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1st Editorial Decision 26 January 2017 

Thank you for submitting your manuscript to The EMBO Journal. Three referees have now seen 
your study and their comments are provided below.  
 
As you can see from the comments there is an interest in the study, but significant revisions are 
needed. The referees raise good and constructive points. What is clear is that some of the key 
findings need to be extended to mammalian cells. However, we don't need analysis of the 
phosphorylation status of FUS in ALS/FTD patients (referee #1 and 3) this issue can be addressed in 
the discussion. If you have such data then please go ahead and include it as this would clearly 
strengthen the findings and some of the concerns raised by the referees. We also don't need data on 
potential phosphatases involved (referee #1). Regarding referee #3 point #2: if DNA-PK is acting as 
a chaperone and not a kinase. If this issue is straightforward to address then please resolve it (can 
you use a kinase dead DNA-PK mutant?), but otherwise OK to discuss this issue.  
 
Should you be able to address the raised concerns keeping in mind the specific comments raised 
above then I would be happy to consider a revision. I should add that it is EMBO Journal policy to 
allow one single major round of revision only and it is therefore important to address the raised 
concerns at this stage.  
 
Let me know if we need to discuss things further - happy to do so.  
 
When preparing your letter of response to the referees' comments, please bear in mind that this will 
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form part of the Review Process File, and will therefore be available online to the community. For 
more details on our Transparent Editorial Process, please visit our website: 
http://emboj.embopress.org/about#Transparent_Process.  
 
Thank you for the opportunity to consider your work for publication. I look forward to your 
revision.  
 
------------------------------------------------  
REFEREE REPORTS 
 
 
Referee #1:  
 
Summary:  
Monahan et al. report that phase separation and aggregation of FUS, a key RNA-binding protein 
linked to the neurodegenerative diseases ALS and FTD, are altered by serine phosphorylation in the 
protein's N-terminal low complexity domain. The so-called LC domain has previously been shown 
to drive phase separation of FUS into liquid "droplets" or solid "hydrogels" in vitro as well as FUS 
aggregation in vitro or model organisms, including yeast and C. elegans. It has been speculated 
before that post-translational modifications (PTMs), e.g. serine or tyrosine phosphorylation, may 
affect phase transition of FUS, but defined modification sites and their effect on phase transition 
were unknown so far.  
Monahan et al. now show that the FUS LC domain can be phosphorylated in vitro by DNA-PK at 12 
S/TQ sites and also identify a few of these phospho sites, as well as some other S/T phospho sites, 
on cellular FUS after treatment of HEK cells with DNA damage-inducing drugs (previously shown 
to cause FUS phosphorylation). When they mutate all 12 S/TQ sites to glutamine to mimic the 
negative charge introduced by phosphorylation (12E mutant), the FUS LC domain does no longer 
form liquid droplets or fibrous aggregates anymore, due to electrostatic repulsion. Full-length FUS 
12E still phase separates, but not at high salt or upon addition of RNA, and FUS 12E droplets do not 
convert into fibrous aggregates over time, as do FUS-WT droplets. The authors then use NMR to 
dissect the molecular changes caused by the phosphomimetic 12E mutation and find that it 
decreases transient intra- and intermolecular LC domain interactions. Finally, they overexpress a 
series of S/T-to-E FUS variants in yeast (e.g. FUS 2E, 4E, 6E and 12E) to examine FUS aggregation 
and toxicity in a simple in vivo model, as ectopically expressed human FUS-WT forms aggregates 
and is toxic in yeast. They found that both 6E and 12E FUS form fewer aggregates and reduce 
toxicity compared to FUS-WT or variants with only 2 or 3 E substitutions. They also report reduced 
insolubility of FUS in HEK cells treated with DNA damage-inducing drugs, suggesting that 
phosphorylated FUS is also less aggregation-prone in mammalian cells.  
 
The finding that a PTM (S/T phosphorylation) in the LC domain reduces phase separation and 
aggregation of FUS is novel and significant, as it reveals important mechanistic insights into the 
molecular interactions that drive phase separation/aggregation of FUS, and even suggests that 
modulation of FUS phosphorylation could be further explored as a novel therapeutic strategy to 
prevent FUS aggregation. The claims are convincing and well-supported by the in vitro experiments 
with purified FUS LC and full-length FUS and the yeast model. The findings should be of interest to 
a wider audience, e.g. researchers in the field of neurodegeneration and those interested in phase 
transition, an exciting new topic in cell biology that has received a lot of attention lately.  
The major shortcoming of the study, however, is that it does not go beyond these simple model 
systems (e.g. into mammalian cells) and does not offer any insights as to when and how 
phosphorylation or dephosphorylation of FUS occurs under physiological or pathophysiological 
conditions. If the authors could provide further insights into these interesting questions, the paper 
would be a significantly stronger candidate for publication in EMBO Journal.  
 
Major points that would have to be addressed:  
 
(1) It would be interesting to examine a few "partial" phosphomimetic mutants, e.g. 6E, as they do 
in the yeast model, for their ability to suppress phase separation in vitro. It does not seem very likely 
that all 12 S/TQ sites are fully phosphorylated, e.g. upon DNA damage, in vivo, one rather expects a 
partial phosphorylation of only a few residues (as supported by their mass spec analysis of cellular 
FUS). Therefore, it would be important to check if also such partial phosphomimetic mutants (e.g. 
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those that still show an aggregation-suppressing effect in yeast or those affecting the phosphorylated 
S/T residues identified by MS), indeed have a reduced tendency to phase separate in vitro.  
 
(2) The figures and text describing the NMR experiments (Fig. 3) and molecular simulations (Fig. 
2B) are not understandable to cell/molecular biologists, which make up a large part of the EMBO J 
readership. The authors should make an effort to significantly rephrase / simplify and shorten the 
text and explain the figures better (e.g. what are the colorful stretches in Fig. 2B?) to make this part 
of the paper accessible to the general readership of EMBO J as well as ALS/FTD researchers.  
 
(3) As mentioned above, it remains unclear under which conditions FUS phosphorylation (and 
potentially dephosphorylation) occurs in vivo, except for the few S/T residues that they identified 
after treatment of HEK cells with DNA damage inducing drugs. Some key point to address (or at 
least to discuss) would be: What is the phosphorylation status of FUS in the cells, both under 
physiological conditions and in ALS/FTD patients (altered?). (b) Are there phosphatases that are 
able to dephosphorylate FUS at the examined S/TQ sites and thus directly promote FUS phase 
transition/aggregation? (c) The LC domain also contains numerous Y residues shown to be 
important for hydrogel formation and stress granule localization of FUS (Kato et al., 2012) - are 
they also phosphorylated upon DNA damage (or other conditions in vivo) and does Y-
phosphorylation affect phase transition of FUS in a similar way as does S/T phosphorylation? Y 
mutations in ALS patients?  
 
(4) Further work (beyond the in vitro work and yeast model) in mammalian cells would significantly 
strengthen the manuscript, e.g. do the FUS-6E/12E mutants (or cytosolic dNLS versions thereof) 
also alter FUS solubility (S/P partitioning, as examined in Fig. 4E) and how do these mutations 
affect RNP granule (e.g. stress granule) recruitment or dynamics?  
 
(5) The model in Fig. 6 does not exactly represent the described findings: As phosphorylated full-
length FUS still forms liquid droplets (Fig. 2), it would be more correct to show in the model figure 
that P-FUS still undergoes phase transition / droplet formation, although to a lesser degree, but then 
does not further convert into solid aggregates (as does FUS-WT).  
 
