# **BMJ Open**

#### Comparative neurological outcomes and safety of antiepileptic drugs during pregnancy and breastfeeding: a systematic review and network meta-analysis

| Journal:                             | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                        | bmjopen-2017-017248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Article Type:                        | Research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Date Submitted by the Author:        | 10-Apr-2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Complete List of Authors:            | Veroniki, Areti Angeliki; Li Ka Shing Knowledge Institute, St. Michael's<br>Hospital<br>Rios, Patricia; Li Ka Shing Knowledge Institute, St. Michael's Hospital<br>Cogo, Elise; Li Ka Shing Knowledge Institute, St. Michael's Hospital<br>Straus, Sharon; Li Ka Shing Knowledge Institute, St. Michael's Hospital;<br>University of Toronto, Department of Medicine<br>Finkelstein, Yaron; The Hospital for Sick Children; University of Toronto,<br>Department of Paediatrics<br>Kealey, M.; Li Ka Shing Knowledge Institute, St. Michael's Hospital<br>Reynen, Emily; Li Ka Shing Knowledge Institute, St. Michael's Hospital<br>Soobiah, Charlene; Li Ka Shing Knowledge Institute, St. Michael's Hospital;<br>University of Toronto, Institute for Health Policy Management & Evaluation<br>Thavorn, Kednapa; University of Ottawa, School of Epidemiology, Public<br>Health and Preventive Medicine, Faculty of Medicine; The Ottawa Hospital<br>Research Institute, Clinical Epidemiology Program<br>Hutton, Brian; University of Ottawa, School of Epidemiology, Public Health<br>and Preventive Medicine, Faculty of Medicine; Ottawa Hospital Research<br>Institute, Center for Practice Changing Research<br>Hemmelgarn, BR; University of Calgary, Departments of Medicine and<br>Community Health Sciences<br>Yazdi, Fatemeh; Li Ka Shing Knowledge Institute, St. Michael's Hospital<br>D'Souza, Jennifer; Li Ka Shing Knowledge Institute, St. Michael's Hospital<br>MacDonald, Heather; Li Ka Shing Knowledge Institute, St. Michael's Hospital<br>Tricco, Andrea; Li Ka Shing Knowledge Institute, St. Michael's Hospital;<br>University of Toronto, Epidemiology Division, Dalla Lana School of Public<br>Health |
| <b>Primary Subject<br/>Heading</b> : | Neurology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Secondary Subject Heading:           | Obstetrics and gynaecology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Keywords:                            | multiple treatment meta-analysis, knowledge synthesis, Epilepsy < NEUROLOGY, pregnancy, infants, developmental delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



| Comparative neurological out<br>during pregnancy and breastf<br>meta-analysis<br>Areti Angeliki Veroniki, PhD, MSc <sup>1</sup><br>Patricia Rios, MSc <sup>1</sup><br>Elise Cogo, ND, MLIS <sup>1</sup> | comes and safety of anti-epileptic drugs<br>reeding: a systematic review and network<br>Email: <u>VeronikiA@smh.ca</u><br>Email: <u>RiosP@smh.ca</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| during pregnancy and breastf<br>meta-analysis<br>Areti Angeliki Veroniki, PhD, MSc <sup>1</sup><br>Patricia Rios, MSc <sup>1</sup><br>Elise Cogo, ND, MLIS <sup>1</sup>                                 | <b>Teeding: a systematic review and network</b><br>Email: <u>VeronikiA@smh.ca</u><br>Email: <u>RiosP@smh.ca</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>meta-analysis</b><br>Areti Angeliki Veroniki, PhD, MSc <sup>1</sup><br>Patricia Rios, MSc <sup>1</sup><br>Elise Cogo, ND, MLIS <sup>1</sup>                                                          | Email: <u>VeronikiA@smh.ca</u><br>Email: <u>RiosP@smh.ca</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Areti Angeliki Veroniki, PhD, MSc <sup>1</sup><br>Patricia Rios, MSc <sup>1</sup><br>Elise Cogo, ND, MLIS <sup>1</sup>                                                                                  | Email: <u>VeronikiA@smh.ca</u><br>Email: <u>RiosP@smh.ca</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Patricia Rios, MSc <sup>1</sup><br>Elise Cogo, ND, MLIS <sup>1</sup>                                                                                                                                    | Email: <u>RiosP@smh.ca</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Elise Cogo, ND, MLIS <sup>1</sup>                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                         | Email: <u>CogoE@smh.ca</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sharon E. Straus, MD, MSc <sup>1,2</sup>                                                                                                                                                                | Email: <u>Sharon.straus@utoronto.ca</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Yaron Finkelstein, MD <sup>3,4,5</sup>                                                                                                                                                                  | Email: <u>Yaron.Finkelstein@sickkids.ca</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Ryan Kealey, PhD <sup>1</sup>                                                                                                                                                                           | Email: <u>ryan.kealey@utoronto.ca</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Emily Reynen, MD, CM, PharmD <sup>1</sup>                                                                                                                                                               | Email: <u>ereynen@gmail.com</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Charlene Soobiah, PhD (Cand.) <sup>1,6</sup>                                                                                                                                                            | Email: <u>SoobiahC@smh.ca</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Kednapa Thavorn, PhD <sup>7,8,9</sup>                                                                                                                                                                   | Email: <u>kthavorn@ohri.ca</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Brian Hutton, PhD, MSc <sup>7,10</sup>                                                                                                                                                                  | Email: <u>bhutton@ohri.ca</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Brenda R. Hemmelgarn, MD, PhD <sup>11</sup>                                                                                                                                                             | Email: <u>Bhemmelg@ucalgary.ca</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Fatemeh Yazdi, MSc <sup>1</sup>                                                                                                                                                                         | Email: <u>SabaghYazdiF@smh.ca</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Jennifer D'Souza, HBSc <sup>1</sup>                                                                                                                                                                     | Email: jennifer.dsouza@mail.utoronto.ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Heather MacDonald, MSc <sup>1</sup>                                                                                                                                                                     | Email: <u>hrmacdonald@gmail.com</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Andrea C. Tricco, PhD, MSc <sup>1,12,*</sup>                                                                                                                                                            | Email: <u>TriccoA@smh.ca</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AUTHOR DETAILS                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <sup>1</sup> Li Ka Shing Knowledge Institute, St. M                                                                                                                                                     | lichael's Hospital, 209 Victoria Street, East Building,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Toronto, Ontario, M5B 1W8, Canada                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                         | Sharon E. Straus, MD, MSc <sup>1,2</sup><br>Yaron Finkelstein, MD <sup>3,4,5</sup><br>Ryan Kealey, PhD <sup>1</sup><br>Emily Reynen, MD, CM, PharmD <sup>1</sup><br>Charlene Soobiah, PhD (Cand.) <sup>1,6</sup><br>Kednapa Thavorn, PhD <sup>7,8,9</sup><br>Brian Hutton, PhD, MSc <sup>7,10</sup><br>Brenda R. Hemmelgarn, MD, PhD <sup>11</sup><br>Fatemeh Yazdi, MSc <sup>1</sup><br>Jennifer D'Souza, HBSc <sup>1</sup><br>Heather MacDonald, MSc <sup>1</sup><br>Andrea C. Tricco, PhD, MSc <sup>1,12,*</sup><br><b>AUTHOR DETAILS</b><br><sup>1</sup> Li Ka Shing Knowledge Institute, St. M<br>Toronto, Ontario, M5B 1W8, Canada |

| 2              |    |                                                                                                         |
|----------------|----|---------------------------------------------------------------------------------------------------------|
| 3<br>4         | 22 | <sup>2</sup> Department of Medicine, University of Toronto, 27 King's College Circle, Toronto, Ontario  |
| 5<br>6<br>7    | 23 | M5S 1A1, Canada                                                                                         |
| 7<br>8<br>9    | 24 | <sup>3</sup> The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canad    |
| 10<br>11       | 25 | <sup>4</sup> Department of Paediatrics, University of Toronto, 172 St. George Street, Toronto, Ontario, |
| 12<br>13<br>14 | 26 | M5R 0A3, Canada                                                                                         |
| 15<br>16       | 27 | <sup>5</sup> Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences         |
| 17<br>18<br>10 | 28 | Building, Room 4207, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada                         |
| 20<br>21       | 29 | <sup>6</sup> Institute for Health Policy Management & Evaluation, University of Toronto, 4th Floor,     |
| 22<br>23       | 30 | 155 College Street, Toronto, Ontario, M5T 3M6, Canada                                                   |
| 24<br>25<br>26 | 31 | <sup>7</sup> School of Epidemiology, Public Health and Preventive Medicine, Faculty of Medicine,        |
| 27<br>28       | 32 | University of Ottawa, Roger-Guindon Building, 451 Smyth Road, Ottawa, Ontario, K1H 8M5                  |
| 29<br>30<br>21 | 33 | Canada                                                                                                  |
| 32<br>33       | 34 | <sup>8</sup> Clinical Epidemiology Program, Ottawa Hospital Research Institute, The Ottawa Hospital,    |
| 34<br>35       | 35 | 501 Smyth Road, Ottawa, Ontario, K1H 8L6, Canada                                                        |
| 36<br>37<br>38 | 36 | <sup>9</sup> Institute of Clinical and Evaluative Sciences (ICES uOttawa), 1053 Carling Avenue, Ottawa  |
| 39<br>40       | 37 | Ontario, K1Y 4E9, Canada                                                                                |
| 41<br>42<br>43 | 38 | <sup>10</sup> Ottawa Hospital Research Institute, Center for Practice Changing Research, The Ottawa     |
| 43<br>44<br>45 | 39 | Hospital–General Campus, 501 Smyth Road, PO Box 201B, Ottawa, Ontario, K1H 8L6,                         |
| 46<br>47       | 40 | Canada.                                                                                                 |
| 48<br>49<br>50 | 41 | <sup>11</sup> Departments of Medicine and Community Health Sciences, University of Calgary, TRW         |
| 51<br>52       | 42 | Building, 3rd Floor, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada                          |
| 53<br>54<br>55 | 43 | <sup>12</sup> Epidemiology Division, Dalla Lana School of Public Health, University of Toronto, 6th     |
| 56<br>57       | 44 | Floor, 155 College Street, Toronto, Ontario, M5T 3M7, Canada                                            |
| 58<br>59       |    |                                                                                                         |
| 60             |    |                                                                                                         |

### **\*Corresponding author**

- 46 Prof. Andrea C. Tricco, PhD
- 47 Scientist, Knowledge Translation Program,
- 48 Li Ka Shing Knowledge Institute, St. Michael's Hospital,
- 49 209 Victoria Street, East Building, Toronto, Ontario, M5B 1W8, Canada
  - 50 Phone: 416-864-6060, Fax: 416-864-5805, Email: <u>TriccoA@smh.ca</u>

- 52 Keywords: multiple treatment meta-analysis, knowledge synthesis, epilepsy, pregnancy,
- 53 infants, developmental delay.
- **Word count**: abstract (282 words); main text (3848 words); 1 table; 3 figures; 3 additional
  - 55 files; 41 references



| 1          |  |
|------------|--|
| 2          |  |
| 2          |  |
| 3          |  |
| 4          |  |
| 5          |  |
| 6          |  |
| 1          |  |
| 8          |  |
| 9          |  |
| 10         |  |
| 11         |  |
| 12         |  |
| 13         |  |
| 14         |  |
| 15         |  |
| 16         |  |
| 17         |  |
| 18         |  |
| 19         |  |
| 20         |  |
| 21         |  |
| 22         |  |
| 23         |  |
| 24         |  |
| 25         |  |
| 26         |  |
| 20         |  |
| 21         |  |
| 28         |  |
| 29         |  |
| 30         |  |
| 31         |  |
| 32         |  |
| 33         |  |
| 34         |  |
| 35         |  |
| 36         |  |
| 37         |  |
| 38         |  |
| 39         |  |
| 40         |  |
| 41         |  |
| 42         |  |
| 43         |  |
| 44         |  |
| 45         |  |
| 46         |  |
| 47         |  |
| <u>4</u> 8 |  |
| <u>40</u>  |  |
|            |  |
| 50         |  |
| 51         |  |
| 52<br>50   |  |
| 53         |  |
| 54         |  |
| 55         |  |
| 56         |  |
| 57         |  |
| 58         |  |
| 59         |  |
| 60         |  |

| 56 | ABSTRACT                                                                                        |
|----|-------------------------------------------------------------------------------------------------|
| 57 | <b>Objectives</b> : To compare the safety of Anti-epileptic drugs (AEDs) on neurodevelopment of |
| 58 | infants/children exposed in-utero or during breastfeeding.                                      |
| 59 | Design and Setting: Systematic review and Bayesian random-effects network meta-                 |
| 60 | analysis (NMA).                                                                                 |
| 61 | <b>Participants</b> : 27 cohort studies including 4,841 infants/children.                       |
| 62 | Interventions: Mono- and poly-therapy AEDs were included, including first-generation            |
| 63 | (i.e., carbamazepine, clobazam, clonazepam, ethosuximide, phenobarbital, phenytoin,             |
| 64 | primidone, valproate) and newer-generation (i.e., gabapentin, lamotrigine, levetiracetam,       |
| 65 | oxcarbazepine, topiramate, vigabatrin) AEDs.                                                    |
| 66 | Primary and secondary Outcome measures: Cognitive developmental delay and                       |
| 67 | autism/dyspraxia were primary outcomes. Attention deficit hyperactivity disorder,               |
| 68 | language delay, neonatal seizures, psychomotor developmental delay, and social                  |
| 69 | impairment were secondary outcomes.                                                             |
| 70 | Results: The NMA on cognitive developmental delay 10 cohort studies, 748 children, 14           |
| 71 | AEDs and control (no AED) suggested valproate (arm sample size (N)=160, odds ratio              |
| 72 | (OR)=8.63, 95% credible interval (CrI): 3.01-25.74) and the combination carbamazepine,          |
| 73 | phenobarbital, and valproate (N=3, OR=17.31, CrI: $1.02-434.50$ ) were statistically            |
| 74 | significantly associated with more children experiencing cognitive developmental delay. A       |
| 75 | NMA was conducted on autism including 5 cohort studies, 2,551 children, 11 AEDs and             |
| 76 | control; only oxcarbazepine (N=321, OR=13.51, CrI: 1.28-221.40), valproate (N=485,              |
| 77 | OR=17.29, 95% CrI: 2.40-217.60), lamotrigine (N=745, OR=8.88, CrI: 1.28-112.00), and            |
| 78 | lamotrigine+valproate (N=6, OR=132.70, CrI: 7.41-3851.00) were associated with a                |
|    |                                                                                                 |

| 1        |  |
|----------|--|
| 2        |  |
| 3        |  |
| 4        |  |
| 5        |  |
| 6        |  |
| 7        |  |
| 8        |  |
| 9        |  |
| 10       |  |
| 11       |  |
| 12       |  |
| 13       |  |
| 14       |  |
| 15       |  |
| 16       |  |
| 17       |  |
| 18       |  |
| 19       |  |
| 20       |  |
| 21       |  |
| 22       |  |
| 23       |  |
| 24       |  |
| 25       |  |
| 26       |  |
| 27       |  |
| 28       |  |
| 29       |  |
| 30       |  |
| 31       |  |
| 32       |  |
| 33       |  |
| 34       |  |
| 35       |  |
| 36       |  |
| 37       |  |
| 38       |  |
| 39       |  |
| 40       |  |
| 41       |  |
| 42       |  |
| 43       |  |
| 44       |  |
| 45       |  |
| 46       |  |
| 4/       |  |
| 48       |  |
| 49       |  |
| 50       |  |
| 51       |  |
| 52<br>50 |  |
| ວຽ<br>54 |  |
| 54<br>57 |  |
| 55       |  |
| 56       |  |
| 5/       |  |
| 20       |  |
| 59       |  |
| 60       |  |

