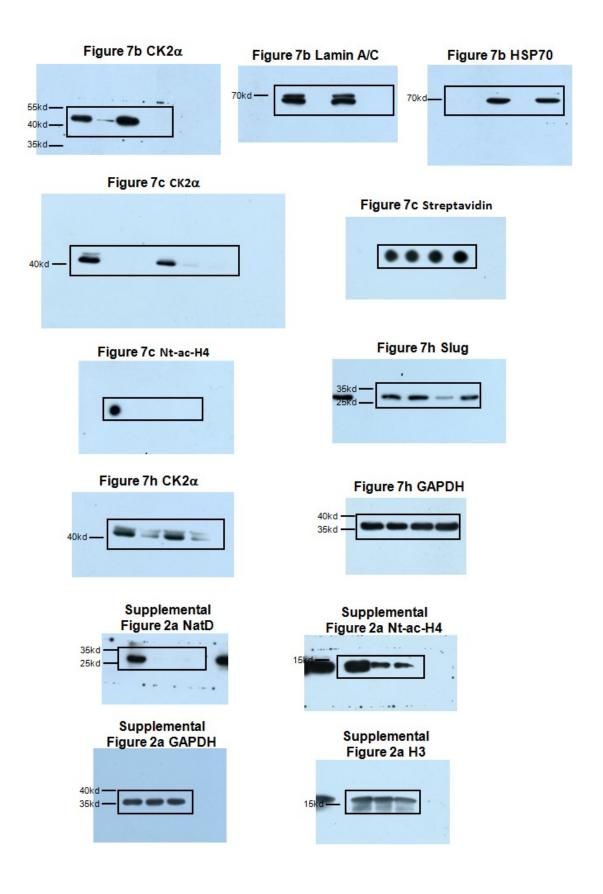
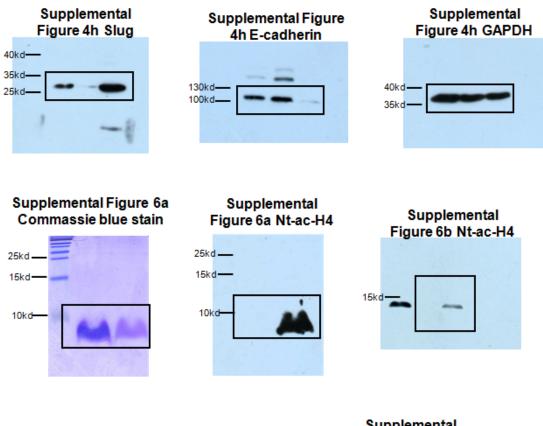
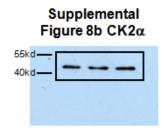

Figure 4c GAPDH

Figure 4h Slug	Figure 4h E-cadherin	Figure 4h N-cadherin
35kd — 25kd —	130kd	130kd
Figure 4h Vimentin	Figure 4h Zeb1	Figure 4h Zeb2
70kd 55kd 40kd	130kd	170kd— 130kd—
Figure 4h Twist1	Figure 4h Snail	Figure 4h GAPDH
25kd-	35kd — 25kd —	40kd





Supplemental	Supplemental	Supplemental Figure	
Figure 3a NatD	Figure 3a Nt-ac-H4	3a E-cadherin	
35kd — 25kd —	15kd	130kd Tookd	
Supplemental Figure	Supplemental Figure	Supplemental	
3a N-cadherin	3a Vimentin	Figure 3a Slug	
130kd-	70kd — 55kd —	35kd	
Supplemental	Supplemental	Supplemental	
Figure 3a Zeb1	Figure 3a Zeb2	Figure 3a Twist1	
Supplemental	Supplemental	Supplemental	
Figure 3a Snail	Figure 3a GAPDH	Figure 3a H4	
35kd — 25kd	40kd — 35kd —	15kd	

Supplemental Figure	Supplemental Figure	Supplemental Figure
4c E-cadherin	4c N-cadherin	4c Vimentin
Supplemental	Supplemental	Supplemental
Figure 4c Slug	Figure 4c Zeb1	Figure 4c Zeb1
35kd	130kd	170kd
Supplemental	Supplemental	Supplemental
Figure 4c Twist1	Figure 4c Snail	Figure 4c NatD
Supplemental Figure 4c GAPDH		

Figure 8b GAPDH				
	Sw	be-l	KZ	
40kd — 35kd —	-	-	-]

Characteristics	Cases	IHC score	P value ^a
		(Mean ± s.d.)	
	147		
Gender			0.1097
Male	109	7.303±3.604	
Female	38	8.421±3.922	
Age			0.3480
>60	81	7.852±3.818	
≤60	66	7.273±3.571	
Tumor size			0.0182
≥5 cm	58	8.483±3.440	
<5 cm	89	7.011±3.780	
<i>Tumor stage</i> ^b			0.6421
1-11	104	7.500±3.642	
- III	43	7.814±3.899	
Lymph node status ^b			0.0367
NO	82	7.024±3.641	
N1-3	65	8.308±3.695	
Distant metastasis ^b			0.7345
MO	138	7.565±3.733	
M1	9	8.000±3.465	
Histology			0.1332
Adenocarcinoma	73	8.055±3.858	
Squamous carcinoma	74	7.135±3.520	

Supplementary Table 1: Clinicopathologic characteristics of NatD expression in lung cancer patients

^a*P* values were derived using two-sided Pearson χ^2 tests to compare values for the two parameters in each category.