Minor points:  
- Fig. 1 C/D: Legends are swapped  
- Fig. 2A: Under which conditions do the LC droplets convert to "fibrous aggregates" (over time? 
Which time scale? How frequent?) This is not mentioned in the text or figure legend.  
- Text to Fig. 2E: It is mentioned that the 2-day old 12E droplets appear more static, as judged by 
lack of droplet fusion and FRAP. Is this data not shown? It would be nice to show this data in the 
supplement or at least say "data not shown".  
- Some terms are used a bit sloppily, e.g. RNP is the abbreviation for "ribonucleoprotein", not 
"ribonuclear particles" (p.1 of introduction), so it would be better to say "cytoplasmic 
ribonucleoprotein (RNP) granules, including stress granules, P-bodies or transport granules". Instead 
of using "ribonuclear protein" it would be better to just say "RNA-binding protein" or RBP.  
- Results: First paragraph: Fig. 1A shows gray lines, not grey bars.  
- Results: bottom of first page: provide a reference for the fact that DNA-PK autophosphorylates and 
thus deactivates itself  
- Fig. 4C: would be better to remove "low" and "high" from the x-axis and define what is meant by 
the white/grey bar in the legend.  
 
 
Referee #2:  
 
The manuscript by Monahan et al. focuses on the question how the self-association of the protein 
FUS is regulated by multi-site phosphorylation. The authors map phosphorylation sites in the Low-
complexity (LC) domain of FUS generated by DNA-dependent protein kinase phosphorylation in 
vitro. While these sites fully fit the consensus sites expected to be phosphorylated by DNA-PK, they 
were not (and had not been) identifiable by MS. The authors instead used NMR spectroscopy to 
identify these sites. They go on to identify in cell phosphorylation sites generated by DNA damage. 
The authors then characterize the effect of phosphorylation on these 12 sites (or of phosphomimetic 
mutations in the same sites) on liquid-liquid phase separation and aggregation of FUS. WT FUS LC 
undergoes LLPS and aggregates over time. Multi-site phosphorylation and phosphomimics both 
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prevent this transition. However, full-length FUS, when released from an MBP-FUS construct 
through TEV cleavage, can still undergo LLPS even in the phosphomic state. LLPS of this 
phosphomimic full-length construct is, however, reduced at high salt or high RNA concentrations. 
This suggests that the interactions underlying LLPS in the full-length phosphomimic are different 
than in the full-length WT protein, likely based on electrostatic interactions between the RRMs and 
the now negatively charged LC domain. This may allow for some interesting, context-dependent 
regulation of LLPS, which the authors could discuss in more detail.  
The authors then use NMR spectroscopy to uncover the mechanism of reduced assembly of the 
phosphomimic. They observe reduced intra- and intermolecular PREs, indicating reduced transient 
collapse (in agreement with their MD simulations) and reduced intermolecular interactions. These 
mechanistic observations nicely tie into the observed morphological observations.  
In yeast cells, the phosphomimic mutant, and a mutant with 6 phosphomimetic sites, show reduced 
ability to form punctate structure in the nucleus. In mammalian cells, the phosphomimic mutant 
looses the ability to segregate into the insoluble fraction after DNA damage stress. The toxicity in 
yeast cells is also reduced for the phosphomimic mutant.  
The experiments are very well designed, the data is beautiful, the question asked timely, and the 
conclusions well supported by the data. The manuscript should be published, in my opinion, after 
one major and several minor points are addressed.  
 
Major point:  
The authors use turbidity measurements as a measure of the propensity to undergo LLPS. E.g. the 
addition of increasing concentrations of RNA to the full length FUS 12E mutant reduces turbidity. 
While the observed trend seems reasonable, I am not sure one can indeed conclude that the phase 
separation propensity is lower in case of a lower turbidity. The turbidity is a function of the size and 
number of droplets in the sample, and the two parameters are non-additive. I foresee the possibility 
that same volume fraction of dense phase could appear as very many tiny droplets that hardly scatter 
the light, a medium number of droplets that are large enough to considerably scatter the light, or a 
small number of very large droplets, which again would not scatter the light strongly. The authors 
should actually quantify the propensity of their protein constructs to undergo LLPS under different 
conditions.  
 
Minor points:  
 
1. "Though FUS is primarily localized in the nucleus, familial ALS mutations in FUS most often 
disrupt the nuclear localization signal, resulting in FUS cytoplasmic accumulation and apparent 
gain-of-function toxicity." I believe that the authors may not want to use the word "though".  
 
2. "Interestingly, in vitro phosphorylation of recombinant, isolated FUS LC reduces its ability to 
bind to hydrogels formed from amyloid-like fibrils of recombinant, isolated FUS LC (Han et al., 
2012), though hydrogels are more static than LLPS granules." Again, the word "though" seems 
misplaced.  
 
3. p6: "In total, by mass spectrometry and NMR we have putatively identified 17 phosphosites in 
FUS LC, suggesting phosphorylation may be critical to FUS LC function." The identification of the 
phosphorylation sites does not allow the conclusion that they are critical for function. The authors 
show functional data later, and should reserve such a statement for after these data are presented.  
 
4. "We performed differential interference contrast microscopy under conditions where WT FUS LC 
undergoes liquid-liquid phase separation (LLPS) to form round micron-sized phases..." I think it 
would be more appropriate to call the round structures droplets, rather than phases.  
 
5. "These 2-day old FUS 12E structures appear more static than when LLPS is initiated, as judged 
by lack of droplet fusion and fluorescence recovery after photobleaching, similar to previous 
observations for FUS and FUS LC at other conditions (Lin et al., 2015, Patel et al., 2015)." The 
authors should show the FRAP data they are referring to.  
 
6. "Taken together, these data on isolated FUS LC and full-length FUS demonstrate that the addition 
of negatively charged phosphate groups or phosphomimetic substitutions impedes FUS self-
association and subsequent aggregation." It seems that this statement is not fully warranted; the 
conditions under which the specific constructs assemble change, and the assemblies do not promote 
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further aggregation.  
 
7. "However, transverse relaxation rate constants, R2, for wild-type is slightly higher than for 12E at 
both 850 and 500 MHz 1H Larmor, " I believe the missing word is "frequency".  
 
8. "Given that FUS LC is composed of 24 degenerate tyrosine repeats, these changes in 
intramolecular behavior provide insight into how phosphorylation suppresses both LLPS and 
aggregation." The authors do not mention anywhere else that the FUS LCD is composed of 24 
degenerate tyrosine repeats. It is unclear, why they mention it here, and what it has to do with the 
suppression of LLPS by Ser/Thr phosphorylation.  
9. What was the molar ratio of spin-labeled and unlabeled protein in the intermolecular PRE 
experiments?  
 
I am not able to assess whether the coarse-grained simulations that show self-association of the WT 
LC, but not self-association of the phosphorylated form, are suitable to come to the presented 
conclusions. Please make sure that a reviewer with expertise in this area can comment on these data.  
 