| 79 | significantly greater risk of autism compared with control. Psychomotor developmental     |
|----|-------------------------------------------------------------------------------------------|
| 80 | delay was the largest NMA of secondary outcomes (11 cohort studies, 1,145 children, 17    |
| 81 | AEDs and control): valproate (N=137, OR=4.16, CrI: 2.04-8.75) and                         |
| 82 | carbamazepine+phenobarbital+valproate (N=3, OR=19.12, CrI: 1.49-337.50) were              |
| 83 | associated with a significantly greater risk of psychomotor delay compared with control.  |
| 84 | <b>Conclusions</b> : Across all outcomes, valproate alone or combined with another AED is |
| 85 | associated with the greatest risk, whereas oxcarbazepine and lamotrigine were associated  |
| 86 | with increased occurrence of autism. Counselling is advised for women considering         |
| 87 | pregnancy to tailor the safest regimen.                                                   |
| 88 |                                                                                           |
| 89 | Registration: PROSPERO database (CRD42014008925).                                         |
| 90 | Keywords: multiple treatment meta-analysis, knowledge synthesis, epilepsy, pregnancy,     |
| 91 | infants, developmental delay.                                                             |
| 92 | ARTICLE SUMMARY                                                                           |
| 93 | Strengths and limitations of this study                                                   |
| 94 | • 27 cohort studies involving 4,841 children of women who took AEDs were included         |
| 95 | in this systematic review. More evidence from long-term follow-up studies is              |
| 96 | required.                                                                                 |
| 97 | • This study was the first that compared and ranked the safety of AEDs, including         |
| 98 | comparative safety of treatments that have not been directly compared.                    |
|    |                                                                                           |
|    |                                                                                           |

| 1<br>2                                                                                                                                                 |            |                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------|
| 3<br>4                                                                                                                                                 | 99         | • Across all neurological outcomes, valproate alone or combined with another AED is                    |
| 5<br>6<br>7                                                                                                                                            | 100        | associated with the greatest risk.                                                                     |
| 7<br>8<br>9                                                                                                                                            | 101        | Oxcarbazepine and lamotrigine were associated with increased occurrence of                             |
| o<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>20                         | 101<br>102 | <ul> <li>Oxcarbazepine and lamotrigine were associated with increased occurrence of autism.</li> </ul> |
| $\begin{array}{c} 23\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 39\\ 40\\ 42\\ 43\\ 44\\ 56\\ 78\\ 90\\ 51\\ 52\\ 53\\ 55\\ 56\\ 78\\ 59\\ \end{array}$ |            |                                                                                                        |

### **INTRODUCTION**

Anti-epileptic drugs (AEDs) are used by pregnant women for various conditions, such as epilepsy, pain syndromes, psychiatric disorders, and chronic migraine.<sup>1</sup> AED use during pregnancy is associated with risks to the fetus, as these drugs can cross the placenta or may be transferred to the infant through breastfeeding and may be associated with adverse neurodevelopment outcomes.<sup>2-4</sup> Two systematic reviews examined the association between AED exposure and neurodevelopment *in utero*, and reported that exposure to valproate was linked to significantly lower IQ scores and poorer overall neurodevelopmental outcomes in the children of women who used these medications.<sup>56</sup> No statistically significant associations were found between neurodevelopment and exposure to other AEDs such as carbamazepine, lamotrigine, or phenytoin.<sup>5-8</sup> However, there is a lack of sufficiently powered studies to assess the impact of AEDs on neurodevelopment in children of women exposed to these agents, especially for newer generation drugs, thus highlighting the need for a systematic review.910 The aim of this study was to compare the safety of AEDs and assess their impact on neurodevelopment in infants and children exposed in-utero or during breastfeeding, employing a systematic review and network meta-analysis (NMA). 

#### METHODS

The methods are briefly described here; details can be found in the published protocol (Additional File 1).<sup>11</sup> This study was registered with PROSPERO (CRD42014008925). We followed the ISPOR<sup>12</sup> guidelines for our NMA, and reported our findings using the PRISMA extension for NMA (Additional File 2).13

#### **Eligibility criteria**

All randomized clinical trials (RCTs), quasi-RCTs, and observational studies were eligible. Included studies assessed infants or children  $\leq 12$  years of age whose mothers consumed AEDs during pregnancy and/or while breastfeeding. Both mono- and poly-therapy AEDs were eligible, including first-generation (i.e., carbamazepine, clobazam, clonazepam, ethosuximide, phenobarbital, phenytoin, primidone, valproate) and newer-generation (i.e., marketed after 1990 including: gabapentin, lamotrigine, levetiracetam, oxcarbazepine, topiramate, vigabatrin), with no restrictions on AED dosage. Placebo, no AED, other AEDs alone or in combination, were considered as comparators. Duplicate studies that used the same registry or population sample (i.e., companion studies) were used for supplementary information only. No language or other restrictions were imposed. The primary neurological outcomes were cognitive developmental delay and autism/dyspraxia, and the secondary outcomes included attention deficit hyperactivity disorder (ADHD), language delay, neonatal seizures, psychomotor developmental delay. and social impairment (outcome measures and diagnostic scales used are provided in Additional File 3: Appendix A). Our initial intention was to evaluate all safety outcomes in infants and children who were exposed to AEDs *in-utero* or during breastfeeding in one publication. However, given the breadth of evidence we identified, we report results

related to risk of major congenital malformations, birth, and prenatal outcomes in a secondpaper (paper in preparation).

#### 145 Searching, screening, abstraction, appraisal of methodological quality

We searched MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trials up to December 15, 2015, and identified additional studies from scanning references and contacting authors. Unpublished studies were sought by searching clinical trial registries and conference abstracts. After a calibration exercise, titles/abstracts and full-text papers were screened by two reviewers independently (further details reported in Additional File 3: Appendix B). Conflicts were resolved through discussion. The same approach was used for data abstraction and appraisal of methodological quality. Observational studies were only identified, and their methodological quality was appraised with the Newcastle-Ottawa Scale (Additional File 3: Appendix C).<sup>14</sup> For each outcome with 

 $155 \ge 10$  studies and treatment comparisons with different total numbers of patients, the comparison-adjusted funnel plot was used to assess reporting bias,<sup>15</sup> where the overall

157 treatment effect for each comparison was estimated under the fixed-effect meta-analysis

, 158 model.

#### **Synthesis of included studies**

We used the odds ratio (OR) for each dichotomous outcome, and outcome data were
pooled using hierarchical models and the Markov Chain Monte Carlo sampling method in a
Bayesian framework. To account for anticipated methodological and clinical heterogeneity
across studies, and to achieve the highest generalizability in the meta-analytical treatment
effects, we applied a random-effects model.<sup>16</sup>

Page 11 of 90

#### **BMJ Open**

For connected evidence networks, we applied a random-effects NMA hierarchical model.<sup>17</sup> The review team pre-specified the network nodes. Due to the complexity of the data and the studies' underreporting, differences in drug dosages could not be accounted for, and it was assumed that different dosages of the same AED were equally effective. When a study reported multiple dosages for the same treatment, we combined the data for this treatment. We assessed the transitivity assumption for each outcome a priori using the treatment effect modifiers: age, baseline risk, treatment indication, timing, and methodological quality. The mean of each continuous effect modifier and the mode of each categorical effect modifier for each pairwise comparison were presented in tables for each outcome.<sup>18</sup> The consistency assumption was evaluated for the entire network of each outcome using the design-by-treatment interaction model.<sup>19</sup> If inconsistency was identified, further examination for local inconsistency in parts of the network was completed using the loop-specific method.<sup>20 21</sup> Common within-network between-study variance ( $\tau^2$ ) across treatment comparisons was assumed in the conventional meta-analysis, NMA, and design-by-treatment interaction model, so that treatment comparisons including a single study can borrow strength from the remaining network. This assumption was clinically reasonable. as the treatments included were of the same nature. In the loop-specific approach, common within-loop  $\tau^2$  was assumed. For cognitive developmental delay and autism/dyspraxia outcomes, network meta-regression analyses for maternal age and baseline risk (i.e., using the control group) were conducted, when at least 10 studies provided relevant information, assuming a common

186 fixed coefficient across treatment comparisons. Sensitivity analyses for cognitive

187 developmental delay and autism/dyspraxia outcomes were performed for studies with the

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| 2              |     |                                                                                                          |
|----------------|-----|----------------------------------------------------------------------------------------------------------|
| 3<br>4         | 188 | treatment indication of epilepsy, large study size (i.e., >300), maternal alcohol intake,                |
| 5<br>6<br>7    | 189 | maternal tobacco use, only first-generation AEDs, and higher methodological quality for the              |
| 8<br>9         | 190 | two items of the Newcastle-Ottawa Scale that had the highest percentage of low                           |
| 10<br>11       | 191 | methodological quality (adequacy of follow-up of cohorts and comparability of cohorts                    |
| 12<br>13<br>14 | 192 | items for cohort studies). Severity of epilepsy, which may be a risk factor variable as the              |
| 15<br>16       | 193 | more severe the epilepsy the more necessary AED medications for the mother, <sup>22</sup> was not        |
| 17<br>18<br>10 | 194 | evaluated in our analyses since this was not commonly reported. For autism/dyspraxia, a                  |
| 20<br>21       | 195 | sensitivity analysis on maternal IQ/psychiatric history was additionally conducted. We                   |
| 22<br>23       | 196 | measured the goodness of fit using the posterior mean of the residual deviance, the degree               |
| 24<br>25<br>26 | 197 | of between-study heterogeneity, and the deviance information criterion. In a well-fitting                |
| 27<br>28       | 198 | model the posterior mean residual deviance should be close to the number of data points. <sup>23</sup>   |
| 29<br>30<br>21 | 199 | <sup>24</sup> A difference of 3 units in the deviance information criterion was considered important     |
| 32<br>33       | 200 | and the lowest value of the deviance information criterion corresponded to the model with                |
| 34<br>35       | 201 | the best fit. <sup>23 24</sup>                                                                           |
| 36<br>37<br>38 | 202 | All analyses were conducted in OpenBUGS <sup>25</sup> assuming non-informative priors for all model      |
| 39<br>40       | 203 | parameters and a half normal prior distribution for the between-study standard deviation                 |
| 41<br>42<br>43 | 204 | $(\tau \sim N(0,1), \tau > 0)$ . The first 10,000 iterations were discarded and then 100,000 simulations |
| 44<br>45       | 205 | were run with thinning of 10 values. Convergence was checked by visual inspection of the                 |
| 46<br>47<br>48 | 206 | evaluation of the mixing of two chains. The median and 95% CrI were calculated for each                  |
| 40<br>49<br>50 | 207 | parameter value, since medians are not overly influenced by outliers. The network                        |
| 51<br>52       | 208 | command <sup>26</sup> was used to apply the design-by-treatment interaction model.                       |
| 53<br>54<br>55 | 209 | For NMA estimates, a 95% predictive interval (PrI) is also reported to capture the                       |
| 56<br>57       | 210 | magnitude of the between-study variance ( $	au^2$ ) and present the interval within which the            |
| 58<br>59<br>60 |     | 11                                                                                                       |

1

#### **BMJ Open**

| 2                       |
|-------------------------|
| 3                       |
| 1                       |
| 4                       |
| 5                       |
| 6                       |
| 7                       |
| 8                       |
| 9                       |
| 10                      |
| 10                      |
| 11                      |
| 12                      |
| 13                      |
| 14                      |
| 15                      |
| 16                      |
| 17                      |
| 17                      |
| 18                      |
| 19                      |
| 20                      |
| 21                      |
| 22                      |
| 23                      |
| 24                      |
| 24                      |
| 25                      |
| 26                      |
| 27                      |
| 28                      |
| 29                      |
| 20                      |
| 30                      |
| 31                      |
| 32                      |
| 33                      |
| 34                      |
| 35                      |
| 36                      |
| 27                      |
| 31                      |
| 38                      |
| 39                      |
| 40                      |
| 41                      |
| 42                      |
| 43                      |
| 44                      |
| 44                      |
| 45                      |
| 46                      |
| 47                      |
| 48                      |
| 40                      |
| - <del>1</del> -0<br>50 |
| 50                      |
| 51                      |
| 52                      |
| 53                      |
| 54                      |
| 55                      |
| 56                      |
| 50                      |
| 5/                      |
| 58                      |
| 59                      |
| 60                      |

treatment effect of a future study is expected to lie.<sup>27 28</sup> The estimated safety of the included 211 212 AED medications was ranked using the surface under the cumulative ranking (SUCRA) 213 curve.<sup>29</sup> The larger the SUCRA for a treatment, the higher its safety rank among all the 214 available treatment options. A steep gradient in the cumulative ranking curve suggests that 215 the corresponding treatment is most likely the safest. SUCRA curve values are presented

216 along with 95% CrIs to capture the uncertainty in the parameter values.

### **RESULTS**

### 218 Literature search and included studies

Our literature search identified 5,305 titles and abstracts, which after the screening process yielded 642 articles potentially relevant for inclusion (Figure 1). After full-text review, 93 studies fulfilled eligibility criteria along with 17 studies identified through supplemental methods. Of the 110 total eligible studies in the complete review, 27 articles with nine companion reports or potentially overlapping studies included one or more relevant neurological outcomes (Additional File 3: Appendices D, E). Two of the included studies were conference abstracts with usable data, nine were non-English publications, and four studies, not captured in the original literature search, were identified through reference scanning. A table with the key excluded studies and a rationale for their exclusion is presented in Additional File 3: Appendix F. Study and patient characteristics We included 27 cohort studies (4,841 total patients) published between 1989 and 2015 (Table 1; Additional File 3: Appendices G, H). The number of patients included in each study ranged from 23 to 2,011 (median 69), and the number of arms compared in each study ranged from two to 12. Most studies (78%) were published after 2000, more than half of the studies (67%) included fewer than 100 patients, and 13 studies (48%) included a control group of pregnant/breastfeeding women with epilepsy who did not receive AEDs.

- The mean age of women ranged from 24 to 32 years. About half of the studies were funded
- through government/public research funding (52%).

