1	Supplemental information
2	
3	Both DNA Polymerases δ and ϵ Contact Active and Stalled Replication Forks differently
4	Chuanhe Yu ^{1,2} , Haiyun Gan ^{2,3} , Zhiguo Zhang ³
5 6 7 9 10 11 12 13 14	¹ Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA ³ Institute for Cancer Genetics, Department of Pediatrics, Department of Genetics and Development, Columbia University, 1130 St. Nicholas Avenue, Irving Cancer Research Center ICRC 407A, New York, NY10032 ² Equal contribution *Corresponding author: <u>zz2401@cumc.columbia.edu</u> (p): 212-851-4239
16 17	Running title: DNA polymerases configuration on replication fork
18	Key words: DNA replication, replication stress, DNA polymerase, ChIP-ssSeq, strand specific
19	sequencing

- 22 **RPA is enriched at replication forks.** (A) FACS analysis of DNA contents of G1 cells (arrested
- 23 with α factor) as well as cells that were released into medium containing HU for 45 minutes from
- the G1 block. (**B**) Rfa1 ChIP-PCR analysis shows that RPA binds to the early replication origin
- 25 ARS607. ChIP assays were performed using antibodies against FLAG-tagged Rfa1, and the ChIP
- 26 DNA was analyzed by real-time PCR using primers amplifying replication origin (*ARS607*) and
- a distal site (ARS607+8kb). (C) Rad53 is activated upon HU-induced replication stress. G1 cells
- were released into S phase with/without HU condition. The 5 ml cells samples (G1, S phase with
- HU for 45mins and S phase without HU for 45mins) were collected. Total proteins were
- 30 prepared using the TCA methods and analyzed by Western blot. (**D**) Normalized reads plots of
- 31 Rfa1 ChIP-ssSeq signals within a 30Kb window centered on early replication origins without
- HU conditions. Log-phase cells were synchronized to G1 with α factor and then released into
- fresh YPD medium for 72 minutes at 16°C. Cells were collected for Rfa1 ChIP-ssSeq. (E) The
- 34 average bias at early replication origins for Rfa1 ChIP-ssSeq without HU conditions. The
- average log2 ratios of Watson strand over Crick strand surrounding all early replication origins
- were calculated as described in Fig. 2B.

- 40 PCNA, Mcm4 and Mcm6 ChIP-ssSeq peaks do not show strand bias. (A-C) PCNA ChIP-ssSeq
- 41 peaks at active and stalled replication forks show no strand bias pattern. PCNA ChIP-ssSeq was
- 42 performed as described in experimental procedures using early S phase cells in the presence of
- HU (+HU) at 30 °C for 45 min or without HU at 16 °C at indicated time points. (A) A snap shot
- 44 of PCNA ChIP-ssSeq at three indicated origins. (**B**) Analysis of PCNA ChIP-ssSeq peaks using a
- 45 200bp sliding window. (C) Analysis of PCNA ChIP-ssSeq peaks at individual replication origins.
- 46 (**D-F**) Mcm 4 and Mcm6 ChIP-ssSeq peaks at stalled replication forks show no strand bias. (**D**)
- 47 A snap shot of Mcm4 and Mcm6 ChIP-ssSeq at the indicated origins. (E) Analysis of the
- 48 average bias pattern of Mcm4 and Mcm6 ChIP-ssSeq peaks using a 200bp sliding window. (F)
- 49 Analysis of Mcm4 and Mcm6 ChIP-ssSeq peaks at individual replication origins. The colors in
- dot and box plots represent 3 bias patterns: red for positive bias (+); green for negative bias (-);
- 51 and blue for indeterminable.

59 **Pol** α is enriched at replicating DNA. (A) FACS analysis of G1 cells as well as cells released

- from G1 into medium containing HU for 45 minutes. (B) ChIP experiments show that Pol α
- 61 associates early replication origin *ARS607*. ChIP assays were performed using antibodies against
- 62 the FLAG-tagged *Pol1* gene and ChIP DNA was analyzed as described above. (C) Cell cycle
- 63 analysis of yeast cells used for Pol α ChIP experiments described in Figure 3 (C-E). G1-
- 64 synchronized cells were released into S phase at 16°C in the presence of BrdU. Cells were
- collected at the indicated time points (in minutes) for analysis of DNA content by flow

66 cytometry.

57

67

60

G1

- Pol δ and Pol ε are enriched at replicated loci. (A) FACS analysis of DNA content of cells used
- for Pol ε and Pol δ ChIP. (**B**) ChIP experiments show that Pol ε and Pol δ associates early
- replication origin ARS607. ChIP assays were performed using antibodies against the FLAG-
- tagged *Pol2* and *Pol3*, and the immunoprecipitated DNA was analyzed by using real time
- PCR. (C) Average bias at early replication origins of the input sample with HU or without HU
- 75 treatment. Pol δ input reads were used for calculation.

78

76

Strains	Genotype	Reference
cvy43	MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100 bar1::hisG + URA3::BrdU–Inc	(1, 2)
zgy2565	MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100 bar1::hisG POL1-5flag::kanMX6+ URA3::BrdU–Inc	(3)
zgy2566	MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100 bar1::hisG POL2-5flag::kanMX6+ URA3::BrdU–Inc	(3)
zgy2567	MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100 bar1::hisG POL3-5flag::kanMX6+ URA3::BrdU–Inc	(3)
cyc209	MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100 Pol2-5flag::kanMX6 + URA3::BrdU–Inc	(3)
cyc215	MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100 bar1::hisG RFA1-flag::KANMX6 +URA3::BrdU–Inc	(3)

79 Supplemental Table 1 Yeast strains used in this study.

82 Supplemental Table 2 qPCR primers used in this study.

Name	Forward Primer	Reverse Primer
ARS607	cggctcgtgcattaagcttg	tgccgcacgccaaacattgc
ARS607+8kb	tcacctattttcccatcataccg	aggatgatcaaggcggcag

90					
91					
92					
93	Supplemental references				
94					
95	1.	Knott, S. R., C. J. Viggiani, S. Tavare, and O. M. Aparicio. 2009. Genome-wide replication			
96		profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or			
97		efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae. Genes Dev			
98		23: 1077-90.			
99	2.	Viggiani, C. J., and O. M. Aparicio. 2006. New vectors for simplified construction of BrdU-			
100		Incorporating strains of Saccharomyces cerevisiae. Yeast 23:1045-51.			
101	3.	Yu, C., H. Gan, J. Han, Z. X. Zhou, S. Jia, A. Chabes, G. Farrugia, T. Ordog, and Z. Zhang. 2014.			
102		Strand-Specific Analysis Shows Protein Binding at Replication Forks and PCNA Unloading from			
103		Lagging Strands when Forks Stall. Mol Cell 56: 551-563.			
104					
105					
106					
107					
108					
100					
103					