 
Referee #3:  
 
In this study, Monahan et al. assess how phosphorylation of the low-complexity domain (LCD) of 
FUS might impact its phase transition behavior and aggregation propensity, which is of interest for 
several neurodegenerative disorders (e.g. ALS and FTD) where FUS aggregates accumulate in the 
cytoplasm of dying neurons. They identify several serines and threonines, including T7, T11, T19, 
S26, S42, S61, S84 in the FUS LCD that can be phosphorylated by DNA-PK in vitro. In HEK293T 
cells, upon DNA damage ~17 sites in the FUS LCD become phosphorylated. Pure protein 
experiments reveal that DNA-PK antagonizes FUS LCD phase transitions and aggregation, as does 
mutation of 12 putative DNA-PK phosphosites in the FUS LCD to glutamate (FUS12E). In the 
context of full-length protein, FUS12E undergoes liquid-liquid phase separation like FUS, but fails 
to fibrillize and displays different sensitivity to salt and RNA. In yeast, FUS12E is less aggregation 
prone and less toxic. Although several aspects of the study are interesting, I have a number of 
concerns that reduce my enthusiasm for this study:  
 
1. The detailed opening to this paper tries to resolve which residues in the FUS LCD are actually 
phosphorylated by DNA-PK in vitro and in cells. However, a clear picture fails to emerge of exactly 
what phopsho-forms of FUS become populated, and it is not clear whether FUS ever bears multiple 
DNA-PK phosphorylated serines or threonines. Nonetheless, multiple phosphorylations are 
subsequently mimicked with the FUS12E variant in the rest of the paper. The lack of clarity here 
makes it difficult to assess the physiological relevance of the subsequent FUS12E studies. 
Moreover, what might happen in terms of FUS LCD phosphorylation in a relevant cell type (e.g. 
motor neurons) or in disease (e.g. ALS/FTD patient samples) is not clear and not addressed in the 
present study, which is a major weakness.  
 
2. DNA-PK is shown to inhibit FUS LCD phase transition and aggregation (Fig. 2). However, it is 
not clear what concentration of DNA-PK was added. It is possible that DNA-PK is acting as a 
chaperone and not a kinase in this assay. A control is needed with a kinase-dead DNA-PK mutant or 
with a DNA-PK small-molecule inhibitor to demonstrate that the effect is due to kinase activity. 
Likewise, a FUS LCD that cannot be phosphorylated (e.g. S/T to A or even Q/N [to retain the 
uncharged polar character of the side chain) would be a valuable control. Finally, these DNA-PK 
experiments should be repeated with full-length FUS as it is not clear whether the full-length FUS 
would be similarly affected by DNA-PK activity.  
 
3. There is a heavy reliance on the phosphomimetic FUS12E variant to ascribe effects of FUS 
phosphorylation. However, it is not clear whether the glutamate mutations truly mimic 
phosphoserine or phosphothreonine. Ideally, phosphorylated versions of FUS or FUS LCD would be 
purified and assessed in terms of phase transition and aggregation behavior. This could be achieved 
by further fractionation of FUS/FUS-LCD after DNA-PK phosphorylation in vitro, or via 
introduction of phosphoserine using technology developed by the Chin lab (Rogerson et al. Nat 
Chem. Biol. 2015. DOI: 10.1038/nchembio.1823), or via semisynthetic approaches. I raise this issue 
as phosphorylation mimics (S129E/D) do not reproduce the effect of phosphorylation on the 
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structural and aggregation properties of alpha-synuclein in vitro (Paleologou et al. JBC 2008. DOI: 
10.1074/jbc.M800747200), and a similar concern applies to FUS. Indeed, phosphorylation extends 
the ensemble of conformations populated by α-synuclein close to its fully random coil-like 
dimensions, but this effect is not observed with the S129E/D substitutions. This issue could also 
apply to FUS, and experiments using phosphorylated FUS are needed to address this issue.  
 
4. While the observations in yeast (Fig. 4 & 5) are intriguing they need to be validated in more 
complex model systems, e.g. in primary neurons or in an animal model (e.g. fly), to confirm their 
relevance to ALS or FTD.  
 
5. While phosphorylation of the FUS LCD by DNA-PK is proposed to inhibit aggregation and phase 
transitions it is not clear whether this phosphorylation can promote the reversal of these events. 
Experiments should be added to determine whether FUS LCD phosphorylation reverses aggregation 
or phase transitions, as these would provide further support for increasing FUS LCD 
phosphorylation as a potential therapeutic. For example, do FUS LCD droplets disperse if DNA-PK 
is added?  
 
6. Finally, FUS that is phosphorylated by DNA-PK appears to accumulate in the cytoplasm (Deng et 
al. J. Neurosci. 2014. doi: 10.1523/JNEUROSCI.0172-14.2014). Thus, increasing FUS 
phosphorylation is unlikely to restore nuclear FUS in disease. This issue needs to be discussed. 
 
 
1st Revision - authors' response 31 May 2017 

 
Referee #1:  
 
Summary:  
 
Monahan et al. report that phase separation and aggregation of FUS, a key RNA-binding protein 
linked to the neurodegenerative diseases ALS and FTD, are altered by serine phosphorylation in the 
protein's N-terminal low complexity domain. The so-called LC domain has previously been shown to 
drive phase separation of FUS into liquid "droplets" or solid "hydrogels" in vitro as well as FUS 
aggregation in vitro or model organisms, including yeast and C. elegans. It has been speculated 
before that post-translational modifications (PTMs), e.g. serine or tyrosine phosphorylation, may 
affect phase transition of FUS, but defined modification sites and their effect on phase transition 
were unknown so far.  
 
Monahan et al. now show that the FUS LC domain can be phosphorylated in vitro by DNA-PK at 12 
S/TQ sites and also identify a few of these phospho sites, as well as some other S/T phospho sites, on 
cellular FUS after treatment of HEK cells with DNA damage-inducing drugs (previously shown to 
cause FUS phosphorylation). When they mutate all 12 S/TQ sites to glutamine to mimic the negative 
charge introduced by phosphorylation (12E mutant), the FUS LC domain does no longer form liquid 
droplets or fibrous aggregates anymore, due to electrostatic repulsion. Full-length FUS 12E still 
phase separates, but not at high salt or upon addition of RNA, and FUS 12E droplets do not convert 
into fibrous aggregates over time, as do FUS-WT droplets. The authors then use NMR to dissect the 
molecular changes caused by the phosphomimetic 12E mutation and find that it decreases transient 
intra- and intermolecular LC domain interactions. Finally, they overexpress a series of S/T-to-E 
FUS variants in yeast (e.g. FUS 2E, 4E, 6E and 12E) to examine FUS aggregation and toxicity in a 
simple in vivo model, as ectopically expressed human FUS-WT forms aggregates and is toxic in 
yeast. They found that both 6E and 12E FUS form fewer aggregates and reduce toxicity compared 
to FUS-WT or variants with only 2 or 3 E substitutions. They also report reduced insolubility of 
FUS in HEK cells treated with DNA damage-inducing drugs, suggesting that phosphorylated FUS is 
also less aggregation-prone in mammalian cells.  
 
The finding that a PTM (S/T phosphorylation) in the LC domain reduces phase separation and 
aggregation of FUS is novel and significant, as it reveals important mechanistic insights into the 
molecular interactions that drive phase separation/aggregation of FUS, and even suggests that 
modulation of FUS phosphorylation could be further explored as a novel therapeutic strategy to 
prevent FUS aggregation. The claims are convincing and well-supported by the in vitro experiments 
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with purified FUS LC and full-length FUS and the yeast model. The findings should be of interest to 
a wider audience, e.g. researchers in the field of neurodegeneration and those interested in phase 
transition, an exciting new topic in cell biology that has received a lot of attention lately.  
 