### 238 Methodological quality results

| 1         |   |
|-----------|---|
| 2         |   |
| 3         |   |
| 4         |   |
| 5         |   |
| 0<br>7    |   |
| י<br>פ    |   |
| 0<br>Q    |   |
| 10        |   |
| 11        |   |
| 12        |   |
| 13        | : |
| 14        |   |
| 15        |   |
| 16        |   |
| 17        |   |
| 18        |   |
| 19        |   |
| 20        |   |
| 21        |   |
| 23        |   |
| 24        |   |
| 25        |   |
| 26        |   |
| 27        |   |
| 28        | 4 |
| 29        |   |
| 30        |   |
| 31        |   |
| 32        |   |
| აა<br>ვ∕I |   |
| 34        |   |
| 36        | - |
| 37        |   |
| 38        |   |
| 39        |   |
| 40        |   |
| 41        |   |
| 42        |   |
| 43        |   |
| 44<br>15  |   |
| 40        |   |
| 40<br>47  |   |
| 48        |   |
| 49        |   |
| 50        | 4 |
| 51        |   |
| 52        |   |
| 53        |   |
| 54        |   |
| 55        |   |
| 56        |   |
| 5/        |   |
| 20<br>50  |   |
| 09<br>60  |   |
| 00        |   |

| 239 | Twenty-seven observational studies were appraised using the Newcastle Ottawa Scale                               |
|-----|------------------------------------------------------------------------------------------------------------------|
| 240 | (Additional File 3: Appendix I). All studies selected the non-exposed cohort from the same                       |
| 241 | community as the exposed cohort, 25 (93%) included a representative (or somewhat                                 |
| 242 | representative) sample, 25 (93%) assessed outcomes independently, blindly or via a                               |
| 243 | record linkage (e.g., identified through database records), and 21 (78%) ascertained                             |
| 244 | exposure via secured records (e.g., database records) or structured interviews. No evidence                      |
| 245 | for reporting bias was identified by the visual inspection of the comparison-adjusted funnel                     |
| 246 | plots (Additional File 3: Appendix J).                                                                           |
| 247 | Statistical analysis results                                                                                     |
| 248 | No important concerns were raised regarding the violation of the transitivity assumption                         |
| 249 | when mean maternal age, mean baseline risk, treatment indication, and timing were                                |
| 250 | assessed (Additional File 3: Appendix K). However, the average methodological quality                            |
| 251 | appraisal across treatment comparisons varied across treatment comparisons. The                                  |
| 252 | evaluation of the consistency assumption using the design-by-treatment interaction model                         |
| 253 | suggested that there was no evidence of significant inconsistency across all outcomes                            |
| 254 | (Additional File 3: Appendix K).                                                                                 |
| 255 | In the following sections, we present the overall results of the NMA analyses for each                           |
| 256 | outcome, while the SUCRA curve values from all outcomes are presented in Additional File                         |
| 257 | 3: Appendix L and depicted in a rank-heat plot ( <u>http://rh.ktss.ca/</u> ) <sup>30</sup> in Additional File 3: |
| 258 | Appendix M.                                                                                                      |
| 259 | Cognitive developmental delay                                                                                    |
| 260 | The NMA for cognitive developmental delay (definitions in Additional File 3: Appendix A)                         |
| 261 | included ten cohort studies, 748 children, and examined 13 AEDs plus control (i.e., no                           |
|     |                                                                                                                  |

Page 16 of 90

| 1<br>2         |   |
|----------------|---|
| 3<br>4         | 2 |
| 5<br>6<br>7    | 2 |
| 7<br>8<br>9    | 2 |
| 10<br>11       | 2 |
| 12<br>13       | 2 |
| 14<br>15<br>16 | 2 |
| 17<br>18       | 2 |
| 20<br>21       | 2 |
| 22<br>23       | 2 |
| 24<br>25<br>26 | 2 |
| 27<br>28       | 2 |
| 29<br>30<br>31 | 2 |
| 32<br>33       | 2 |
| 34<br>35<br>26 | 2 |
| 30<br>37<br>38 | 2 |
| 39<br>40       | 2 |
| 41<br>42<br>43 | 2 |
| 44<br>45       | 2 |
| 46<br>47       | 2 |
| 40<br>49<br>50 | 2 |
| 51<br>52       | 2 |
| 53<br>54<br>55 | 2 |
| 56<br>57       | 2 |
| 58<br>59<br>60 |   |

| 262 | exposure to AEDs). One study included children exposed to AEDs both <i>in-utero</i> and through       |
|-----|-------------------------------------------------------------------------------------------------------|
| 263 | breastfeeding, and nine included children exposed to AEDs in-utero. Overall, 6% of the                |
| 264 | treatment comparisons in the network reached statistical significance (Figure 2a;                     |
| 265 | Additional File 3: Appendices K, N). Valproate (OR=8.63, 95% CrI: 3.01-25.74) and                     |
| 266 | carbamazepine+phenobarbital+valproate (OR=17.31, 95% CrI: 1.02-434.50) were                           |
| 267 | statistically significantly associated with greater risk in children experiencing                     |
| 268 | developmental delay compared with control (Figure 3).                                                 |
| 269 | Restricting the NMA to 9 cohort studies including 725 offspring of women only with                    |
| 270 | epilepsy as their treatment indication, comparing 13 AEDs plus control produced results               |
| 271 | that were generally in agreement with the overall results. The same was observed in a                 |
| 272 | network meta-regression model of baseline risk for offspring of women with epilepsy who               |
| 273 | were not exposed to AEDs (estimated regression coefficient on OR scale: 0.94, 95% CrI:                |
| 274 | $0.67-2.19$ ; $\tau^2=0.17$ , 95% CrI: 0.00-1.38; residual deviance= 40.26, data points= 42, deviance |
| 275 | information criterion= 71). Restricting the analysis to 6 cohort studies including 480                |
| 276 | children comparing 11 first-generation AEDs, we found that valproate was statistically                |
| 277 | significantly more harmful than control, phenytoin, and carbamazepine, yet                            |
| 278 | carbamazepine+phenobarbital+valproate was no longer statistically significant versus                  |
| 279 | control. The results were no longer statistically significant when restricted to two studies          |
| 280 | of 319 offspring of women with a history of alcohol and tobacco use comparing 3 AEDs and              |
| 281 | control. This result was consistent in sensitivity analyses including only higher                     |
| 282 | methodological quality studies in the 'comparability of cohorts' item on the Newcastle-               |
| 283 | Ottawa Scale (2 studies, 181 children, 3 AEDs plus control) and the 'adequacy of follow-up            |
| 284 | of cohorts' (4 studies, 283 children, 11 AEDs plus control).                                          |
|     |                                                                                                       |

| 1              |     |                                                                                                      |
|----------------|-----|------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4    | 285 | Autism/dyspraxia                                                                                     |
| 5<br>6<br>7    | 286 | The NMA on autism/dyspraxia (definitions in Additional File 3: Appendix A) included five             |
| 7<br>8<br>9    | 287 | cohort studies, 2,551 children exposed <i>in utero</i> , and examined 11 AEDs plus control (i.e., no |
| 10<br>11       | 288 | AED exposure). Overall, 9% of the treatment comparisons in the network reached                       |
| 12<br>13<br>14 | 289 | statistical significance (Figure 2b; Additional File 3: Appendices K, N). Compared with              |
| 15<br>16       | 290 | control, only valproate (OR=17.29, 95% CrI: 2.40-217.60), oxcarbazepine (OR= 13.51,                  |
| 17<br>18<br>19 | 291 | 95% CrI: 1.28-221.40), lamotrigine (OR= 8.88, 95% CrI: 1.28-112.00), and                             |
| 20<br>21       | 292 | lamotrigine+valproate (OR=132.70, 95% CrI: 7.41-3851.00) were significantly associated               |
| 22<br>23<br>24 | 293 | with increased occurrence of autism/dyspraxia (Figure 3).                                            |
| 24<br>25<br>26 | 294 | Restricting the NMA to studies including only women with epilepsy as their treatment                 |
| 27<br>28       | 295 | indication produced results that were generally in agreement with the overall results,               |
| ∠9<br>30<br>31 | 296 | except that oxcarbazepine was no longer in the network (4 cohort studies, 540 children, 9            |
| 32<br>33       | 297 | AEDs plus control). Two cohort studies of 404 offspring of women with a history of tobacco           |
| 34<br>35<br>36 | 298 | use compared 3 AEDs and control and found similar results except that oxcarbazepine and              |
| 37<br>38       | 299 | lamotrigine+valproate were no longer in the network. The results were in agreement in                |
| 39<br>40<br>41 | 300 | sensitivity analyses including only higher methodological quality studies in the                     |
| 41<br>42<br>43 | 301 | 'comparability of cohorts' item on the Newcastle-Ottawa Scale (4 studies, 2395 children, 11          |
| 44<br>45       | 302 | AEDs plus control) and the 'adequacy of follow-up of cohorts' (3 studies, 2244 children, 9           |
| 46<br>47<br>48 | 303 | AEDs plus control), except that lamotrigine was no longer statistically significant than             |
| 49<br>50       | 304 | control for the latter.                                                                              |
| 51<br>52<br>53 | 305 | Neonatal Seizure                                                                                     |
| 54<br>55       | 306 | One cohort study included 72 children who were exposed to AEDs in-utero as well as                   |
| 56<br>57<br>5° | 307 | through breastfeeding reported on the incidence of neonatal seizures. The study compared             |
| 59<br>60       |     | 16                                                                                                   |

| 2  |  |
|----|--|
| 3  |  |
| 1  |  |
| 4  |  |
| 5  |  |
| 6  |  |
| 7  |  |
| 8  |  |
| 9  |  |
| 10 |  |
| 10 |  |
| 11 |  |
| 12 |  |
| 13 |  |
| 14 |  |
| 15 |  |
| 16 |  |
| 10 |  |
| 17 |  |
| 18 |  |
| 19 |  |
| 20 |  |
| 21 |  |
| 21 |  |
| 22 |  |
| 23 |  |
| 24 |  |
| 25 |  |
| 26 |  |
| 27 |  |
| 20 |  |
| 20 |  |
| 29 |  |
| 30 |  |
| 31 |  |
| 32 |  |
| 33 |  |
| 24 |  |
| 34 |  |
| 35 |  |
| 36 |  |
| 37 |  |
| 38 |  |
| 30 |  |
| 40 |  |
| 40 |  |
| 41 |  |
| 42 |  |
| 43 |  |
| 44 |  |
| 45 |  |
| 40 |  |
| 40 |  |
| 47 |  |
| 48 |  |
| 49 |  |
| 50 |  |
| 51 |  |
| 51 |  |
| 5Z |  |
| 53 |  |
| 54 |  |
| 55 |  |
| 56 |  |
| 57 |  |
| 57 |  |
| 58 |  |
| 59 |  |

60

1

valproate against lamotrigine and found no statistically significant difference in neonatal
seizures between the two drugs (OR=0.18, 95% CrI: 0.01-3.70).

310 **Psychomotor developmental delay** 

The NMA on psychomotor developmental delay (definitions in Additional File 3: Appendix
A) included 11 cohort studies, 1,145 children exposed *in utero*, and examined 17 AEDs plus
control (i.e., no AED exposure). Overall, 4% of treatment comparisons in the network
reached statistical significance (Figure 2c; Additional File 3: Appendices K, N). Valproate
(OR=4.16, 95% CrI: 2.04-8.75) and carbamazepine+phenobarbital+valproate (OR=19.12,
95% CrI: 1.49-337.50) were statistically significantly more harmful than control (Figure 3).

317 Language delay

318 The NMA on language delay (definitions in Additional File 3: Appendix A) included five

319 cohort studies, 509 children, and examined four AEDs plus control (i.e., no AED exposure;

320 Figure 2d; Additional File 3: Appendices K, N). One study included children exposed to

321 AEDs *in-utero* and through breastfeeding, and four included children exposed to AEDs *in-*

322 *utero*. Compared with control, valproate was the only treatment significantly associated

323 with increased risk of language delay (OR=7.95, 95% CrI: 1.50-49.13; Figure 3).

324 Attention deficit hyperactivity disorder

The NMA on ADHD (definitions in Additional File 3: Appendix A) included four cohort
studies, 750 children, and examined five AEDs plus control (i.e., no AED exposure). One
study included children exposed to AEDs *in-utero* and through breastfeeding, while three
studies included children exposed to AEDs *in-utero*. None of the treatment comparisons
reached statistical significance (Figure 2e; Additional File 3: Appendices K, N).

330 Social Impairment

Page 19 of 90

1

60

| 2                                                                                               |     |                                                                                            |
|-------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------|
| 3<br>4                                                                                          | 331 | One cohort study included 422 children exposed to AEDs in-utero as well as through         |
| 5<br>6<br>7                                                                                     | 332 | breastfeeding. The children were exposed to carbamazepine (n=48), lamotrigine (n=71),      |
| 7<br>8<br>9                                                                                     | 333 | valproate (n=27) and control (n=278). No significant differences in social impairment were |
| 10<br>11                                                                                        | 334 | identified. <sup>31</sup>                                                                  |
| $\begin{array}{c}12\\13\\14\\56\\7\\89\\01\\22\\22\\22\\22\\22\\22\\22\\22\\22\\22\\22\\22\\22$ | 335 | to beer to view only                                                                       |

#### **DISCUSSION**

Our results suggest that AEDs generally pose a risk for infants and children exposed *in*-*utero* or during breastfeeding. Valproate was statistically significantly associated with more children experiencing autism/dyspraxia, language, cognitive and psychomotor developmental delays versus children who were not exposed to AEDs. Oxcarbazepine, lamotrigine and lamotrigine+valproate were associated with increased occurrence of autism/dyspraxia, whereas for the cognitive developmental delay and psychomotor developmental delay outcomes, children exposed to the combination of carbamazepine, phenobarbital, and valproate were at a greater risk of harm than those who were not exposed to AEDs. However, due to the lack of data identified in these studies, we were unable to consider a number of factors, such as anticonvulsant dosing, severity of epilepsy, duration of exposure, serum concentrations of exposure, mother's IQ/education, which may all influence outcomes, and hence these results should be interpreted with caution. In addition, our subsequent analyses may be underpowered due to missing data (e.g., maternal age is not reported in 17 of the 27 studies, alcohol use is not reported in 23 of 27 studies, tobacco use is not reported in 22 of 27 studies, and epileptic control group was not included in 14 of 27 studies). NMA is a particularly useful tool for decision-makers because it allows the ranking of treatments for each outcome. However, the results of our SUCRA curves should be interpreted with caution, especially due to the small number of studies and children included in each NMA, which is also reflected in the high uncertainty around the SUCRA

357 values (Additional File 3: Appendix L).<sup>32</sup> The probability that a top AED is actually among

#### **BMJ Open**

| י<br>י   |  |
|----------|--|
| 2        |  |
| 3        |  |
| 4        |  |
| 5        |  |
| 6        |  |
| 7        |  |
| 0        |  |
| 0        |  |
| 9        |  |
| 10       |  |
| 11       |  |
| 12       |  |
| 13       |  |
| 11       |  |
| 14       |  |
| 15       |  |
| 16       |  |
| 17       |  |
| 18       |  |
| 19       |  |
| 20       |  |
| 21       |  |
| 21       |  |
| 22       |  |
| 23       |  |
| 24       |  |
| 25       |  |
| 26       |  |
| 27       |  |
| 21       |  |
| 28       |  |
| 29       |  |
| 30       |  |
| 31       |  |
| 32       |  |
| 33       |  |
| 27       |  |
| 34       |  |
| 35       |  |
| 36       |  |
| 37       |  |
| 38       |  |
| 30       |  |
| 10       |  |
| 40       |  |
| 41       |  |
| 42       |  |
| 43       |  |
| 44       |  |
| 45       |  |
| 46       |  |
| 47       |  |
| 47       |  |
| 48       |  |
| 49       |  |
| 50       |  |
| 51       |  |
| 52       |  |
| 52       |  |
| 50       |  |
| 04<br>55 |  |
| 55       |  |
| 56       |  |
| 57       |  |
| 58       |  |
| 59       |  |
|          |  |

60

358 the worst one is likely high,<sup>32</sup> as the SUCRA findings were unstable with overlapping 359 uncertainty intervals overlap.

360 Our results are consistent with a longitudinal study of 311 children that found exposure to 361 lamotrigine was associated with significantly higher IQ scores and verbal function at six 362 years of age compared to children exposed to valproate (Additional File 3: Appendix F).<sup>8</sup> As 363 indicated in Additional File 3: Appendix F, we were unable to include this study because the 364 outcome was reported as a continuous measure, where we focused on dichotomous 365 outcomes to ease interpretation. Our results are supported by findings from a cohort study 366 in the UK, which found that children exposed to levetiracetam were not at increased risk 367 for delayed development compared to unexposed children (Additional File 3: Appendix 368 F).<sup>33</sup> As indicated in Additional File 3: Appendix F, we were unable to include this study due 369 to the same reason as above. A NMA of 195 RCTs and 28,013 patients (including both males 370 and females) showed that gabapentin and levetiracetam showed the best tolerability 371 profile compared with other AEDs, whereas oxcarbazepine and topiramate had a higher 372 withdrawal rate, and lamotrigine an intermediate withdrawal rate.<sup>34</sup> 373 Across all outcomes, valproate alone or combined with another AED (even with a newer-374 generation agent, e.g., lamotrigine) was associated with the greatest risk. Similarly, two 375 previous systematic reviews that did not conduct a NMA found valproate was associated 376 with significantly lower IQ scores and poorer overall neurodevelopmental outcomes when 377 compared to an unexposed control group.<sup>56</sup> Also consistent with our results, a 2014 378 Cochrane review (with a meta-analysis of 10 studies) concluded that AED polytherapy led 379 to poorer developmental outcomes and IQ compared to healthy controls, epileptic controls, 380 and unspecified monotherapy.<sup>5</sup> This Cochrane review also concluded that insufficient data

exist for newer anti-epileptic drugs. These risks must be balanced with the need to control
seizure activity in pregnancy and thus informed decision making by patients and clinicians
is critical.