^bThe tumor stage, lymph node status, and metastasis were classified according to the international system for staging lung cancer¹.

Locus	Forward	Reverse	
NATD:	ATGTAAG	CGAGTGTCTGGACT	TGGTTTGCATATTCGTTTTGGTC
Slug:	CTGTGAC	CAAGGAATATGTGAGCC	CAAATGCTCTGTTGCAGTGAG
Twist1:	GGAGTC	CGCAGTCTTACGAG	TCTGGAGGACCTGGTAGAGG
N-cadherin	CCCTGCT	TTCAGGCGTCTGTA	TGCTTGCATAATGCGATTTCACC
Vimentin:	CCACCAC	GGTCCGTGTCCTCGT	CGCTGCCCAGGCTGTAGGTG
E-cadherin	: TTGCACC	GGTCGACAAAGGAC	TGGAGTCCCAGGCGTAGACCAA
Snail:	GGAAGC	CTAACTACAGCGAGCT	CTGGAAGGTAAACTCTGGATTAG
Zeb1	GGTCATO	GATGAAAATGGAACACC	AGGTGTAACTGCACAGGGAGCA
Zeb2	GACAGAT	CAGCACCAAATGC	GCTGATGTGCGAACTGTAGG
CCND1:	CAATGAC	CCCGCACGATTTC	CATGGAGGGCGGATTGGAA
CCND2:	ACCTTCC	GCAGTGCTCCTA	CCCAGCCAAGAAACGGTCC
p21:	CTGGAG/	ACTCTCAGGGTCGAAA	GATTAGGGCTTCCTCTTGGAG
p27:	GGAGCA	ATGCGCAGGAATAA	TGGGGAACCGTCTGAAACAT
p57:	GCGTCC	CTCCGCAGCACAT	GGTTCTGGTCCTCGGCGTTCA
p16:	CCCCTTC	GCCTGGAAAGATAC	AGCCCCTCCTCTTTCTTCCT
p18:	ACTGGTT	TCGCTGTCATTCA	GCAGGTTCCCTTCATTATCC
p19:	ATGCTGC	TGGAGGAGGTTCG	GTCTTGCCGAAGCGGTTGAG
E2F1:	AGCTGG	ACCACCTGATGAAT	GAGGGGCTTTGATCACCATA
CHEK2:	TCTCGGC	GAGTCGGATGTTGAG	CCTGAGTGGACACTGTCTCTAA
KRAS:	AGTGCCT	TTGACGATACAGC	ACAAAGAAAGCCCTCCC
PCNA:	ACACTAA	GGGCCGAAGATAACG	ACAGCATCTCCAATATGGCTGA
с-Мус	CAGCTG	CTTAGACGCTGGATTT	ACCGAGTCGTAGTCGAGGTCAT
PTEN	TTTGAAG	ACCATAACCCACCAC	ATTACACCAGTTCGTCCCTTTC
GAPDH	GAAGGT	GAAGGTCGGAG	GAAGATGGTGATGGGATTTC

Supplementary Table 2. Real-time PCR primer sequences (human)

Locus	Forward	Reverse	
NatD	GGGGAGA	AAGTCGAGCAAAG	CCCATTGCGGTCATACTTCTTG
E-cadherin	CAGTTCCC	GAGGTCTACACCTT	TGAATCGGGAGTCTTCCGAAAA
N-cadherin	ATAGCCCC	GGTTTCACTTGAGA	CAGGCTTTGATCCCTCTGGA
Slug	CAGCGAA	CTGGACACACACA	ATAGGGCTGTATGCTCCCGAG
Vimentin	TCCACACO	GCACCTACAGTCT	CCGAGGACCGGGTCACATA
Zeb1	ACTGCAA	GAAACGGTTTTCCC	GGCGAGGAACACTGAGATGT
Zeb2	ATTGCACA	TCAGACTTTGAGGAA	ATAATGGCCGTGTCGCTTCG
Twist1	TGCAGGA	CGTGTCCAGCTC	CTGCTGCGTCTCTTGCGAG
Snail	CACACGC	TGCCTTGTGTCT	GGTCAGCAAAAGCACGGTT
GAPDH	AGGTCGG	TGTGAACGGATTTG	GGGGTCGTTGATGGCAACA

Supplementary Table 3. Real-time PCR primer sequences (mouse)

Supplementary Table 4. ChIP primer sequences

Locus	Forward	Reverse	
Slug:	CTGAACCTC	CTCAGCTGTGATTGG	CTTTACGAACTGAGCCCGTTTT
Snail	AAAAAGGCO	CGTGGCATTTCAA	GGGACACCTGACCTTCCGAC
Zeb1	AAGTCACTT	CCCATCCCGGTT	CCAAGGAAAGGGATCGCGG
Zeb2	TGTAGTGAG	GTCTCCCCGAG	TGCATGGGAGCTGCATCTTA
Twist1	CTCCAAGG	GGTTCGTCTACC	ACAGCTTCTACACAGTGGGTG

Supplementary Reference:

 Mountain, C. F. The international system for staging lung cancer. Semin. Surg. Oncol. 18:106-15 (2000).