The major shortcoming of the study, however, is that it does not go beyond these simple model 
systems (e.g. into mammalian cells)  
 
We thank the reviewer for the positive feedback, and for investing time to very thoroughly evaluate 
our manuscript. We agree using a mammalian experimental system is a reasonable extension of our 
discoveries. Based on this suggestion, we now present data on an ALS-causing mutation (R495X, 
which leads to cytoplasmic accumulation of FUS in diseased motor neurons). The cytoplasmic 
aggregation of FUS(R495X) expressed in human cells is dramatically decreased by phosphomimetic 
substitution (both 6E and 12E, see Figure 5). Importantly, this shows that phosphomimetic 
substitutions can alter the aggregation of an established pathological variant of FUS. These findings 
are consistent with the other experimental models (yeast, recombinant proteins in vitro, and 
endogenously phosphorylated FUS in mammalian cells). We’re very excited that all our 
experimental models systems support the same theme: introduction of charge into FUS’s prion-like 
LC domain disfavors phase separation and solid aggregate formation. 
 
and does not offer any insights as to when and how phosphorylation or dephosphorylation of 
FUS occurs under physiological or pathophysiological conditions. If the authors could provide 
further insights into these interesting questions, the paper would be a significantly stronger 
candidate for publication in EMBO Journal.  
 
We very strongly agree that determining the extent of when and how phosphorylation or 
dephosphorylation of FUS occurs is important and we hope to spend the next several years 
addressing these questions. As such, we hope the reviewer will agree that these questions are outside 
the scope of the current contribution. Here, we have confirmed that FUS is phosphorylated 
following DNA damage/stress, and we have provided the highest resolution characterization to date 
of post-translational modification of FUS’s prion-like domain. Our identification of several non-
DNA-PK/ATM phosphorylation sites also hints at the complexity of FUS 
phosphorylation/dephosphorylation. However, our contribution to the field is to demonstrate that 
post translational modification reduces phase separation and aggregation. This is significant because 
phase separation in dynamic assemblies is integral to many diverse cellular processes, but perhaps 
more importantly, FUS aggregation underlies untreatable disease. We hope our findings now justify 
further stand-alone efforts (by our group and others) to describe the detailed 
phosphorylation/dephosphorylation pathway(s) of FUS.  
 
 
Major points that would have to be addressed: 
 (1) It would be interesting to examine a few "partial" phosphomimetic mutants, e.g. 6E, as they 
do in the yeast model, for their ability to suppress phase separation in vitro. It does not seem very 
likely that all 12 S/TQ sites are fully phosphorylated, e.g. upon DNA damage, in vivo, one rather 
expects a partial phosphorylation of only a few residues (as supported by their mass spec analysis 
of cellular FUS). Therefore, it would be important to check if also such partial phosphomimetic 
mutants (e.g. those that still show an aggregation-suppressing effect in yeast or those affecting 
the phosphorylated S/T residues identified by MS), indeed have a reduced tendency to phase 
separate in vitro.  
 
We also think that intermediate and/or partial phosphorylation of FUS may occur in cells. Based on 
the reviewer’s suggestion, we have now completed characterization of full length FUS bearing 6 
phosphomimetic variants (6E) in vitro (See the new Figure 2). We’ve evaluated full-length FUS 
with 0, 6 and 12 phosphomimetic substitutions under several conditions in vitro, including varying 
RNA and salt levels. We see that 6 phosphomimetic substitutions in FUS’s LC domain are sufficient 
to achieve many of the same effects observed with 12 substitutions. Likewise, as mentioned above, 
we’ve included characterization of 6E in mammalian cells, as well as wild-type and 12E FUS. 
 
 (2) The figures and text describing the NMR experiments (Fig. 3) and molecular simulations 
(Fig. 2B) are not understandable to cell/molecular biologists, which make up a large part of the 
EMBO J readership. The authors should make an effort to significantly rephrase / simplify and 
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shorten the text and explain the figures better (e.g. what are the colorful stretches in Fig. 2B?) to 
make this part of the paper accessible to the general readership of EMBO J as well as ALS/FTD 
researchers.  
 
We thank the reviewer for pointing out this issue and we have simplified the section on molecular 
simulation and NMR experiments, and we have better explained the figures. We have also added 
language to simplify spectral density mapping to make it more accessible to a general audience. 
Regarding the colorful sketches in Fig. 2B, we’ve added the following text, “Snapshots of simulated 
FUS LC polypeptides are shown within Figure 2B to illustrate the change from a single uniform 
phase to a phase separated condition; wild-type is phase separated at temperatures below the phase 
transition (upper left), while 12E remains dispersed, not phase separated (bottom).”  
 
 (3) As mentioned above, it remains unclear under which conditions FUS phosphorylation (and 
potentially dephosphorylation) occurs in vivo, except for the few S/T residues that they identified 
after treatment of HEK cells with DNA damage inducing drugs. Some key point to address (or at 
least to discuss) would be: What is the phosphorylation status of FUS in the cells, both under 
physiological conditions and in ALS/FTD patients (altered?). (b) Are there phosphatases that are 
able to dephosphorylate FUS at the examined S/TQ sites and thus directly promote FUS phase 
transition/aggregation? (c) The LC domain also contains numerous Y residues shown to be 
important for hydrogel formation and stress granule localization of FUS (Kato et al., 2012) - are 
they also phosphorylated upon DNA damage (or other conditions in vivo) and does Y-
phosphorylation affect phase transition of FUS in a similar way as does S/T phosphorylation? Y 
mutations in ALS patients? 
 
We thank the reviewer for this suggestion. A) We have clarified that under normal unstressed 
conditions, FUS is not known to be phosphorylated in cell culture. We’ve added the following text, 
“No FUS LC phosphopeptides were identified in control treatments with DMSO, which is consistent 
with none being previously reported under un-stressed conditions (Deng et al., 2014, Gardiner et al., 
2008).”  Concerning phosphatases, cytoplasmic phospho-FUS is presumably dephosphorylated. 
Consistent with this, phosphomimetic FUS has retarded nuclear import, thus dephosphorylation by 
cytoplasmic phosphatases of normal phospho-FUS is probable (Deng, Kukar et al. 2014 and our 
unpublished data). As far as we know, the phosphorylation state of FUS in FUS-ALS/FTD patients 
is not known. We agree the phosphorylation status of FUS in diseased brains is a critically important 
question. We have added the following text in the discussion: “Therefore, it will be of importance to 
determine the detailed FUS phosphorylation state in ALS-FUS cell models and FUS-associated ALS 
patient tissue as well as healthy controls.” Toward these efforts, we have initiated a collaboration 
with Dr. Dan Perl, the Director of the Center for Neuroscience and Regenerative Medicine Brain 
Tissue Repository in Bethesda, MD. In future work, we plan to probe FUS neuronal inclusions with 
phospho-specific antibodies we’re developing.  
B) The capacity of phosphatases to promote FUS phase transition seems plausible. Currently, FUS 
appears to be un-phosphorylated in its default form, so under this regime, phosphatases wouldn’t 
necessarily be immediately necessary to initiate phase transition.  
C) To our knowledge, the tyrosine residues of FUS have not been shown to be phosphorylated. 
Further, our experimental approach to identify phosphopeptides is designed to find phosphoY sites 
as well as pT and pS, but we find no pY sites. To our knowledge, no missesnse mutations altering Y 
have been reported. We do find it curious that FUS LC has 24 Y and 0 F residues; investigating this 
question might be an interesting direction to take future work. 
 