Strengths of our study include a comprehensive systematic review methodology that followed the Cochrane Handbook<sup>35</sup> and ISPOR<sup>12</sup> guidelines, and reported using the PRISMA extension for NMA.<sup>13</sup> To the best of our knowledge, our study was the first that compared and ranked the safety of AEDs. We evaluated the comparative safety of treatments that have not been directly compared head-to-head before. In addition, we calculated predictive intervals, which account for between-study variation and provide a predicted range for the treatment effect estimate, should a future study be conducted. On average, the predictive intervals suggested that our results are robust.

Our systematic review has a few limitations worth noting. First, when multiple doses were reported for the same treatment, we lumped the dosages because this information was not consistently reported across the included studies. However, this is common for cohort studies, which report on a number of different types of exposures amongst patients. Second, several polytherapies had high SUCRA estimates but with very wide CrIs, which is due to the small number of studies included for each drug combination with underpowered sample sizes. Evidence suggests that ranking probabilities for a treatment of being the best may be biased toward the treatments with the smallest number of studies, which may have influenced our SUCRA results.<sup>32 36</sup> As such, the effect sizes need to be taken into account when considering the SUCRA values. Third, due to the absence of evidence from RCTs, our conclusions were based on evidence from observational studies only, and inherent biases because of confounding and shortcomings of these studies may have impacted our findings.

Page 23 of 90

#### **BMJ Open**

For example, the included studies often failed to report important confounding variables. such as family history of autism, ADHD, and maternal IO, making it impossible for us to control these variables through subgroup analysis and meta-regression. Recent research papers have explored methods to incorporate non-randomized with randomized evidence in a NMA and have highlighted the need to carefully explore the level of confidence in the non-randomized evidence.<sup>37 38</sup> However, the use of observational studies allows the assessment of the safety profile of AED treatments and offers the opportunity to evaluate effects in pregnancy.<sup>39</sup> Future large-scale observational studies are needed to allow the evaluation of rare adverse events that otherwise cannot be adequately evaluated in RCTs, especially during pregnancy. Fourth, although no intransitivity for most treatment effect modifiers assessed was evident, there was an imbalance in the methodological study quality appraisal across treatment comparisons and most outcomes, which may impact our results. However, the assessment of consistency suggested no disagreement between the different sources of evidence in the network. Fifth, although the tendency towards publication bias is greater with observational studies than with randomized trials,<sup>40</sup> the assessment of publication bias and small-study effects using adjusted funnel plots suggested no evidence for their prevalence. Also, the majority of the included studies in this review compared multiple treatments inducing correlations in each funnel plot, which may mask asymmetry. Although we plotted data points corresponding to the study-specific basic parameters to reduce correlations, this issue may still exist. Sixth, we were unable to conduct sub-group analysis by type of exposure (breastfeeding versus *in utero*) due to the small number of studies included in the NMA and due to the poor reporting; 22 studies did

| 2              |          |
|----------------|----------|
| 3<br>4         | 42       |
| 567            | 42       |
| 7<br>8<br>9    | 42       |
| 10<br>11       | 42       |
| 12<br>13       | 43       |
| 14<br>15<br>16 | 43       |
| 17<br>18       | 43       |
| 19<br>20<br>21 | 43       |
| 21<br>22<br>23 | 43       |
| 24<br>25       | 43       |
| 26<br>27<br>28 | 43       |
| 29<br>30       | 13       |
| 31<br>32       | тJ<br>42 |
| 33<br>34<br>35 | 40       |
| 36<br>37       | 43       |
| 38<br>39       |          |
| 40<br>41<br>42 |          |
| 42<br>43<br>44 |          |
| 45<br>46       |          |
| 47<br>48       |          |
| 49<br>50<br>51 |          |
| 52<br>53       |          |
| 54<br>55       |          |
| 56<br>57       |          |
| 58<br>59<br>60 |          |
|                |          |

6 not report whether exposure was also in breastfeeding (additional to *in utero*). Hence, we 7 included all studies in the analysis irrespective of the type of exposure. 8 More evidence from long-term follow-up studies is required to further delineate 9 neurodevelopmental risks in children. Registries should aim to include a suitable control 0 group and collect information on potential confounders, such as alcohol and tobacco use, 1 allowing researchers to identify the safest agents for different patient-level covariates, and 2 enhance decision-making for healthcare providers and patients. An individual patient data 3 NMA would likely provide further clarity to the field, which allows the tailoring of 4 management to specific patient characteristics.<sup>41</sup> 5 CONCLUSION 6 Across all outcomes, valproate alone or combined with another AED was associated with 7 the greatest risk, whereas oxcarbazepine and lamotrigine were associated with increased 8 occurrence of autism. Counselling is advised for women considering pregnancy to tailor the 9 safest regimen.

| 1<br>2                     |     |                                                                                            |
|----------------------------|-----|--------------------------------------------------------------------------------------------|
| 3<br>4                     | 440 | LIST OF ABBREVIATIONS                                                                      |
| 5<br>6<br>7                | 441 | AEDs: Anti-epileptic drugs; CrI: Credible interval; NMA: Network Meta-analysis; OR: Odds   |
| 8<br>9                     | 442 | ratio; PrI: Predictive interval; SUCRA curve: Surface under the cumulative ranking curve   |
| 10<br>11<br>12             | 443 | ADDITIONAL FILES                                                                           |
| 13<br>14<br>15             | 444 | Additional File 1: Protocol                                                                |
| 16<br>17<br>18<br>19       | 445 | Additional File 2: PRISMA NMA Checklist                                                    |
| 20<br>21                   | 446 | Additional File 3: Supplementary Online Content (Appendices A-O)                           |
| 22<br>23<br>24             | 447 | Appendix A. Outcome measures and diagnostic scales used in analysis                        |
| 25<br>26                   | 448 | Appendix B. Additional Information on Methods                                              |
| 27<br>28<br>29             | 449 | Appendix C. Newcastle-Ottawa Scale scoring guide                                           |
| 30<br>31                   | 450 | Appendix D. List of included studies                                                       |
| 32<br>33<br>34             | 451 | Appendix E. Additional information on search results                                       |
| 35<br>36                   | 452 | Appendix F. Key Excluded Studies                                                           |
| 37<br>38<br>39             | 453 | Appendix G. Table of Individual Study Characteristics                                      |
| 40<br>41                   | 454 | Appendix H. Table of Patient Characteristics                                               |
| 42<br>43<br>44             | 455 | Appendix I. Methodological quality of observational studies – Newcastle Ottawa Scale       |
| 45<br>46                   | 456 | Appendix J. Comparison-adjusted funnel plots                                               |
| 47<br>48<br>49             | 457 | Appendix K. Statistically significant network meta-analysis results along with meta-       |
| 50<br>51                   | 458 | analysis results, transitivity, and inconsistency assessments                              |
| 52<br>53<br>54             | 459 | Appendix L. Frequencies, events and samples sizes, SUCRA values, and total group risks per |
| 55<br>56<br>57<br>58<br>59 | 460 | treatment and outcome                                                                      |

| 2        |  |
|----------|--|
| 3        |  |
| 4        |  |
| 5        |  |
| 6        |  |
| 7        |  |
| <i>'</i> |  |
| 8        |  |
| 9        |  |
| 10       |  |
| 11       |  |
| 12       |  |
| 13       |  |
| 14       |  |
| 15       |  |
| 16       |  |
| 17       |  |
| 11       |  |
| 18       |  |
| 19       |  |
| 20       |  |
| 21       |  |
| 22       |  |
| 23       |  |
| 24       |  |
| 25       |  |
| 20       |  |
| 20       |  |
| 21       |  |
| 28       |  |
| 29       |  |
| 30       |  |
| 31       |  |
| 32       |  |
| 33       |  |
| 34       |  |
| 35       |  |
| 20       |  |
| 30       |  |
| 37       |  |
| 38       |  |
| 39       |  |
| 40       |  |
| 41       |  |
| 42       |  |
| 43       |  |
| 44       |  |
| 15       |  |
| 40       |  |
| 40       |  |
| 47       |  |
| 48       |  |
| 49       |  |
| 50       |  |
| 51       |  |
| 52       |  |
| 53       |  |
| 51       |  |
| 54       |  |
| 55       |  |
| 56       |  |
| 57       |  |
| 58       |  |
| 59       |  |
| 60       |  |

1

461 Appendix M. Rank-heat plot of cognitive developmental delay, autism/dyspraxia,

462 psychomotor developmental delay, language delay, and attention deficit hyperactivity

463 disorder outcomes

464 Appendix N. Number of studies and treatments per outcome

<text>

| 1<br>2                                                                                                     |     |                                                                                               |
|------------------------------------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------|
| 2<br>3<br>4                                                                                                | 465 | FIGURE LEGENDS                                                                                |
| 5<br>6<br>7                                                                                                | 466 | Figure 1. Study flow diagram                                                                  |
| 8<br>9                                                                                                     | 467 | Figure 2. Network diagrams for cognitive developmental delay, autism/dyspraxia,               |
| 10<br>11<br>12                                                                                             | 468 | psychomotor developmental delay, language delay, and attention deficit                        |
| 13<br>14                                                                                                   | 469 | hyperactivity disorder outcomes                                                               |
| 15<br>16<br>17                                                                                             | 470 | Each treatment node is weighted according to the number of patients that have received the    |
| 18<br>19                                                                                                   | 471 | particular treatment, and each edge is weighted according to the number of studies            |
| 20<br>21<br>22                                                                                             | 472 | comparing the treatments it connects.                                                         |
| 23<br>24                                                                                                   | 473 | <u>Abbreviations:</u> carbam - carbamazepine, clobaz - clobazam, clonaz - clonazepam, ethos - |
| 25<br>26<br>27                                                                                             | 474 | ethosuximide, gabap - gabapentin, lamot - lamotrigine, levet - levetiracetam, oxcar -         |
| 27<br>28<br>29                                                                                             | 475 | oxcarbazepine, pheno - phenobarbital, pheny - phenytoin, primid - primidone, topir -          |
| 30<br>31                                                                                                   | 476 | topiramate, valpro - valproate, vigab – vigabatrin                                            |
| 32<br>33<br>34                                                                                             | 477 | Figure 3. Forest plots for cognitive developmental delay, autism/dyspraxia,                   |
| 35<br>36<br>37                                                                                             | 478 | psychomotor developmental delay, language delay, and attention deficit                        |
| 38<br>39<br>40<br>41<br>42<br>43<br>44<br>546<br>47<br>48<br>49<br>51<br>52<br>354<br>55<br>56<br>57<br>58 | 479 | hyperactivity disorder outcomes                                                               |
| 59<br>60                                                                                                   |     | 2                                                                                             |

#### DECLARATIONS

#### **CONTRIBUTORS**

AAV analysed the data, interpreted the results, and drafted the manuscript. ACT and SES conceived and designed the study, helped obtain funding, interpreted the results, and helped write sections of the manuscript. PR and EC coordinated the review, screened citations and full-text articles, abstracted data, appraised quality, resolved discrepancies, contacted authors, and edited the manuscript. CS provided methodological support and screened citations and full-text articles and edited the manuscript. RK, ER, FY, JDS, KT, and HM screened citations and full-text articles, abstracted data, and/or appraised quality. BH, BRH and YF helped conceive the study and edited the manuscript. All authors read and approved the final manuscript.

## ACKNOWLEDGEMENTS

We thank Dr. David Moher for providing his feedback on our protocol. We thank Dr. Laure Perrier for conducting the literature searches, Becky Skidmore for peer-reviewing the MEDLINE search, and Alissa Epworth for obtaining the full-text articles. We thank Alistair Scott, Wing Hui, and Geetha Sanmugalingham for screening some of the citations and/or abstracting some of the data for a few of the included studies, Misty Pratt and Mona Ghannad for helping scan reference lists, and Ana Guzman, Susan Le, and Inthuja Selvaratnam for contacting authors and formatting the manuscript. **FUNDING** 

This systematic review was funded by the Canadian Institutes for Health Research/Drug Safety and Effectiveness Network (CIHR/DSEN). AAV is funded by the Banting Postdoctoral

Fellowship Program from the CIHR. SES is funded by a Tier 1 Canada Research Chair in

| 1<br>2                                       |     |                                                                                            |
|----------------------------------------------|-----|--------------------------------------------------------------------------------------------|
| 3<br>4                                       | 503 | Knowledge Translation. BH is funded by a CIHR/DSEN New Investigator Award in               |
| 5<br>6<br>7                                  | 504 | Knowledge Synthesis. BRH receives funding from the Alberta Heritage Foundation for         |
| 7<br>8<br>9                                  | 505 | Medical Research. ACT is funded by a Tier 2 Canada Research Chair in Knowledge             |
| 10<br>11                                     | 506 | Synthesis. The funder had no role in the design and conduct of the study; collection,      |
| 12<br>13<br>14                               | 507 | management, analysis, and interpretation of the data; preparation, review, or approval of  |
| 15<br>16                                     | 508 | the manuscript; or decision to submit the manuscript for publication.                      |
| 17<br>18<br>10                               | 509 | COMPETING INTERESTS                                                                        |
| 19<br>20<br>21                               | 510 | None declared.                                                                             |
| 22<br>23                                     | 511 | ETHICS APPROVAL                                                                            |
| 24<br>25<br>26<br>27<br>28<br>29<br>30<br>31 | 512 | Not applicable.                                                                            |
|                                              | 513 | PROVENANCE AND PEER REVIEW                                                                 |
|                                              | 514 | Not commissioned; externally peer reviewed.                                                |
| 32<br>33                                     | 515 | DATA SHARING STATEMENT                                                                     |
| 34<br>35                                     | 516 | All datasets generated and/or analysed during the current study are available from the     |
| 36<br>37<br>38                               | 517 | corresponding author on reasonable request.                                                |
| 39<br>40                                     | 518 | OPEN ACCESS                                                                                |
| 41<br>42<br>43                               | 519 | This is an Open Access article distributed in accordance with the Creative Commons         |
| 44<br>45                                     | 520 | Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute,     |
| 46<br>47<br>48                               | 521 | remix, adapt, build upon this work non-commercially, and license their derivative works on |
| 48<br>49<br>50                               | 522 | different terms, provided the original work is properly cited and the use is non-          |
| 51<br>52                                     | 523 | commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.                           |
| 53<br>54<br>55                               |     |                                                                                            |
| 56<br>57                                     |     |                                                                                            |
| 58<br>59<br>60                               |     | 28                                                                                         |
| 00                                           |     |                                                                                            |

#### REFERENCES

Spina E, Perugi G. Antiepileptic drugs: indications other than epilepsy. *Epileptic Disord*. 1. 2004;6(2):57-75. Harden CL, Pennell PB, Koppel BS, et al. Management issues for women with epilepsy-focus 2. on pregnancy (an evidence-based review): III. vitamin K, folic acid, blood levels, and breast-feeding: report of the quality standards subcommittee and therapeutics and technology assessment subcommittee of the American Academy of Neurology and the American Epilepsy Society. Epilepsia. 2009:50(5):1247-55. Samren EB, van Duijn CM, Koch S, et al. Maternal use of antiepileptic drugs and the risk of 3. major congenital malformations: a joint European prospective study of human teratogenesis associated with maternal epilepsy. *Epilepsia*. 1997;38(9):981-90. Meador K, Reynolds MW, Crean S, Fahrbach K, Probst C. Pregnancy outcomes in women 4. with epilepsy: a systematic review and meta-analysis of published pregnancy registries and cohorts. *Epilepsy Res.* 2008;81(1):1-13. Bromley R, Weston J, Adab N, et al. Treatment for epilepsy in pregnancy: 5. neurodevelopmental outcomes in the child. The Cochrane database of systematic reviews. 2014(10):Cd010236. Banach R, Boskovic R, Einarson T, Koren G. Long-term developmental outcome of children 6. of women with epilepsy, unexposed or exposed prenatally to antiepileptic drugs: a meta-analysis of cohort studies. Drug Saf. 2010;33(1):73-9. Christensen J, Gronborg TK, Sorensen MJ, et al. Prenatal valproate exposure and risk of 7. autism spectrum disorders and childhood autism. JAMA. 2013;309(16):1696-703. Meador KJ, Baker GA, Browning N, et al. Fetal antiepileptic drug exposure and cognitive 8. outcomes at age 6 years (NEAD study): a prospective observational study. Lancet Neurol. 2013;12(3):244-52. Wlodarczyk BJ, Palacios AM, George TM, Finnell RH, Antiepileptic drugs and pregnancy 9. outcomes. Am J Med Genet A. 2012;158a(8):2071-90. Velez-Ruiz NJ, Meador KJ. Neurodevelopmental effects of fetal antiepileptic drug exposure. 10. Drug Saf. 2015;38(3):271-8. 11. Tricco AC, Cogo E, Veroniki AA, et al. Comparative safety of anti-epileptic drugs among infants and children exposed in utero or during breastfeeding: protocol for a systematic review and network meta-analysis. Syst Rev. 2014;3:68. Jansen JP, Trikalinos T, Cappelleri JC, et al. Indirect treatment comparison/network meta-12. analysis study questionnaire to assess relevance and credibility to inform health care decision making: an ISPOR-AMCP-NPC Good Practice Task Force report. Value Health. 2014;17(2):157-73. Hutton B, Salanti G, Caldwell DM, et al. The PRISMA extension statement for reporting of 13. systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med. 2015;162(11):777-84. Wells G, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the 14. quality of nonrandomised studies in meta-analyses Ottawa, Canada: Ottawa Hospital Research Institute: 2000. Available from: http://www.ohri.ca/programs/clinical epidemiology/oxford.asp. Chaimani A, Higgins JP, Mavridis D, Spyridonos P, Salanti G. Graphical tools for network 15. meta-analysis in STATA. PLoS One. 2013;8(10):e76654. Furukawa TA, Guyatt GH, Griffith LE. Can we individualize the 'number needed to treat'? An 16. empirical study of summary effect measures in meta-analyses. Int J Epidemiol. 2002;31(1):72-6. 

