Supplementary Material

Bacterial synergism in lignocellulose biomass degradation complementary roles of degraders as influenced by complexity of the carbon source

Larisa Cortes-Tolalpa*, Joana Falcao Salles, Jan Dirk van Elsas.

***Correspondence author:** Larisa Cortes-Tolalpa <u>l.cortes.tolalpa@gmail.com</u>. Supplementary Figure 1

In (A) is shown the sum of growth from monocultures (purple) and co-cultures (blue), significant differences between the sum of monocultures and co-culture, t-test (P<0.05). Standard deviation correspond to triplicate. In (B) heatmap that displayed co-culture average (from triplicates) and normalized enzymatic activities BG: β -glucosidases, CBH: cellobiohydrolases, BM: β -mannosidases and BX: β -xylosidases, along the incubation time (24-72h), relative enzymatic activity reported in nmol MUB per h at 28°C, pH 6.8.

Supplementary Figure 2

S2 Figure. Enzymatic activities from *S. multivorum* w15 and *C. freundii* so4 growing in synthetic recalcitrant biomass. (A) β -glucosidases, (B) cellobiohydrolases, (C) β -mannosidases, (D) β -xylosidases enzymatic activity from monocultures *S. multivorum* w15 (red) and *C. freundii* so4 (blue) and the co-culture (w15, so4) (green). Standard deviation correspond to triplicate systems.

S3 Figure. Enzymatic activities from induction experiment. β -glucosidases, cellobiohydrolases, β mannosidases and β -xylosidases activities (secretome) from (A) *C. freundii* so4 induced by supernatant from *S. multivorum* w15 and (B) *S. multivorum* w15 induce by supernatant of *C. freundii* so4. The donor strains was grown on glucose (green), grown on RWS (red). In blue the each strains grown on RWS as a control Standard deviation correspond to triplicate systems.