 (4) Further work (beyond the in vitro work and yeast model) in mammalian cells would 
significantly strengthen the manuscript, e.g. do the FUS-6E/12E mutants (or cytosolic dNLS 
versions thereof) also alter FUS solubility (S/P partitioning, as examined in Fig. 4E) and how do 
these mutations affect RNP granule (e.g. stress granule) recruitment or dynamics?  
 
As described above, we agree with the Reviewer on the importance of extending our experiments to 
a mammalian model system. We expressed the cytosolic ALS-causing ΔNLS FUS variant 
(FUSR495X) in human cell culture and observed extensive cytoplasmic aggregation that is 
dramatically reduced by phosphomimetic substitutions (FUS-6E(R495X) and FUS-12E(R495X)). 
We are currently designing experiments to evaluate stress granule dynamics, but we expect these 
studies to take many months to complete since wild-type FUS does not readily form stress granules 
and phosphomimetic substitutions within FUS alter its normal localization. The ALS-causing 
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mutation we used (R495X) favors strong cytoplasmic aggregation. The most tractable stress granule 
assays exploit NLS mutations that have more subtle effects on FUS localization, so we are exploring 
such mutations.  
 
(5) The model in Fig. 6 does not exactly represent the described findings: As phosphorylated full-
length FUS still forms liquid droplets (Fig. 2), it would be more correct to show in the model 
figure that P-FUS still undergoes phase transition / droplet formation, although to a lesser 
degree, but then does not further convert into solid aggregates (as does FUS-WT).  
 
We thank the reviewer for the helpful suggestion and have simplified and updated the figure 
(currently Figure 7 in the latest draft) to more accurately reflect the findings.  
 
Minor points: 
Fig. 1 C/D: Legends are swapped  
We have corrected this error, and are grateful for the Reviewer’s attention. 
 
Fig. 2A: Under which conditions do the LC droplets convert to "fibrous aggregates" (over time? 
Which time scale? How frequent?) This is not mentioned in the text or figure legend.  
We have clarified this in the Legend of Figure 2. 
 
Text to Fig. 2E: It is mentioned that the 2-day old 12E droplets appear more static, as judged by 
lack of droplet fusion and FRAP. Is this data not shown? It would be nice to show this data in the 
supplement or at least say "data not shown".  
 
We thank the reviewer for this suggestion. We have clarified this section and added FRAP data 
about wild-type FUS in the supplementary movie1.   
 
Some terms are used a bit sloppily, e.g. RNP is the abbreviation for "ribonucleoprotein", not 
"ribonuclear particles" (p.1 of introduction), so it would be better to say "cytoplasmic 
ribonucleoprotein (RNP) granules, including stress granules, P-bodies or transport granules". 
Instead of using "ribonuclear protein" it would be better to just say "RNA-binding protein" or 
RBP. 
 
We have amended the text in the introduction and throughout, as suggested. 
  
Results: First paragraph: Fig. 1A shows gray lines, not grey bars.  
 
We have changed the reference in the text and in the caption for Figure 1A to say gray “line”. 
 
Results: bottom of first page: provide a reference for the fact that DNA-PK autophosphorylates 
and thus deactivates itself  
 
We agree that a reference should have been included. Consistent with our observation that 
phosphorylation activity does not proceed beyond 30 minutes, we’ve concluded that DNA-PK is 
inactivated as previously reported (Carter, Vanculova et al. MCB 1990).  
 
Fig. 4C: would be better to remove "low" and "high" from the x-axis and define what is meant 
by the white/grey bar in the legend. 
 
We thank the reviewer for the helpful suggestion to clarify the figure. We have removed “low” and 
“high” and have clarified in the Legend that these are high and low expression vectors, indicating 
that the aggregation and partitioning of FUS is dependent on molecular properties and not 
expression level.  
 
 
Referee #2:  
 
The manuscript by Monahan et al. focuses on the question how the self-association of the protein 
FUS is regulated by multi-site phosphorylation. The authors map phosphorylation sites in the Low-
complexity (LC) domain of FUS generated by DNA-dependent protein kinase phosphorylation in 
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vitro. While these sites fully fit the consensus sites expected to be phosphorylated by DNA-PK, they 
were not (and had not been) identifiable by MS. The authors instead used NMR spectroscopy to 
identify these sites. They go on to identify in cell phosphorylation sites generated by DNA damage. 
The authors then characterize the effect of phosphorylation on these 12 sites (or of phosphomimetic 
mutations in the same sites) on liquid-liquid phase separation and aggregation of FUS. WT FUS LC 
undergoes LLPS and aggregates over time. Multi-site phosphorylation and phosphomimics both 
prevent this transition. However, full-length FUS, when released from an MBP-FUS construct 
through TEV cleavage, can still undergo LLPS even in the phosphomic state. LLPS of this 
phosphomimic full-length construct is, however, reduced at high salt or high RNA concentrations. 
This suggests that the interactions underlying LLPS in the full-length phosphomimic are different 
than in the full-length WT protein, likely based on electrostatic interactions between the RRMs and 
the now negatively charged LC domain. This may allow for some interesting, context-dependent 
regulation of LLPS, which the authors could discuss in more detail.  
The authors then use NMR spectroscopy to uncover the mechanism of reduced assembly of the 
phosphomimic. They observe reduced intra- and intermolecular PREs, indicating reduced transient 
collapse (in agreement with their MD simulations) and reduced intermolecular interactions. These 
mechanistic observations nicely tie into the observed morphological observations. 
In yeast cells, the phosphomimic mutant, and a mutant with 6 phosphomimetic sites, show reduced 
ability to form punctate structure in the nucleus. In mammalian cells, the phosphomimic mutant 
looses the ability to segregate into the insoluble fraction after DNA damage stress. The toxicity in 
yeast cells is also reduced for the phosphomimic mutant.  
The experiments are very well designed, the data is beautiful, the question asked timely, and the 
conclusions well supported by the data. The manuscript should be published, in my opinion, after 
one major and several minor points are addressed.  
 
We’re very grateful for the Reviewer’s assessment of our paper.   
  
Major point:  
The authors use turbidity measurements as a measure of the propensity to undergo LLPS. E.g. 
the addition of increasing concentrations of RNA to the full length FUS 12E mutant reduces 
turbidity. While the observed trend seems reasonable, I am not sure one can indeed conclude that 
the phase separation propensity is lower in case of a lower turbidity. The turbidity is a function of 
the size and number of droplets in the sample, and the two parameters are non-additive. I foresee 
the possibility that same volume fraction of dense phase could appear as very many tiny droplets 
that hardly scatter the light, a medium number of droplets that are large enough to considerably 
scatter the light, or a small number of very large droplets, which again would not scatter the light 
strongly. The authors should actually quantify the propensity of their protein constructs to 
undergo LLPS under different conditions.  
 