Page 31 of 90

1

| 2        |     |                                                                                                          |
|----------|-----|----------------------------------------------------------------------------------------------------------|
| 3        | 569 | 17. Lu G. Ades AE. Combination of direct and indirect evidence in mixed treatment                        |
| 4        | 570 | comparisons. <i>Stat Med.</i> 2004:23(20):3105-24.                                                       |
| 5        | 571 | 18. Jansen IP. Naci H. Is network meta-analysis as valid as standard pairwise meta-analysis? It          |
| 0<br>7   | 572 | all depends on the distribution of effect modifiers. <i>BMC Med</i> . 2013:11:159.                       |
| 8        | 573 | 19. White IR, Barrett JK, Jackson D, Higgins JP. Consistency and inconsistency in network meta-          |
| 9        | 574 | analysis: model estimation using multivariate meta-regression. <i>Res Synth Methods</i> . 2012:3(2):111- |
| 10       | 575 | 25.                                                                                                      |
| 11       | 576 | 20. Song F. Altman DG. Glenny AM. Deeks II. Validity of indirect comparison for estimating               |
| 12       | 577 | efficacy of competing interventions: empirical evidence from published meta-analyses. <i>BMI</i> .       |
| 13       | 578 | 2003:326(7387):472.                                                                                      |
| 14       | 579 | 21. Veroniki AA. Vasiliadis HS. Higgins IP. Salanti G. Evaluation of inconsistency in networks of        |
| 15       | 580 | interventions. Int   Epidemiol. 2013;42(1):332-45.                                                       |
| 10       | 581 | 22. Dalessio DJ. Seizure Disorders and Pregnancy. <i>N Engl J Med.</i> 1985;312(9):559-63.               |
| 18       | 582 | 23. Welton NJ, Sutton AJ, Cooper N, Abrams KR, Ades A. Evidence synthesis for decision making            |
| 19       | 583 | in healthcare. New York: Wiley; 2012.                                                                    |
| 20       | 584 | 24. Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A. Bayesian measures of model                    |
| 21       | 585 | complexity and fit. J R Stat Soc Ser B Stat Methodol. 2002;64(4):583-639.                                |
| 22       | 586 | 25. Lunn D, Spiegelhalter D, Thomas A, Best N. The BUGS project: Evolution, critique and future          |
| 23       | 587 | directions. <i>Stat Med</i> . 2009;28(25):3049-67.                                                       |
| 24       | 588 | 26. Palmer T, Sterne J. Meta-Analysis in Stata: An Updated Collection from the Stata Journal.            |
| 25       | 589 | White I, editor. Texas: Stata Press; 2016.                                                               |
| 20<br>27 | 590 | 27. Riley RD, Higgins JP, Deeks JJ. Interpretation of random effects meta-analyses. <i>BMJ</i> .         |
| 28       | 591 | 2011;342:d549.                                                                                           |
| 29       | 592 | 28. Higgins JP, Thompson SG, Spiegelhalter DJ. A re-evaluation of random-effects meta-analysis.          |
| 30       | 593 | J R Stat Soc Ser A Stat Soc. 2009;172(1):137-59.                                                         |
| 31       | 594 | 29. Salanti G, Ades AE, Ioannidis JP. Graphical methods and numerical summaries for                      |
| 32       | 595 | presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin               |
| 33       | 596 | <i>Epidemiol.</i> 2011;64(2):163-71.                                                                     |
| 34       | 597 | 30. Veroniki AA, Straus SE, Fyraridis A, Tricco AC. The rank-heat plot is a novel way to present         |
| 30       | 598 | the results from a network meta-analysis including multiple outcomes. <i>J Clin Epidemiol</i> . 2016.    |
| 37       | 599 | 31. Veiby G, Engelsen BA, Gilhus NE. Early child development and exposure to antiepileptic               |
| 38       | 600 | drugs prenatally and through breastfeeding: a prospective cohort study on children of women with         |
| 39       | 601 | epilepsy. <i>JAMA neurology</i> . 2013;70(11):1367-74.                                                   |
| 40       | 602 | 32. Trinquart L, Attiche N, Bafeta A, Porcher R, Ravaud P. Uncertainty in Treatment Rankings:            |
| 41       | 603 | Reanalysis of Network Meta-analyses of Randomized Trials. <i>Ann Intern Med.</i> 2016;164(10):666-73.    |
| 42       | 604 | 33. Shallcross R, Bromley RL, Irwin B, Bonnett LJ, Morrow J, Baker GA. Child development                 |
| 43       | 605 | following in utero exposure: levetiracetam vs sodium valproate. <i>Neurology</i> . 2011;76(4):383-9.     |
| 44<br>45 | 606 | 34. Zaccara G, Giovannelli F, Giorgi FS, Franco V, Gasparini S, Benedetto U. Tolerability of new         |
| 40<br>46 | 607 | antiepileptic drugs: a network meta-analysis. Eur J Clin Pharmacol. 2017.                                |
| 40<br>47 | 608 | 35. Higgins JPT, Green S, editors. Cochrane Handbook for Systematic Reviews of Interventions.            |
| 48       | 609 | 5.1.0 ed: The Cochrane Collaboration; 2009.                                                              |
| 49       | 610 | 36. Kibret T, Richer D, Beyene J. Bias in identification of the best treatment in a Bayesian             |
| 50       | 611 | network meta-analysis for binary outcome: a simulation study. <i>Clin Epidemiol</i> . 2014;6:451-60.     |
| 51       | 612 | 37. Efthimiou O, Mavridis D, Debray TP, et al. Combining randomized and non-randomized                   |
| 52       | 613 | evidence in network meta-analysis. <i>Stat Med</i> . 2017.                                               |
| 53       | 614 | 38. Schmitz S, Adams R, Walsh C. Incorporating data from various trial designs into a mixed              |
| 54       | 615 | treatment comparison model. <i>Stat Med</i> . 2013;32(17):2935-49.                                       |
| 00<br>56 | 616 | 39. Cameron C, Fireman B, Hutton B, et al. Network meta-analysis incorporating randomized                |
| 57       | 617 | controlled trials and non-randomized comparative cohort studies for assessing the safety and             |
| 58       | 618 | effectiveness of medical treatments: challenges and opportunities. <i>Syst Rev.</i> 2015;4:147.          |
| 59       |     |                                                                                                          |
| 60       |     | 30                                                                                                       |

1

| 2<br>3         | (10        |                                                                                                                                                                                                                                                                         |
|----------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4<br>5         | 619<br>620 | <ul> <li>40. Easterbrook PJ, Berlin JA, Gopalan R, Matthews DR. Publication bias in clinical research.</li> <li><i>Lancet.</i> 1991;337(8746):867-72.</li> <li>41. Venenilei AA, Strawa SE, Sachiah C, Elliett ML Triage AC, A securing regions of in direct</li> </ul> |
| 6<br>7         | 621<br>622 | 41. Veroniki AA, Straus SE, Soobiah C, Elliott MJ, Tricco AC. A scoping review of indirect comparison methods and applications using individual patient data. <i>BMC Med Res Methodol</i> .                                                                             |
| 8<br>9<br>10   | 623<br>624 | 2016;16(1):47.                                                                                                                                                                                                                                                          |
| 10<br>11<br>12 |            |                                                                                                                                                                                                                                                                         |
| 13<br>14       |            |                                                                                                                                                                                                                                                                         |
| 15<br>16       |            |                                                                                                                                                                                                                                                                         |
| 17<br>18<br>19 |            |                                                                                                                                                                                                                                                                         |
| 20<br>21       |            |                                                                                                                                                                                                                                                                         |
| 22<br>23       |            |                                                                                                                                                                                                                                                                         |
| 24<br>25<br>26 |            |                                                                                                                                                                                                                                                                         |
| 27<br>28       |            |                                                                                                                                                                                                                                                                         |
| 29<br>30       |            |                                                                                                                                                                                                                                                                         |
| 31<br>32<br>33 |            |                                                                                                                                                                                                                                                                         |
| 34<br>35       |            |                                                                                                                                                                                                                                                                         |
| 36<br>37<br>28 |            |                                                                                                                                                                                                                                                                         |
| 30<br>39<br>40 |            |                                                                                                                                                                                                                                                                         |
| 41<br>42       |            |                                                                                                                                                                                                                                                                         |
| 43<br>44<br>45 |            |                                                                                                                                                                                                                                                                         |
| 43<br>46<br>47 |            |                                                                                                                                                                                                                                                                         |
| 48<br>49       |            |                                                                                                                                                                                                                                                                         |
| 50<br>51<br>52 |            |                                                                                                                                                                                                                                                                         |
| 52<br>53<br>54 |            |                                                                                                                                                                                                                                                                         |
| 55<br>56       |            |                                                                                                                                                                                                                                                                         |
| 57<br>58       |            |                                                                                                                                                                                                                                                                         |
| 59             |            |                                                                                                                                                                                                                                                                         |

| Table 1. Summary Characteristics of in  | cluded studies         |              |
|-----------------------------------------|------------------------|--------------|
| Study/Patient Characteristic            | # of Studies<br>(n=27) | % of Studies |
| Year of publication                     |                        |              |
| 1980-1989                               | 1                      | 3.70         |
| 1990-1999                               | 6                      | 22.22        |
| 2000-2009                               | 5                      | 18.52        |
| 2010-2015                               | 14                     | 51.85        |
| NR                                      | 1                      | 3.70         |
| Continent (of country of study conduct) |                        |              |
| Europe                                  | 18                     | 66.67        |
| North America                           | 5                      | 18.52        |
| Asia                                    | 1                      | 3.70         |
| Australia                               | 2                      | 7.41         |
| Trans-Continental                       | 1                      | 3.70         |
| Study design                            |                        |              |
| Observational cohort                    | 27                     | 100.00       |
| Case-control                            | 0                      | 0.00         |
| Randomized clinical trial               | 0                      | 0.00         |
| Registry study                          |                        |              |
| Yes                                     | 10                     | 37.04        |
| No                                      | 17                     | 62.96        |
| Sample size                             |                        |              |
| 0-99                                    | 17                     | 62.96        |
| 100-299                                 | 8                      | 29.63        |
| 300-499                                 | 1                      | 3.70         |
| 500-699                                 | 0                      | 0.00         |
| 700-999                                 | 0                      | 0.00         |
| 1000+                                   | 1                      | 3.70         |
| Number of interventions                 |                        |              |
| 2                                       | 4                      | 14.81        |
| 3                                       | 5                      | 18.52        |
| 4                                       | 8                      | 29.63        |
| 5-7                                     | 7                      | 25.93        |
| 8-10                                    | 2                      | 7.41         |
| 11+                                     | 1                      | 3.70         |
| Outcomes <sup>*,†</sup>                 |                        |              |
| Cognitive Developmental Delay           | 11                     | 40.74        |
| Autism/Dyspraxia                        | 5                      | 18.52        |
|                                         | r -                    | 10 50        |

| Study/Patient Characteristic                 | # of Studies<br>(n=27) | % of Studies |
|----------------------------------------------|------------------------|--------------|
| ADHD                                         | 4                      | 14.81        |
| Psychomotor Developmental Delay              | 11                     | 40.74        |
| Neonatal Seizures                            | 2                      | 7.41         |
| Social Impairment                            | 1                      | 3.70         |
| Funding                                      |                        |              |
| Public                                       | 14                     | 51.85        |
| Private                                      | 0                      | 0.00         |
| Mixed public and private                     | 4                      | 14.81        |
| NR/Unclear                                   | 9                      | 33.33        |
| Treatment indication 🦯                       |                        |              |
| Epilepsy                                     | 21                     | 77.78        |
| Mixed indications <sup>‡</sup>               | 0                      | 0.00         |
| Not reported                                 | 6                      | 22.22        |
| Epileptic control group <sup>§</sup>         |                        |              |
| Yes                                          | 13                     | 48.15        |
| No/NR/NA                                     | 14                     | 51.85        |
| Mean maternal age                            | 4                      |              |
| 24-26 y                                      | 2                      | 7.41         |
| 27-29 y                                      | 5                      | 18.52        |
| 30-32 y                                      | 3                      | 11.11        |
| Not reported                                 | 17                     | 62.96        |
| AED exposure during pregnancy                |                        |              |
| Reported as during 1 <sup>st</sup> trimester | 6                      | 22.22        |
| Reported as any time during pregnancy        | 6                      | 22.22        |
| Not reported                                 | 15                     | 55.56        |
| Alcohol use during pregnancy                 |                        |              |
| Yes                                          | 4                      | 14.81        |
| NR                                           | 23                     | 85.19        |
| Tobacco use during pregnancy                 |                        |              |
| Yes                                          | 5                      | 18.52        |
| NR                                           | 22                     | 81.48        |

\*Values in this category do not match totals as some studies report more than one outcome

<sup>†</sup>Percentage of total number of included studies (n=27)

<sup>‡</sup> Includes individuals taking AEDs for psychiatric disorders, migraine, and

neuropathic/neurological pain

<sup>§</sup> Consisted of women with Epilepsy who did not take AEDs during pregnancy



\*27 publications reporting 28 included studies.

Figure 1. Study flow diagram

171x128mm (300 x 300 DPI)


Figure 2. Network diagrams for cognitive developmental delay, autism/dyspraxia, psychomotor developmental delay, language delay, and attention deficit hyperactivity disorder outcomes.

 $\| + \| +$  Each treatment node is weighted according to the number of patients that have received the particular treatment, and each edge is weighted according to the number of studies comparing the treatments it connects. $\| + \| +$ 

Abbreviations: carbam - carbamazepine, clobaz - clobazam, clonaz - clonazepam, ethos - ethosuximide, gabap - gabapentin, lamot - lamotrigine, levet - levetiracetam, oxcar - oxcarbazepine, pheno phenobarbital, pheny - phenytoin, primid - primidone, topir - topiramate, valpro - valproate, vigab vigabatrin!! +

171x128mm (300 x 300 DPI)





# Figure 3. Forest plots for cognitive developmental delay, autism/dyspraxia, psychomotor developmental delay, language delay, and attention deficit hyperactivity disorder outcomes

171x128mm (300 x 300 DPI)



**Open Access** 

# Comparative safety of anti-epileptic drugs among infants and children exposed *in utero* or during breastfeeding: protocol for a systematic review and network meta-analysis

Andrea C Tricco<sup>1</sup>, Elise Cogo<sup>1</sup>, Veroniki A Angeliki<sup>1</sup>, Charlene Soobiah<sup>1,2</sup>, Brian Hutton<sup>3</sup>, Brenda R Hemmelgarn<sup>4</sup>, David Moher<sup>3</sup>, Yaron Finkelstein<sup>5,6,7</sup> and Sharon E Straus<sup>1,8\*</sup>

### Abstract

**Background:** Epilepsy affects about 1% of the general population. Anti-epileptic drugs (AEDs) prevent or terminate seizures in individuals with epilepsy. Pregnant women with epilepsy may continue taking AEDs. Many of these agents cross the placenta and increase the risk of major congenital malformations, early cognitive and developmental delays, and infant mortality. We aim to evaluate the comparative safety of AEDs approved for chronic use in Canada when administered to pregnant and breastfeeding women and the effects on their infants and children through a systematic review and network meta-analysis.

**Methods:** Studies examining the effects of AEDs administered to pregnant and breastfeeding women regardless of indication (e.g., epilepsy, migraine, pain, psychiatric disorders) on their infants and children will be included. We will include randomized clinical trials (RCTs), quasi-RCTs, non-RCTs, controlled before-after, interrupted time series, cohort, registry, and case-control studies. The main literature search will be executed in MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trials. We will seek unpublished literature through searches of trial protocol registries and conference abstracts. The literature search results screening, data abstraction, and risk of bias appraisal will be performed by two individuals, independently. Conflicts will be resolved through discussion. The risk of bias of experimental and quasi-experimental studies will be appraised using the Cochrane Effective Practice and Organization of Care Risk-of-Bias tool, methodological quality of observational studies will be appraised using the Newcastle-Ottawa Scale, and quality of reporting of safety outcomes will be conducted using the McMaster Quality Assessment Scale of Harms (McHarm) tool. If feasible and appropriate, we will conduct random effects meta-analysis. Network meta-analysis will be considered for outcomes that fulfill network meta-analysis assumptions.

The primary outcome is major congenital malformations (overall and by specific types), while secondary outcomes include fetal loss/miscarriage, minor congenital malformations (overall and by specific types), cognitive development, psychomotor development, small for gestational age, preterm delivery, and neonatal seizures. (Continued on next page)

Full list of author information is available at the end of the article



© 2014 Tricco et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

<sup>\*</sup> Correspondence: sharon.straus@utoronto.ca

<sup>&</sup>lt;sup>1</sup>Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street,

East Building, Toronto, Ontario M5B 1 T8, Canada

<sup>&</sup>lt;sup>8</sup>Department of Geriatric Medicine, University of Toronto, 172 St. George Street,

Toronto, Ontario M5R 0A3, Canada

Tricco et al. Systematic Reviews 2014, 3:68 http://www.systematicreviewsjournal.com/content/3/1/68

#### (Continued from previous page)

**Discussion:** Our systematic review will address safety concerns regarding the use of AEDs during pregnancy and breastfeeding. Our results will be useful to healthcare providers, policy-makers, and women of childbearing age who are taking anti-epileptic medications.

Systematic review registration: PROSPERO CRD42014008925.

**Keywords:** Anti-epileptic drug, Breastfeeding, Comparative safety, Congenital malformation, Epilepsy, Fetus, Infant, Network meta-analysis, Pregnancy, Systematic review

#### Background

Epilepsy is the most common chronic neurological condition, affecting 0.6 to 1% of the population [1,2]. Individuals with uncontrolled epilepsy experience recurrent seizures, which can have psychosocial and physical consequences, including a compromised life expectancy [3,4]. The goal of anti-epileptic treatment is to improve quality of life and health outcomes by reducing the frequency of seizures [4].

Anti-epileptic medications decrease seizures by reducing excitation and enhancing inhibition of neurons [5-7]. Many of these medications target different channels, including calcium, sodium, and glutamate, and are broadly classified as first generation agents (e.g., phenobarbitone, phenytoin, carbamazepine, sodium valproate, ethosuximide) and second generation agents (e.g., lamotrigine, levetiracetam, topiramate, gabapentin, vigabatrin, oxcarbazepine, clobazam, clonazepam, zonisamide, lacosamide, rufinamide, primidone) [8]. Due to the broad and varied mechanisms of action, the indications for some of these medications also include pain syndromes, psychiatric disorders, and migraine headaches [8].

Many clinical practice guidelines recommend that women of childbearing age continue to take their anti-epileptic medications; however, medications with lower risk of teratogenic events are advised [9,10] since anti-epileptic drugs (AEDs) cross the placenta or transfer through breast milk, posing risks to the fetus and infant [9,11,12].

Some AEDs have been associated with increased risk of harm to the fetus and infants. For example, exposure to valproate has led to increased risk of major congenital malformations [10], cognitive delay, and minor congenital abnormalities [13-16]. Phenobarbital has been associated with minor congenital abnormalities and developmental delay [17,18]. Carbamazepine and lamotrigine have been associated with minor congenital abnormalities [19-22]. However, other than studies of the use of valproate, many studies have produced inconsistent findings regarding harm to the fetus and infant with use of other agents [23]. As such, our objective is to evaluate the comparative safety of AEDs for infants and children who were exposed *in utero* or during breastfeeding through a systematic review and network meta-analysis.

### Methods/Design

#### Protocol

A systematic review protocol was developed and registered with the PROSPERO database (CRD42014008925, available at: http://www.crd.york.ac.uk/PROSPERO/display\_record. asp?ID=CRD42014008925). It was revised with feedback from the decision-makers who posed the query within Health Canada, healthcare practitioners, content experts, and research methodologists. The reporting of our systematic review protocol was guided by the Preferred Reporting Items for Systematic Reviews and Meta-analyses Protocols [24].

#### Eligibility criteria

We will include studies examining the effects of AEDs on infants and children who were exposed in utero or during breastfeeding. We will include experimental studies (randomized clinical trials [RCTs], quasi-RCTs, non-RCTs), guasi-experimental studies (controlled before and after studies, interrupted time series), and observational studies (cohort, case-control, registry studies) of pregnant women at any stage of pregnancy and breastfeeding women and their infants/children. The rationale for including other study designs in addition to RCTs is that there are ethical issues in conducting RCTs of AEDs in pregnancy, so RCT evidence might not exist for some or all of these drugs. Given that our review includes rare outcomes, including observational evidence is crucial. In contrast to efficacy evaluation, safety assessment usually requires very large sample sizes to be able to detect adverse events. Therefore, while RCTs have lower risk of bias, they usually do not have the statistical power needed to adequately evaluate uncommon/rare safety outcomes due to Type II (i.e., false negative) error [25]. Given that our review includes rare outcomes, including observational evidence is crucial [26]. Additionally, observational studies can often provide more generalizable evidence due to the strict participant inclusion criteria in most RCTs [27]. Real-world safety evidence that has external validity is important for the assessment of the possible risks of AEDs in pregnant and breastfeeding women.

The diagnosis of neurodevelopmental delay related to *in utero* exposure is made before adolescence, and

hence, we will limit inclusion to children up to 12 years of age. AEDs that are approved for chronic use in Canada will be included. Drugs that are only used acutely or those that are not currently approved for use in Canada will be excluded, as the focus of this review is on the Canadian setting [28-32]. However, most of the medications we will examine are available in other countries as well. The relevant 16 medications and their synonyms are listed in Additional file 1, and the excluded drugs are listed in Additional file 2. Studies of all combinations and doses of these medications are eligible for inclusion. Since we are only interested in exposures that occur in *utero* or during breastfeeding, studies examining AEDs administered directly to infants or children will be excluded. All indications for AEDs will be included such as epilepsy, migraine, pain, and psychiatric disorders.

In order to be included, studies must compare an antiepileptic medication against another included anti-epileptic medication, placebo, a 'no intervention' control group, or combinations of two or more anti-epileptic medications. Only studies providing results for our outcomes of interest will be included. Our primary outcome is major congenital malformations (overall and by specific type, such as craniofacial defects and neural tube defects). Secondary outcomes include minor congenital malformations (overall and by specific type, such as epicanthal folds and microstomia), cognition (e.g., global cognitive functioning and specific cognitive domains such as attention), psychomotor development (e.g., autism, dyspraxia), small for gestational age, preterm delivery, neonatal seizures, and fetal loss/miscarriage. No other limitations will be imposed on the eligibility criteria, including published/unpublished material, language of dissemination, duration of follow-up, or year of publication. The draft eligibility criteria can be found in Additional file 3.

#### Information sources and literature search

Our main literature search will be executed in the MED-LINE database. The search terms were drafted by an experienced librarian and can be found in Additional file 4. The search was peer reviewed by another librarian using the Peer Review of Electronic Search Strategies checklist [33].

In addition to MEDLINE, we will also search the EMBASE and the Cochrane Central Register of Controlled Trials databases. We will follow the MEDLINE search strategy for these databases, and the search terms will be adjusted accordingly. The electronic database search will be supplemented by searching for unpublished literature [34]. This will be accomplished through exploring conference abstracts, clinical trial registries, and contacting manufacturers of AEDs. We will also scan the reference lists of included studies and previous reviews in the area [23,35,36].

#### Study selection process

The eligibility criteria screening form will be pilot-tested by the team and is presented in Additional file 3. We will calculate inter-rater reliability from the pilot-test and screening will only commence after high agreement (e.g., kappa statistic  $\geq$ 60%) is observed [37]. Subsequently, two reviewers will screen each title/abstract and potentially relevant full-text articles from the literature search results, independently. Conflicts will be resolved through discussion. All screening will occur using our online screening software (synthesi.SR) [38].

#### Data items and data collection process

We will abstract data on the PICOS elements [39], including patient characteristics (e.g., age of the mother and infant/child, indication for anti-epileptic treatment, co-morbidities, concomitant medications), intervention details (e.g., type of anti-epileptic treatment, dose, route of administration, duration of treatment, timing [trimester] of treatment during pregnancy), comparator details (e.g., comparator agent, dose, route of administration), outcome results (e.g., major congenital abnormality, minor congenital abnormality, cognitive function, psychomotor development) at the longest duration of follow-up, and study characteristics (e.g., study design, country of conduct, year of conduct, sample size, setting). These characteristics will be abstracted using a data abstraction form created in Excel with an accompanying "cheat sheet" that will guide the reviewers with this process. The data abstraction form and cheat sheet will be pilot-tested and data abstraction will only commence when high agreement (e.g., kappa statistic ≥60%) [37] is observed. Each included study will be abstracted by two team members, independently, who will resolve disagreements through discussion.

#### Methodological quality/risk of bias appraisal

We will use various tools to assess the methodological quality/risk of bias of each of the studies that fulfill our eligibility criteria. This will be conducted by two reviewers, independently, and conflicts will be resolved through discussion. First, we will appraise the risk of bias of experimental and quasi-experimental studies using the Cochrane Effective Practice and Organization of Care Risk-of-Bias tool [40]. Second, we will assess the methodological quality of observational studies using the Newcastle-Ottawa Scale [41]. Third, the quality of reporting of harms will be appraised using the McMaster Quality Assessment Scale of Harms (McHarm) tool [42].

#### Synthesis of included studies

A narrative summary of study results will be presented along with evidence summary tables. When sufficient data are available, we will conduct random effects meta-

5

6

7

8

9

10

11

12

5

6

7

8

9

10

11

12

13 14

15

16 17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50 51

52

53

54

55

56

57

58

59

60

analysis to calculate pooled odds ratios for dichotomous data and pooled mean differences for continuous data [43,44]. Direct (pairwise) meta-analysis will be performed with RCTs alone in order to examine whether the data are consistent between direct and indirect evidence. If the large majority of included studies are observational, we will also conduct additional meta-analyses including observational studies alone. Analyses will be stratified by treatment indication (e.g., epilepsy, pain, etc.) to reduce clinical heterogeneity between different study populations whenever possible; for example, epilepsy itself in pregnant women is related to an increased baseline risk of certain neonatal adverse outcomes. Statistical, clinical, and methodological heterogeneity will be examined prior to conducting the meta-analysis. Funnel plots will be drawn for outcomes including at least 10 studies to explore asymmetry that might be explained by clinical, statistical, and methodological heterogeneity. The proportion of statistical heterogeneity will be examined using the  $I^2$  measure [45] and the magnitude of statistical heterogeneity will be calculated using the restricted maximum likelihood [46]. Meta-regression will be conducted for clinically relevant subgroups or when extensive statistical heterogeneity is observed (e.g.,  $I^2 \ge$ 75%) [47]. This will allow the examination of the impact of important factors on our results, such as maternal age, dose, duration and timing (e.g., trimester) of antiepileptic treatment, co-morbidities, concomitant medications, risk of bias results, and sample size (due to Type II statistical power errors with rare adverse events). To ensure the meta-regression analysis is intuitive, the number of covariates examined will be less than 10% of the number of studies included in the meta-analysis for the particular outcome.

We anticipate that many of these outcomes will be rare. To deal with studies reporting zero events in one treatment arm, 0.5 will be added to the numerator and 1 will be added to the denominator. We will exclude studies reporting zero events in all treatment arms for a particular outcome [48,49]. We also anticipate that we will encounter missing data in the included studies. We will contact the study authors for this data and if we are unable to receive the data, we will impute missing data (e.g., measures of variance) using established methods [50]. To ensure that our imputations do not bias our results, we will conduct a sensitivity analysis [51]. The meta-analysis and meta-regression will be analyzed in R using the *metafor* command [52].

A random-effects network meta-analysis will be conducted to make inferences regarding the comparative safety of the various AEDs [15], as well as rank their safety using rankograms and the surface under the cumulative ranking curve [53]. We will ensure the following factors are present prior to conducting network meta-analysis: i) transitivity (i.e., comparable distribution of effect modifiers across comparisons), which will be examined using boxplots or percentages to visually inspect potential effect modifiers of treatment effect [54]; ii) consistency between direct and indirect data, which will be examined locally (i.e., in certain paths of the network) using the loop-specific method [55,56] and the node-splitting method [57], and globally (i.e., evaluating the network as a whole), using the design-by-treatment interaction model [58]; and iii) we will quantify the amount of variability attributed to heterogeneity and inconsistency rather than sampling error, by calculating the  $I^2$  [59]. We will estimate the amount of heterogeneity using the restricted maximum likelihood method and assuming common within-network heterogeneity. We will compare the magnitude of heterogeneity between consistency and inconsistency models, as well as between meta-regression and network meta-analysis models to determine how much heterogeneity will be explained by inconsistency or the explanatory variable, respectively. We will first use the design-by-treatment model for the evaluation of inconsistency in a network as a whole and then, if inconsistency is detected, we will employ the loop-specific and node-splitting methods to identify which piece of evidence is responsible for inconsistency. As mentioned above, analyses will be stratified by treatment indication when clinically appropriate. Important heterogeneity and inconsistency will be explored using network metaregression using the same methods as described above, as necessary.

Prior to conducting the network meta-analysis, we will hold a team meeting to finalize which treatment nodes will be included in the analysis since we are unclear about the indications, dosages, patient populations, and outcomes reported in all of the studies. We will discuss issues, including conducting a class versus independent drug analysis, inclusion of drug routes of administration and dosages, as well as timing of drug administration. These decisions will be examined through a sensitivity analysis in which we will classify treatment nodes using a different classification to see how stable our results are. The network meta-analysis results will be presented as summary treatment effects for each pair of treatments. Network meta-analysis will be conducted in Stata with the *mvmeta* routine [60].