The Reviewer makes an excellent point and is absolutely correct about the limitations of using 
turbidity as a direct reporter of phase separation. It’s been our observation having done considerable 
qualitative assessment of phase separation by DIC microscopy that turbidity measurements 
generally correlate directly with phase separation. We like to use turbidity because it is much easier 
to measure than taking field views of all samples over time. In our updated Figure S2, we show that 
images from DIC microscopy (Panel B) correlate with turbidity (Panel C). Mostly, this is just a 
qualitative assessment of whether or not phase separation has occurred – not the more nuanced 
characterization proposed by the Reviewer. In the new Figure S2, we show that FUS 6E and 12E 
turbidity decreases are in fact due to diminished phase separation as viewed by DIC microscopy.  
 
Minor points:  
 
1. "Though FUS is primarily localized in the nucleus, familial ALS mutations in FUS most often 
disrupt the nuclear localization signal, resulting in FUS cytoplasmic accumulation and apparent 
gain-of-function toxicity." I believe that the authors may not want to use the word "though".  
 
We’ve altered the language as follows: “Familial ALS mutations in FUS most often disrupt the 
nuclear localization signal, resulting in cytoplasmic accumulation and apparent gain-of-function 
toxicity (Scekic-Zahirovic et al., 2016, Sharma et al., 2016).” 
 
2. "Interestingly, in vitro phosphorylation of recombinant, isolated FUS LC reduces its ability 
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to bind to hydrogels formed from amyloid-like fibrils of recombinant, isolated FUS LC (Han 
et al., 2012), though hydrogels are more static than LLPS granules." Again, the word 
"though" seems misplaced. 
 
Based on the Reviewer’s comment, we’ve simplified the sentence by removing the entire clause. 
Distinctions between hydrogels and LLPS are beyond the scope of this manuscript.   
 
3. p6: "In total, by mass spectrometry and NMR we have putatively identified 17 phosphosites 
in FUS LC, suggesting phosphorylation may be critical to FUS LC function." The 
identification of the phosphorylation sites does not allow the conclusion that they are critical 
for function. The authors show functional data later, and should reserve such a statement for 
after these data are presented.  
 
We agree our text was overly speculative. We’ve simplified it by passively concluding, “…we have 
identified 17 putative phosphosites in FUS LC, suggesting phosphorylation could have a role in FUS 
function.” 
 
4. "We performed differential interference contrast microscopy under conditions where WT FUS 
LC undergoes liquid-liquid phase separation (LLPS) to form round micron-sized phases..." I 
think it would be more appropriate to call the round structures droplets, rather than phases.  
 
We’ve replaced “phases” with “droplets”.  
 
5. "These 2-day old FUS 12E structures appear more static than when LLPS is initiated, as 
judged by lack of droplet fusion and fluorescence recovery after photobleaching, similar to 
previous observations for FUS and FUS LC at other conditions (Lin et al., 2015, Patel et al., 
2015)." The authors should show the FRAP data they are referring to.  
 
We’ve removed the sentences that discussed FRAP with FUS 12E. We’ve added a supplementary 
movie and minimal text to summarize our limited FRAP data with wild-type FUS. 
 
6. "Taken together, these data on isolated FUS LC and full-length FUS demonstrate that the 
addition of negatively charged phosphate groups or phosphomimetic substitutions impedes FUS 
self-association and subsequent aggregation." It seems that this statement is not fully warranted; 
the conditions under which the specific constructs assemble change, and the assemblies do not 
promote further aggregation.  
 
The new data we present in Figures 2 and S2 better supports our conclusion. Over time, we see 
unphosphorylated FUS samples evolve from dispersed droplets to large solid aggregates. In control 
conditions, we don’t see phosphorylated FUS (or phosphomimetic FUS 12E) forming solid 
aggregates.  
 
7. "However, transverse relaxation rate constants, R2, for wild-type is slightly higher than for 
12E at both 850 and 500 MHz 1H Larmor, " I believe the missing word is "frequency".  
 
We’ve added the missing “frequency”. 
 
8. "Given that FUS LC is composed of 24 degenerate tyrosine repeats, these changes in 
intramolecular behavior provide insight into how phosphorylation suppresses both LLPS and 
aggregation." The authors do not mention anywhere else that the FUS LCD is composed of 24 
degenerate tyrosine repeats. It is unclear, why they mention it here, and what it has to do with the 
suppression of LLPS by Ser/Thr phosphorylation.  
 
We thank the Reviewer for pointing out an unnecessarily confusing sentence. Our intent was merely 
to emphasize the degenerate, low-complexity sequence of FUS, and how the introduction of charge 
can have small effects on chain collapse, thus providing a molecular mechanism by which LLPS 
could be regulated. We’ve removed the clause regarding the 24 tyrosine repeats. It now reads: 
“These changes in intramolecular behavior provide insight into how phosphorylation could suppress 
both LLPS and aggregation.” 
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9. What was the molar ratio of spin-labeled and unlabeled protein in the intermolecular PRE 
experiments?  
 
We thank the reviewer for pointing out this was not clearly listed, although it was labeled within the 
figure. We have now updated the Figure 3 legend to state that the concentration was 1:1, 25 µM 
FUS LC 15N combined with 25 µM spin-labeled. 
 
I am not able to assess whether the coarse-grained simulations that show self-association of the 
WT LC, but not self-association of the phosphorylated form, are suitable to come to the presented 
conclusions. Please make sure that a reviewer with expertise in this area can comment on these 
data.  
 
 
Referee #3:  
 
In this study, Monahan et al. assess how phosphorylation of the low-complexity domain (LCD) of 
FUS might impact its phase transition behavior and aggregation propensity, which is of interest for 
several neurodegenerative disorders (e.g. ALS and FTD) where FUS aggregates accumulate in the 
cytoplasm of dying neurons. They identify several serines and threonines, including T7, T11, T19, 
S26, S42, S61, S84 in the FUS LCD that can be phosphorylated by DNA-PK in vitro. In HEK293T 
cells, upon DNA damage ~17 sites in the FUS LCD become phosphorylated. Pure protein 
experiments reveal that DNA-PK antagonizes FUS LCD phase transitions and aggregation, as does 
mutation of 12 putative DNA-PK phosphosites in the FUS LCD to glutamate (FUS12E). In the 
context of full-length protein, FUS12E undergoes liquid-liquid phase separation like FUS, but fails 
to fibrillize and displays different sensitivity to salt and RNA. In yeast, FUS12E is less aggregation 
prone and less toxic. Although several aspects of the study are interesting, I have a number of 
concerns that reduce my enthusiasm for this study:  
 
1. The detailed opening to this paper tries to resolve which residues in the FUS LCD are actually 
phosphorylated by DNA-PK in vitro and in cells. However, a clear picture fails to emerge of 
exactly what phopsho-forms of FUS become populated, and it is not clear whether FUS ever 
bears multiple DNA-PK phosphorylated serines or threonines. Nonetheless, multiple 
phosphorylations are subsequently mimicked with the FUS12E variant in the rest of the paper. 
The lack of clarity here makes it difficult to assess the physiological relevance of the subsequent 
FUS12E studies. Moreover, what might happen in terms of FUS LCD phosphorylation in a 
relevant cell type (e.g. motor neurons) or in disease (e.g. ALS/FTD patient samples) is not clear 
and not addressed in the present study, which is a major weakness.  
 
These are excellent points that we spent quite a bit of time thinking about. Regarding the number of 
phosphorylations that occur in cells following the additions of DNA-damaging agents, we 
reasonably conclude that FUS is multiply phosphorylated beyond 6 sites due to the change in 
migration of FUS in a Western Blot. When we constructed our phosphomimetics, we observed that 
with each substitution, FUS migrated more slowly, with a greater apparent molecular weight. The 
population of naturally phosphorylated FUS (following DNA damage) in mammalian cells migrates 
similarly to FUS with 12 substitutions.  
 