A sequential approach will be used for the network meta-analysis. We will first restrict our analysis to RCTs, which will be the primary analysis of interest. We will then include data from quasi-experimental studies, and finally, data from observational studies. This will provide an understanding of the contribution of each type of study design to our summary estimates, providing us with information on how these agents work above and beyond clinical trials.

### Discussion

Epilepsy is the most common chronic neurological condition, affecting 0.6 to 1% of the population [1,2]. Given that approximately a third of patients receiving AEDs are of reproductive age and almost half of pregnancies are unplanned [61], the fetus may be exposed to these in the first trimester of pregnancy, including during the critical stage of embryogenesis [62].

The comparative safety of these agents is currently unknown and our results will be important for policymakers, healthcare providers, and women of childbearing age. To ensure our results have wide dissemination and uptake, we will publish our results in open access journals, present our findings at scientific conferences, conduct dissemination meetings with key stakeholders (including policy-makers and healthcare providers), and produce policy briefs for Health Canada, the organization that posed this query.

### **Additional files**

Additional file 1: List of relevant medications. Additional file 2: Excluded drugs. Additional file 3: Draft eligibility criteria. Additional file 4: MEDLINE literature search.

#### Abbreviations

AEDs: Anti-epileptic drugs; RCTs: Randomized clinical trials.

#### Competing interests

The authors declare that they have no competing interests.

#### Authors' contributions

ACT conceived and designed the study, helped obtain funding for the study, and helped write the draft protocol. EC registered the protocol with the PROSPERO database and edited the draft protocol. AV helped write the draft protocol. CS edited the draft protocol. BH, BRH, DM, and YF provided input into the design, helped obtain funding for the study, and edited the draft protocol. SES conceived the study, designed the study, obtained the funding, and helped write the draft protocol. All authors read and approved the final protocol.

#### Acknowledgements

This systematic review was funded by the Canadian Institutes of Health Research/Drug Safety and Effectiveness Network (CIHR/DSEN). ACT and BH are funded by a CIHR/DSEN New Investigator Award in Knowledge Synthesis. BRH receives funding from the Alberta Heritage Foundation for Medical Research. DM is funded by a University of Ottawa Research Chair. SES is funded by a Tier 1 Canada Research Chair in Knowledge Translation. We thank Laure Perrier for conducting the literature searches and Becky Skidmore for peer reviewing the MEDLINE search strategy. We also thank Dr. Joseph Beyene for providing feedback on our original proposal and Wing Hui and Judy Tran for formatting the paper.

#### Author details

<sup>1</sup>Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, East Building, Toronto, Ontario M5B 1 T8, Canada. <sup>2</sup>Institute of Health Policy Management and Evaluation, University of Toronto, Health Sciences Building, 155 College Street, Suite 425, Toronto, Ontario M5T 3 M6, Canada. <sup>3</sup>Clinical Epidemiology Program, Centre for Practice-Changing Research, Ottawa Hospital Research Institute, The Ottawa Hospital – General Campus and University of Ottawa, 501 Smyth Road, Box 711, Ottawa, Ontario K1H 8 L6, Canada. <sup>4</sup>Departments of Medicine and Community Health Sciences, University of Calgary, TRW Building, 3rd Floor, 3280 Hospital Drive NW, Calgary, Alberta T2N 4Z6, Canada. <sup>5</sup>The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada. <sup>6</sup>Department of Pediatrics, University of Toronto, 172 St. George Street, Toronto, Ontario M5R 0A3, Canada. <sup>7</sup>Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Room 4207, Toronto, Ontario M5S 1A8, Canada. <sup>8</sup>Department of Geriatric Medicine, University of Toronto, 172 St. George Street, Toronto, Ontario M5R 0A3, Canada.

#### Received: 9 April 2014 Accepted: 17 June 2014 Published: 25 June 2014

#### References

- Hauser WA, Hesdorffer D: Epilepsy, Frequency, Causes and Consequences. New York: Demos Publications; 1990.
- Wiebe S, Bellhouse DR, Fallahay C, Eliasziw M: Burden of epilepsy: the Ontario Health Survey. Can J Neurol Sci 1999, 26(4):263–270.
- Sperling MR: The consequences of uncontrolled epilepsy. CNS Spectr 2004, 9(2):98–101. 106–109.
- 4. Jones MW: Consequences of epilepsy: why do we treat seizures? Can J Neurol Sci 1998, 25(4):S24–S26.
- Dickenson AH, Ghandehari J: Anti-convulsants and anti-depressants. Handb Exp Pharmacol 2007, 177:145–177.
- Stefani A, Spadoni F, Bernardi G: Voltage-activated calcium channels: targets of antiepileptic drug therapy? *Epilepsia* 1997, 38(9):959–965.
- Snutch TP, Reiner PB: Ca<sup>2+</sup> channels: diversity of form and function. Curr Opin Neurobiol 1992, 2(3):247–253.
- Spina E, Perugi G: Antiepileptic drugs: indications other than epilepsy. Epileptic Disord 2004, 6(2):57–75.
- 9. Harden CL, Pennell PB, Koppel BS, Hovinga CA, Gidal B, Meador KJ, Hopp J, Ting TY, Hauser WA, Thurman D, Kaplan PW, Robinson JN, French JA, Wiebe S, Wilner AN, Vazquez B, Holmes L, Krumholz A, Finnell R, Shafer PO, Le Guen CL, American Academy of Neurology; American Epilepsy Society: Management issues for women with epilepsy–focus on pregnancy (an evidence-based review): III. Vitamin K, folic acid, blood levels, and breast-feeding: report of the quality standards subcommittee and therapeutics and technology assessment subcommittee of the American Academy of Neurology and the American Epilepsy Society. *Epilepsia* 2009, 50(5):1247–1255.
- Harden CL, Meador KJ, Pennell PB, Hauser WA, Gronseth GS, French JA, Wiebe S, Thurman D, Koppel BS, Kaplan PW, Robinson JN, Hopp J, Ting TY, Gidal B, Hovinga CA, Wilner AN, Vazquez B, Holmes L, Krumholz A, Finnell R, Hirtz D, Le Guen C, American Academy of Neurology; American Epilepsy Society: Management issues for women with epilepsy-Focus on pregnancy (an evidence-based review): II. Teratogenesis and perinatal outcomes: Report of the Quality Standards Subcommittee and Therapeutics and Technology Subcommittee of the American Academy of Neurology and the American Epilepsy Society. *Epilepsia* 2009, 50(5):1237–1246.
- Samren EB, van Duijn CM, Koch S, Hiilesmaa VK, Klepel H, Bardy AH, Mannagetta GB, Deichl AW, Gaily E, Granstrom ML, Meinardi H, Grobbee DE, Hofman A, Janz D, Lindhout D: Maternal use of antiepileptic drugs and the risk of major congenital malformations: a joint European prospective study of human teratogenesis associated with maternal epilepsy. *Epilepsia* 1997, 38(9):981–990.
- Meador K, Reynolds MW, Crean S, Fahrbach K, Probst C: Pregnancy outcomes in women with epilepsy: a systematic review and meta-analysis of published pregnancy registries and cohorts. *Epilepsy Res* 2008, 81(1):1–13.
- Adab N, Jacoby A, Smith D, Chadwick D: Additional educational needs in children born to mothers with epilepsy. J Neurol Neurosurg Psychiatry 2001, 70(1):15–21.
- Adab N, Kini U, Vinten J, Ayres J, Baker G, Clayton-Smith J, Coyle H, Fryer A, Gorry J, Gregg J, Mawer G, Nicolaides P, Pickering L, Tunnicliffe L, Chadwick DW: The longer term outcome of children born to mothers with epilepsy. J Neurol Neurosurg Psychiatry 2004, 75(11):1575–1583.
- Gaily E, Kantola-Sorsa E, Hiilesmaa V, Isoaho M, Matila R, Kotila M, Nylund T, Bardy A, Kaaja E, Granstrom ML: Normal intelligence in children with prenatal exposure to carbamazepine. *Neurology* 2004, 62(1):28–32.
- Meador KJ, Baker GA, Browning N, Clayton-Smith J, Combs-Cantrell DT, Cohen M, Kalayjian LA, Kanner A, Liporace JD, Pennell PB, Privitera M, Loring DW, for the NEAD Study Group: Cognitive function at 3 years of age after fetal exposure to antiepileptic drugs. N Engl J Med 2009, 360(16):1597–1605.

Page 5 of 6

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Tricco et al. Systematic Reviews 2014, 3:68 http://www.systematicreviewsjournal.com/content/3/1/68

- Holmes LB, Wyszynski DF, Lieberman E: The AED (antiepileptic drug) pregnancy registry: a 6-year experience. *Arch Neurol* 2004, 61(5):673–678.
- Reinisch JM, Sanders SA, Mortensen EL, Rubin DB: In utero exposure to phenobarbital and intelligence deficits in adult men. JAMA 1995, 274(19):1518–1525.
- Morrow J, Russell A, Guthrie E, Parsons L, Robertson I, Waddell R, Irwin B, McGivern RC, Morrison PJ, Craig J: Malformation risks of antiepileptic drugs in pregnancy: a prospective study from the UK Epilepsy and Pregnancy Register. J Neurol Neurosurg Psychiatry 2006, 77(2):193–198.
- Meador KJ, Baker GA, Finnell RH, Kalayjian LA, Liporace JD, Loring DW, Mawer G, Pennell PB, Smith JC, Wolff MC, NEAD Study Group: In utero antiepileptic drug exposure: fetal death and malformations. *Neurology* 2006, 67(3):407–412.
- Vajda FJ, Hitchcock A, Graham J, Solinas C, O'Brien TJ, Lander CM, Eadie MJ: Foetal malformations and seizure control: 52 months data of the Australian Pregnancy Registry. *Eur J Neurol* 2006, 13(6):645–654.
- Holmes LB, Baldwin EJ, Smith CR, Habecker E, Glassman L, Wong SL, Wyszynski DF: Increased frequency of isolated cleft palate in infants exposed to lamotrigine during pregnancy. *Neurology* 2008, 70(22 Pt 2):2152–2158.
- Meador KJ, Penovich P, Baker GA, Pennell PB, Bromfield E, Pack A, Liporace JD, Sam M, Kalayjian LA, Thurman DJ, Moore E, Loring DW, NEAD Study Group: Antiepileptic drug use in women of childbearing age. *Epilepsy Behav* 2009, 15(3):339–343.
- Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart L: Reporting Guidelines for Systematic Review Protocols. In 19th Cochrane Colloaujum: 19–22 October 2011: Madrid. Spain.
- Ross CJ, Visscher H, Sistonen J, Brunham LR, Pussegoda K, Loo TT, Rieder MJ, Koren G, Carleton BC, Hayden MR, CPNDS Consortium: The Canadian Pharmacogenomics Network for Drug Safety: a model for safety pharmacology. *Thyroid* 2010, 20(7):681–687.
- Eypasch E, Lefering R, Kum CK, Troidl H: Probability of adverse events that have not yet occurred: a statistical reminder. *BMJ* 1995, 311(7005):619–620.
- 27. Atkins D: Creating and synthesizing evidence with decision makers in mind: integrating evidence from clinical trials and other study designs. *Med Care* 2007, **45**(10 Supl 2):S16–S22.
- Health Canada: Drug Product Database. http://www.hc-sc.gc.ca/dhp-mps/ prodpharma/databasdon/index-eng.php.
- 29. United States National Library of Medicine's ChemIDPlus Lite Database. http://chem.sis.nlm.nih.gov/chemidplus/chemidlite.jsp.
- 30. Canadian Pharmacists Association: E-CPS (Compendium of Pharmaceuticals and Specialties). http://www.e-therapeutics.ca/home.whatsnew.action.
- Epilepsy Canada: Anticonvulsant Medications. http://www.epilepsy.ca/en-CA/ Diagnosis-and-Treatment/Anticonvulsant-Medications.html.
- Epilepsy Ontario: Anticonvulsant/Anti-Seizure Medication from A to Z. http://epilepsyontario.org/anticonvulsantanti-seizure-medication-from-a-to-z/.
- Sampson M, McGowan J, Cogo E, Grimshaw J, Moher D, Lefebvre C: An evidence-based practice guideline for the peer review of electronic search strategies. J Clin Epidemiol 2009, 62(9):944–952.
- Canadian Agency for Drugs and Technologies in Health: Grey Matters: A Practical Search Tool for Evidence-Based Medicine. http://www.cadth.ca/ resources/grey-matters.
- Adab N, Tudur SC, Vinten J, Williamson P, Winterbottom J: Common antiepileptic drugs in pregnancy in women with epilepsy. Cochrane Database Syst Rev 2004, 3:CD004848.
- Banach R, Boskovic R, Einarson T, Koren G: Long-term developmental outcome of children of women with epilepsy, unexposed or exposed prenatally to antiepileptic drugs: a meta-analysis of cohort studies. Drug Saf 2010, 33(1):73–79.
- 37. Landis JR, Koch GG: The measurement of observer agreement for categorical data. *Biometrics* 1977, **33**(1):159–174.
- 38. Synthesi.SR. http://knowledgetranslation.ca/sysrev/login.php.
- Stone PW: Popping the (PICO) question in research and evidence-based practice. Appl Nurs Res 2002, 15(3):197–198.
- 40. Cochrane Effective Practice and Organization of Care Group Draft Risk of Bias Tool. http://epoc.cochrane.org/epoc-author-resources.
- The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. http://www.ohri.ca/programs/clinical\_epidemiology/ oxford.asp.

- Santaguida PL, Raina P, Ismaila A: The Development of the McHarm Quality Assessment Scale for Adverse Events. Hamilton, Ontario: McMaster University; 2008.
- Raudenbush SW: Analyzing Effect Sizes: Random Effects Models. In *The* Handbook of Research Synthesis and Meta-analysis. 2nd edition. Edited by Cooper H, Hedges LV, Valentine JC. New York: Russell Sage Foundation; 2009:295–315.
- 44. Viechtbauer W: Bias and efficiency of meta-analytic variance estimators in the random-effects model. *J Educ Behav Stat* 2005, **30**(3):261–293.
- 45. Higgins JP, Thompson SG: Quantifying heterogeneity in a meta-analysis. *Stat Med* 2002, **21**(11):1539–1558.
- 46. Viechtbauer W: Confidence intervals for the amount of heterogeneity in meta-analysis. *Stat Med* 2007, **26**(1):37–52.
- Higgins JPT, Green S: Cochrane Handbook for Systematic Reviews of Interventions. The Cochrane Collaboration; 2009. http://www.cochrane.org/ handbook.
- Sweeting MJ, Sutton AJ, Lambert PC: What to add to nothing? Use and avoidance of continuity corrections in meta-analysis of sparse data. *Stat Med* 2004, 23(9):1351–1375.
- Bradburn MJ, Deeks JJ, Berlin JA, Russell Localio A: Much ado about nothing: a comparison of the performance of meta-analytical methods with rare events. *Stat Med* 2007, 26(1):53–77.
- Littell JH, Corcoran J, Pillai V: Systematic Reviews and Meta-Analysis. New York: Oxford University Press; 2008.
- Carpenter J, Rucker G, Schwarzer G: Assessing the sensitivity of meta-analysis to selection bias: a multiple imputation approach. *Biometrics* 2011, 67(3):1066–1072.
- Conducting Meta-Analyses in R with the metafor Package. http://www.jstatsoft.org/v36/i03/.
- Salanti G, Ades AE, Ioannidis JP: Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol 2011, 64(2):163–171.
- 54. Salanti G: Indirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: many names, many benefits, many concerns for the next generation evidence synthesis tool. *Res Synth Methods* 2012, 3(2):80–97.
- Song F, Altman DG, Glenny AM, Deeks JJ: Validity of indirect comparison for estimating efficacy of competing interventions: empirical evidence from published meta-analyses. *BMJ* 2003, 326(7387):472.
- Veroniki AA, Vasiliadis HS, Higgins JP, Salanti G: Evaluation of inconsistency in networks of interventions. Int J Epidemiol 2013, 42(1):332–345.
- 57. Dias S, Welton NJ, Caldwell DM, Ades AE: Checking consistency in mixed treatment comparison meta-analysis. *Stat Med* 2010, **29**(7–8):932–944.
- White IR, Barrett JK, Jackson D, Higgins JPT: Consistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression. *Res Synth Methods* 2012, 3(2):111–125.
- Jackson D, Barrett JK, Stephen R, White IR, Higgins JPT: A design-by-treatment interaction model for network meta-analysis with random inconsistency effects. Stat Med 2014, In press.
- 60. White IR: Multivariate random-effects meta-regression: updates to mvmeta. *Stata J* 2011, 11(2):255–270.
- Centers for Disease Control and Prevention: Unintended Pregnancy Prevention. http://www.cdc.gov/reproductivehealth/unintendedpregnancy/.
- Yerby MS: Pregnancy, teratogenesis, and epilepsy. Neurol Clin 1994, 12(4):749–771.