As discussed in the above responses, we have included in vitro and in-cell experiments using 
FUS6E to better capture the behavior predicted by FUS species showing an intermediate degree of 
phosphorylation. Further, the data presented in yeast with regard to toxicity suggests that 
amelioration of gain-of-function toxicity is mitigated with as few as 2 phosphorylations, suggesting 
that fully phosphorylated FUS LCD is not required to result in major changes to FUS’s properties.  
 
We have attempted to characterize simultaneous phosphorylation via mass spec – however top down 
proteomic approaches are far from routine especially for an extremely challenging case such as 
FUS. Work is ongoing in our groups to address this question, but we believe it is not within reach in 
the review timeline. The use of human diseased tissue samples, primary neurons and iPSCs are all 
worth pursuing in future work. However, non-motor neuron cells types are very relevant and worthy 
of studying since FUS is expressed in many cell types beyond the CNS. Also, FUS’s phase 
separation is regarded as relevant to ribonucleoprotein granule function. 
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2. DNA-PK is shown to inhibit FUS LCD phase transition and aggregation (Fig. 2). However, it 
is not clear what concentration of DNA-PK was added. It is possible that DNA-PK is acting as a 
chaperone and not a kinase in this assay. A control is needed with a kinase-dead DNA-PK mutant 
or with a DNA-PK small-molecule inhibitor to demonstrate that the effect is due to kinase activity. 
Likewise, a FUS LCD that cannot be phosphorylated (e.g. S/T to A or even Q/N [to retain the 
uncharged polar character of the side chain) would be a valuable control. Finally, these DNA-PK 
experiments should be repeated with full-length FUS as it is not clear whether the full-length 
FUS would be similarly affected by DNA-PK activity.  
 
We’ve performed the experiment with full-length FUS and included controls (in our in vitro 
experiment, we use DNA-PK in the absence of ATP as well as ATP in the absence of DNA-PK) to 
ensure we weren’t getting a chaperone effect with DNA-PK. We thank the Reviewer for challenging 
this point because our new Figure 2 with these results makes our manuscript stronger.  
 
3. There is a heavy reliance on the phosphomimetic FUS12E variant to ascribe effects of FUS 
phosphorylation. However, it is not clear whether the glutamate mutations truly mimic 
phosphoserine or phosphothreonine. Ideally, phosphorylated versions of FUS or FUS LCD would 
be purified and assessed in terms of phase transition and aggregation behavior. This could be 
achieved by further fractionation of FUS/FUS-LCD after DNA-PK phosphorylation in vitro, or 
via introduction of phosphoserine using technology developed by the Chin lab (Rogerson et al. 
Nat Chem. Biol. 2015. DOI: 10.1038/nchembio.1823), or via semisynthetic approaches. I raise 
this issue as phosphorylation mimics (S129E/D) do not reproduce the effect 
of phosphorylation on the structural and aggregation properties of alpha-synuclein in vitro 
(Paleologou et al. JBC 2008. DOI: 10.1074/jbc.M800747200), and a similar concern applies to 
FUS. Indeed, phosphorylation extends the ensemble of conformations populated by α-synuclein 
close to its fully random coil-like dimensions, but this effect is not observed with the S129E/D 
substitutions. This issue could also apply to FUS, and experiments using phosphorylated FUS are 
needed to address this issue.  
 
We agree that phosphomimetics do not perfectly recapitulate the phosphorylated form of FUS. The 
inability to control phosphorylation with DNA-PK and achieve homogenous, uniformly 
phosphorylated samples is an impediment for many conceivable experiments. We hope our new 
Figure 2 that shows the effects of phosphorylation on FUS aggregation sufficiently address the 
Reviewer’s concern. Specifically, DNA-PK phosphorylated FUS full-length loses its propensity for 
solid aggregates. 
 
4. While the observations in yeast (Fig. 4 & 5) are intriguing they need to be validated in more 
complex model systems, e.g. in primary neurons or in an animal model (e.g. fly), to confirm their 
relevance to ALS or FTD.  
 
We have extended the results to human cell lines as described above. However, the use of yeast to 
model neurodegenative-protein aggregation propensity in a crowded eurkaryotic environment is 
well established. (Khurana V, Lindquist S. Nat Rev Neurosci. 2010; Sun Z, Gitler AD, et al. PLoS 
Biol. 2011). Our results in the yeast and mammalian models have been strikingly consistent. In the 
future, we agree the establishment of an animal model would be great, but it is not feasible for the 
current review period. We hope the Reviewer will find the structural biology / biophysics of phase 
transition and how it may be altered by post-translational modification is generally relevant to many 
cellular functions, even in the absence of disease (or animal models of disease). 
 
5. While phosphorylation of the FUS LCD by DNA-PK is proposed to inhibit aggregation and 
phase transitions it is not clear whether this phosphorylation can promote the reversal of these 
events. Experiments should be added to determine whether FUS LCD phosphorylation reverses 
aggregation or phase transitions, as these would provide further support for increasing FUS LCD 
phosphorylation as a potential therapeutic. For example, do FUS LCD droplets disperse if DNA-
PK is added?  
 
This is a really interesting point. The possibility that phosphorylation dissolves droplet 
compartments into the larger bulk fluid is intriguing, and likely a future direction based on the work 
presented in this manuscript. Data presented herein suggests that phosphorylated FUS largely retains 
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the ability to form droplets depending on the RNA concentration, while phosphorylation more 
profoundly retards the maturation of droplets into pathological aggregates. Thus, the precise role of 
phosphorylation in dissolving phase separated droplet compartments is ambiguous, and likely to 
involve extensive additional experimentation to justify its stand-alone publication. Addition of large 
amount of non-specific DNA needed to stimulate DNA-PK complicate performing the experiments 
proposed. 
 
6. Finally, FUS that is phosphorylated by DNA-PK appears to accumulate in the cytoplasm (Deng 
et al. J. Neurosci. 2014. doi: 10.1523/JNEUROSCI.0172-14.2014). Thus, increasing FUS 
phosphorylation is unlikely to restore nuclear FUS in disease. This issue needs to be discussed.  
 
Our approach in this manuscript is principally to address the biophysical properties of FUS and how 
these are potentially modified by phosphorylation. Indeed, phosphorylation is unlikely to restore 
nuclear FUS, however there is considerable evidence that cytoplasmic gain-of-function, in contrast 
to nuclear loss-of-function, is the major pathway of toxicity (Scekic-Zahirovic 2016), and these data 
most directly pertain to this mechanism of toxicity. 
 
 
2nd Editorial Decision 22 June 2017 

Thank you for submitting your revised manuscript to The EMBO Journal. Your study has now been 
seen by referee #1 and 3 and the comments are provided below. As you can see from the comments, 
both referees appreciate the added data and support publication here. Referee #1 has some remaining 
suggestion for further improvement of the manuscript. No new experiments are needed. I find the 
suggestions good and would ask you to take them into consideration. Regarding point 2 (Movie S1) 
- I think fully OK to keep the movie in. I do think it adds to the manuscript.  
 
------------------------------------------------  
REFEREE REPORTS 
 
 
Referee #1:  
 
The revised manuscript is clearly stronger than the previous version and the major points raised by 
the three reviewers have been largely addressed, most notably  
- extension of in vitro and yeast studies to mammalian cells (HEK293 cells)  
- analysis of an „intermediate" phosphorylation-mimicking mutant (6E), demonstrating that also 
partial phosphorylation affects phase transition of FUS  
- validation of turbidity assay results by an alternative method (droplet imaging in DIC microscopy)  
- controls demonstrating that DNA-PK and ATP alone do not suppress phase separation of FUS  
Although a few points raised by the reviewers were addressed in a rather minimalistic way and 
could have been addressed more comprehensively, I believe that the study is significant and novel 
and of high interest to the field of neurodegeneration and cell biology in general. A few minor points 
should be discussed with the authors, however, before publication in EMBO Journal:  
 
(1) Does the title really appropriately reflect what their data show? They clearly show that in the 
context of the full length protein, phosphorylation of the FUS-LC domain does NOT prevent or even 
reduce droplet formation, but what is suppressed is liquid-to-solid state transition, i.e. maturation of 
liquid droplets into aggregates/solids (see e.g. Fig. 2E and F). I think the current title does not 
accurately reflect these findings. I also would recommend that the authors explain the concept of 
liquid-liquid phase separation and liquid-to-solid state transition a bit better (maybe already in the 
introduction). They mention that "liquid droplets of full-length FUS can convert into fibrillary 
aggregates over time (Patel et al, 2015)" when they talk about Fig. 2E, it may be helpful to the 
reader to introduce this concept earlier and clarify that phosphorylation does not disrupt LLPS or 
phase separation (as stated e.g. on page 10 or in the abstract - this should be corrected) but rather the 
subsequent aggregation / liquid-to-solid transition.  
 
(2) I would recommend to remove Movie S1 and the paragraph that describes it, as it only shows 
data on unmodified FUS droplets, but not on phosphorylated / phospho-mimetic FUS droplets, so it 
does not add any information / insights and it is rather confusing and unclear why they included this 
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data. Alternatively, they should present FRAP data on unmodified vs. phospho-droplets in 
comparison.  
 
(3) The image quality shown in Fig. 5A (HEK293 data) is rather poor - it would be nice to include 
the DAPI channel, so that one can see in the left panel (GFP-FUS-R495X) where nuclei and cytosol 
are. The cellular data would also be much more convincing if they would add a quantification (e.g. 
counting the % of cells with cytosolic aggregates or analysis of soluble (S) vs. insoluble (P) material 
as done in Fig. 5C).  
 
(4) Fig. 2A should be labelled more clearly - were all samples incubated for 1 day at 25{degree 
sign}C or only the sample shown in the upper right (wild-type FUS LC aggregate)? Text sounds like 
the latter, but legend sounds like all samples were incubated for 1 day.  
 
(5) More carefully update methods / supplementary methods section, often just WT-FUS and 12E 
FUS (and not 6E) are mentioned (e.g. turbidity and microscopy, purification of proteins).  
 
 
Referee #3:  
 
In their revised paper, Fawzi et al. have addresses my previous concerns. In my view, the paper is 
now suitable for publication. 
 
 
2nd Revision - authors' response 06 July 2017 
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Nicolas L. Fawzi, PhD 
Assistant Professor of Medical Science 

email: Nicolas_Fawzi@brown.edu 
ph. 401.863.5232 
fax.  401.863.6087 
http://brown.edu/research/labs/fawzi 

 
July 6, 2017 

Dr. Karin Dumstrei, PhD 
Senior Editor | The EMBO Journal 
k.dumstrei@embojournal.org 
 
Dear Dr. Dumstrei, 
 
Thank you for communicating the decision to revise our manuscript to improve the 
manuscript accoroding to the additional constructive feedback from the reviewers. 
Guided by your editorial remarks, we have now addressed the outstanding concerns in 
detail. See below. 
 
We are confident that the manuscript is now acceptable for publication and we look 
forward to your decision. 
 
Nicolas L. Fawzi, Ph.D. and Frank Shewmaker, Ph.D. 
 
Reviewer 1 
(1) Does the title really appropriately reflect what their data show? They clearly show 
that in the context of the full length protein, phosphorylation of the FUS-LC domain does 
NOT prevent or even reduce droplet formation, but what is suppressed is liquid-to-solid 
state transition, i.e. maturation of liquid droplets into aggregates/solids (see e.g. Fig. 2E 
and F). I think the current title does not accurately reflect these findings. I also would 
recommend that the authors explain the concept of liquid-liquid phase separation and 
liquid-to-solid state transition a bit better (maybe already in the introduction). They 
mention that "liquid droplets of full-length FUS can convert into fibrillary aggregates over 
time (Patel et al, 2015)" when they talk about Fig. 2E, it may be helpful to the reader to 
introduce this concept earlier and clarify that phosphorylation does not disrupt LLPS or 
phase separation (as stated e.g. on page 10 or in the abstract - this should be 
corrected) but rather the subsequent aggregation / liquid-to-solid transition.  
 
We clarify in the main text that we do show that liquid-liquid phase separation is 
disrupted by phosphorylation of FUS LC (Figure 2A) and phosphomimetic 
substitution of full length FUS (Figure 2C,D and Figure S2). We have also 
expanded the description of LLPS in the introduction and of conversion to a solid 
form. 
 

Brown University 
Department of Molecular Pharmacology, 
Physiology and Biotechnology 
70 Ship Street 
Box G-E3 
Providence, RI 02903 
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(2) I would recommend to remove Movie S1 and the paragraph that describes it, as it 
only shows data on unmodified FUS droplets, but not on phosphorylated / phospho-
mimetic FUS droplets, so it does not add any information / insights and it is rather 
confusing and unclear why they included this data. Alternatively, they should present 
FRAP data on unmodified vs. phospho-droplets in comparison.  
 
We have clarified this section of the text. 
 
(3) The image quality shown in Fig. 5A (HEK293 data) is rather poor - it would be nice 
to include the DAPI channel, so that one can see in the left panel (GFP-FUS-R495X) 
where nuclei and cytosol are. The cellular data would also be much more convincing if 
they would add a quantification (e.g. counting the % of cells with cytosolic aggregates or 
analysis of soluble (S) vs. insoluble (P) material as done in Fig. 5C).  
 
We decided on this image processing (identical for all 3 variants) because it 
highlights how little diffuse (unaggregated) GFP-FUS(R495X) is in the cytoplasm 
in the absence of phosphomimetic substitutions. However, we have added an 
inset with altered brightness and Figure S7 that shows the full image with those 
brightness settings and an additional image with SiR700 nuclear stain overlay. 
We appreciate that precise quantification would be a nice addition though we 
suggest that the qualitative picture as presented and reproduced in independent 
experiments is sufficient. 
 
(4) Fig. 2A should be labelled more clearly - were all samples incubated for 1 day at 
25{degree sign}C or only the sample shown in the upper right (wild-type FUS LC 
aggregate)? Text sounds like the latter, but legend sounds like all samples were 
incubated for 1 day.  
 
We have updated the labeling to clearly state that all sample were identically 
incubated. 
 
(5) More carefully update methods / supplementary methods section, often just WT-FUS 
and 12E FUS (and not 6E) are mentioned (e.g. turbidity and microscopy, purification of 
proteins). 
 
We have updated the methods and appendix methods carefully. We thank the 
reviewer for his/her close reading of the manuscript. 
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