#### doi:10.1186/2046-4053-3-68

**Cite this article as:** Tricco *et al.*: Comparative safety of anti-epileptic drugs among infants and children exposed *in utero* or during breastfeeding: protocol for a systematic review and network meta-analysis. *Systematic Reviews* 2014 **3**:68.

## PRISMA NMA Checklist

| Section/Topic             | Item<br># | Checklist Item <sup>*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Reported on<br>Page # |
|---------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| TITLE                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                     |
| Title                     | 1         | Identify the report as a systematic review<br>incorporating a network meta-analysis (or related<br>form of meta-analysis).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                     |
| ABSTRACT                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |
| Structured<br>summary 2   |           | <ul> <li>Provide a structured summary including, as applicable:</li> <li>Background: main objectives</li> <li>Methods: data sources; study eligibility criteria, participants, and interventions; study appraisal; and synthesis methods, such as network meta-analysis.</li> <li>Results: number of studies and participants identified; summary estimates with corresponding confidence/credible intervals; treatment rankings may also be discussed. Authors may choose to summarize pairwise comparisons against a chosen treatment included in their analyses for brevity.</li> <li>Discussion/Conclusions: limitations; conclusions and implications of findings.</li> <li>Other: primary source of funding; systematic review registration number with registry name.</li> </ul> | 4-5                   |
| INTRODUCTION              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |
| Rationale                 | 3         | Describe the rationale for the review in the context of what is already known, <i>including mention of why a network meta-analysis has been conducted</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                     |
| Objectives                | 4         | Provide an explicit statement of questions being<br>addressed, with reference to participants,<br>interventions, comparisons, outcomes, and study<br>design (PICOS).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7                     |
| METHODS                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |
| Protocol and registration | 5         | Indicate whether a review protocol exists and if<br>and where it can be accessed (e.g., Web address);<br>and, if available, provide registration information.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                     |

| 4  |
|----|
|    |
| 2  |
| 3  |
| 4  |
| 4  |
| 5  |
| 6  |
| 7  |
| 1  |
| 8  |
| 9  |
| 10 |
| 10 |
| 11 |
| 12 |
| 13 |
| 10 |
| 14 |
| 15 |
| 16 |
| 17 |
| 17 |
| 18 |
| 19 |
| 20 |
| 20 |
| 21 |
| 22 |
| 22 |
| 23 |
| 24 |
| 25 |
| 26 |
| 27 |
| 27 |
| 28 |
| 29 |
| 20 |
| 30 |
| 31 |
| 32 |
| 33 |
| 33 |
| 34 |
| 35 |
| 36 |
| 50 |
| 37 |
| 38 |
| 39 |
| 40 |
| 40 |
| 41 |
| 42 |
| 42 |
| 11 |
| 44 |
| 45 |
| 46 |
| 17 |
| 41 |
| 48 |
| 49 |
| 50 |
| 50 |
| 51 |
| 52 |
| 52 |
| 55 |
| 54 |
| 55 |
| 56 |
| 57 |
| 5/ |
| 58 |
| 59 |
| 60 |
| 00 |

|                                              |            | including registration number.                                                                                                                                                                                                                                                                                                                                                                                       |                               |
|----------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Eligibility criteria                         | 6          | Specify study characteristics (e.g., PICOS, length<br>of follow-up) and report characteristics (e.g.,<br>years considered, language, publication status)<br>used as criteria for eligibility, giving rationale.<br><i>Clearly describe eligible treatments included in</i><br><i>the treatment network, and note whether any have</i><br><i>been clustered or merged into the same node</i><br>(with justification). | 8-9                           |
| Information sources                          | 7          | Describe all information sources (e.g., databases<br>with dates of coverage, contact with study authors<br>to identify additional studies) in the search and<br>date last searched.                                                                                                                                                                                                                                  | 9 (see also<br>Appendix C)    |
| Search                                       | 8          | Present full electronic search strategy for at least<br>one database, including any limits used, such that<br>it could be repeated.                                                                                                                                                                                                                                                                                  | Additional<br>File 1          |
| Study selection                              | 9          | State the process for selecting studies (i.e.,<br>screening, eligibility, included in systematic<br>review, and, if applicable, included in the meta-<br>analysis).                                                                                                                                                                                                                                                  | 9 (see also<br>Appendix C)    |
| Data collection process                      | 10         | Describe method of data extraction from reports<br>(e.g., piloted forms, independently, in duplicate)<br>and any processes for obtaining and confirming<br>data from investigators.                                                                                                                                                                                                                                  | 9 (see also<br>Appendix C)    |
| Data items                                   | 11         | List and define all variables for which data were<br>sought (e.g., PICOS, funding sources) and any<br>assumptions and simplifications made.                                                                                                                                                                                                                                                                          | Additional<br>File 1          |
| Geometry of the network                      | <b>S</b> 1 | Describe methods used to explore the geometry of<br>the treatment network under study and potential<br>biases related to it. This should include how the<br>evidence base has been graphically summarized<br>for presentation, and what characteristics were<br>compiled and used to describe the evidence base<br>to readers.                                                                                       | 9-12 (see also<br>Appendix C) |
| Risk of bias<br>within individual<br>studies | 12         | Describe methods used for assessing risk of bias<br>of individual studies (including specification of<br>whether this was done at the study or outcome<br>level), and how this information is to be used in<br>any data synthesis.                                                                                                                                                                                   | 9                             |
| Summary<br>measures                          | 13         | State the principal summary measures (e.g., risk<br>ratio, difference in means). Also describe the use<br>of additional summary measures assessed, such<br>as treatment rankings and surface under the<br>cumulative ranking curve (SUCRA) values, as<br>well as modified approaches used to present                                                                                                                 | 9-12                          |

| 2  |  |
|----|--|
| 3  |  |
| 4  |  |
| 5  |  |
| 5  |  |
| 6  |  |
| 7  |  |
| 8  |  |
| 0  |  |
| 9  |  |
| 10 |  |
| 11 |  |
| 12 |  |
| 40 |  |
| 13 |  |
| 14 |  |
| 15 |  |
| 16 |  |
| 47 |  |
| 17 |  |
| 18 |  |
| 19 |  |
| 20 |  |
| 20 |  |
| 21 |  |
| 22 |  |
| 23 |  |
| 24 |  |
| 24 |  |
| 25 |  |
| 26 |  |
| 27 |  |
| 20 |  |
| 20 |  |
| 29 |  |
| 30 |  |
| 31 |  |
| 32 |  |
| 52 |  |
| 33 |  |
| 34 |  |
| 35 |  |
| 36 |  |
| 00 |  |
| 37 |  |
| 38 |  |
| 39 |  |
| 40 |  |
| 40 |  |
| 41 |  |
| 42 |  |
| 43 |  |
| 44 |  |
| 17 |  |
| 40 |  |
| 46 |  |
| 47 |  |
| 48 |  |
| 10 |  |
| 49 |  |
| 50 |  |
| 51 |  |
| 52 |  |
| 52 |  |
| 03 |  |
| 54 |  |
| 55 |  |
| 56 |  |
| 57 |  |
| 57 |  |
| 58 |  |
| 59 |  |
| 60 |  |

|                                         |            | summary findings from meta-analyses.                                                                                                                                                                                                                                                                                                                                                                               |                                   |
|-----------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Planned methods<br>of analysis          | 14         | <ul> <li>Describe the methods of handling data and combining results of studies for each network meta-analysis. This should include, but not be limited to:</li> <li><i>Handling of multi-arm trials;</i></li> <li><i>Selection of variance structure;</i></li> <li><i>Selection of prior distributions in Bayesian analyses; and</i></li> <li><i>Assessment of model fit.</i></li> </ul>                          | 9-12 (see also<br>Appendix C)     |
| Assessment of<br>Inconsistency          | S2         | Describe the statistical methods used to evaluate<br>the agreement of direct and indirect evidence in<br>the treatment network(s) studied. Describe efforts<br>taken to address its presence when found.                                                                                                                                                                                                           | 10 (see also<br>Appendix C)       |
| Risk of bias<br>across studies          | 15         | Specify any assessment of risk of bias that may<br>affect the cumulative evidence (e.g., publication<br>bias, selective reporting within studies).                                                                                                                                                                                                                                                                 | 9 (see also<br>Appendix C)        |
| Additional<br>analyses                  | 16         | <ul> <li>Describe methods of additional analyses if done, indicating which were pre-specified. This may include, but not be limited to, the following: <ul> <li>Sensitivity or subgroup analyses;</li> <li>Meta-regression analyses;</li> <li>Alternative formulations of the treatment network; and</li> <li>Use of alternative prior distributions for Bayesian analyses (if applicable).</li> </ul> </li> </ul> | 10-12 (see<br>also<br>Appendix C) |
| <b>RESULTS<sup>†</sup></b>              |            |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |
| Study selection                         | 17         | Give numbers of studies screened, assessed for<br>eligibility, and included in the review, with<br>reasons for exclusions at each stage, ideally with<br>a flow diagram.                                                                                                                                                                                                                                           | 13 and Figure<br>1                |
| Presentation of<br>network<br>structure | <b>S</b> 3 | Provide a network graph of the included studies to<br>enable visualization of the geometry of the<br>treatment network.                                                                                                                                                                                                                                                                                            | Figure 2                          |
| Summary of<br>network<br>geometry       | S4         | Provide a brief overview of characteristics of the<br>treatment network. This may include commentary<br>on the abundance of trials and randomized<br>patients for the different interventions and<br>pairwise comparisons in the network, gaps of<br>evidence in the treatment network, and potential<br>biases reflected by the network structure.                                                                | 14-18 (see<br>also<br>Appendix L) |
| Study characteristics                   | 18         | For each study, present characteristics for which data were extracted (e.g., study size, PICOS,                                                                                                                                                                                                                                                                                                                    | Table 1,<br>Appendices H          |
|                                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |

|                                      |    | follow-up period) and provide the citations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and I                                                              |
|--------------------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Risk of bias within studies          | 19 | Present data on risk of bias of each study and, if available, any outcome level assessment.                                                                                                                                                                                                                                                                                                                                                                                                                                | Appendix J                                                         |
| Results of<br>individual studies     | 20 | For all outcomes considered (benefits or harms),<br>present, for each study: 1) simple summary data<br>for each intervention group, and 2) effect<br>estimates and confidence intervals. <i>Modified</i><br><i>approaches may be needed to deal with</i><br><i>information from larger networks</i> .                                                                                                                                                                                                                      | N/A (data can<br>be provided<br>by the<br>corresponding<br>author) |
| Synthesis of<br>results              | 21 | Present results of each meta-analysis done,<br>including confidence/credible intervals. <i>In larger</i><br><i>networks, authors may focus on comparisons</i><br><i>versus a particular comparator (e.g. placebo or</i><br><i>standard care), with full findings presented in an</i><br><i>appendix. League tables and forest plots may be</i><br><i>considered to summarize pairwise comparisons.</i><br>If additional summary measures were explored<br>(such as treatment rankings), these should also be<br>presented. | Figure 3,<br>Appendices<br>L, M, O                                 |
| Exploration for<br>inconsistency     | S5 | Describe results from investigations of<br>inconsistency. This may include such information<br>as measures of model fit to compare consistency<br>and inconsistency models, <i>P</i> values from<br>statistical tests, or summary of inconsistency<br>estimates from different parts of the treatment<br>network.                                                                                                                                                                                                          | 14 (see also<br>Appendix L)                                        |
| Risk of bias<br>across studies       | 22 | Present results of any assessment of risk of bias across studies for the evidence base being studied.                                                                                                                                                                                                                                                                                                                                                                                                                      | 14 (see also<br>Appendix K)                                        |
| Results of<br>additional<br>analyses | 23 | Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression analyses, <i>alternative network geometries studied</i> , <i>alternative choice of prior distributions for Bayesian analyses</i> , and so forth).                                                                                                                                                                                                                                                                    | Appendix M                                                         |
| DISCUSSION                           |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    |
| Summary of evidence                  | 24 | Summarize the main findings, including the<br>strength of evidence for each main outcome;<br>consider their relevance to key groups (e.g.,<br>healthcare providers, users, and policy-makers).                                                                                                                                                                                                                                                                                                                             | 19-21                                                              |
| Limitations                          | 25 | Discuss limitations at study and outcome level<br>(e.g., risk of bias), and at review level (e.g.,<br>incomplete retrieval of identified research,<br>reporting bias). <i>Comment on the validity of the</i><br><i>assumptions, such as transitivity and consistency.</i><br><i>Comment on any concerns regarding network</i>                                                                                                                                                                                              | 21-23                                                              |

| 2        |  |
|----------|--|
| 3        |  |
| 4        |  |
| ,<br>F   |  |
| 5        |  |
| 6        |  |
| 7        |  |
| 1        |  |
| 8        |  |
| 0        |  |
| 9        |  |
| 10       |  |
| 11       |  |
| 11       |  |
| 12       |  |
| 13       |  |
| 10       |  |
| 14       |  |
| 15       |  |
| 10       |  |
| 10       |  |
| 17       |  |
| 10       |  |
| 10       |  |
| 19       |  |
| 20       |  |
| 20       |  |
| 21       |  |
| 22       |  |
| ~~       |  |
| 23       |  |
| 24       |  |
| <u> </u> |  |
| 25       |  |
| 26       |  |
| 27       |  |
| 21       |  |
| 28       |  |
| 20       |  |
| 29       |  |
| 30       |  |
| 31       |  |
| 01       |  |
| 32       |  |
| 33       |  |
| 00       |  |
| 34       |  |
| 35       |  |
| 26       |  |
| 30       |  |
| 37       |  |
| 20       |  |
| 30       |  |
| 39       |  |
| 10       |  |
| 40       |  |
| 41       |  |
| 42       |  |
| 40       |  |
| 43       |  |
| 44       |  |
| <u> </u> |  |
| 40       |  |
| 46       |  |
| 17       |  |
| 41       |  |
| 48       |  |
| ΔQ       |  |
| -10      |  |
| 50       |  |
| 51       |  |
| E 0      |  |
| 52       |  |
| 53       |  |
| 51       |  |
| 04       |  |
| 55       |  |
| 56       |  |
|          |  |
| 57       |  |
| 58       |  |
| 50       |  |
| 59       |  |
| 60       |  |

| Conclusions        | 26 | <i>geometry (e.g., avoidance of certain comparisons).</i><br>Provide a general interpretation of the results in the context of other evidence, and implications for future research.                                                                                                                                                                                                                                                                   | 23    |
|--------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| FUNDING<br>Funding | 27 | Describe sources of funding for the systematic<br>review and other support (e.g., supply of data);<br>role of funders for the systematic review. This<br>should also include information regarding<br>whether funding has been received from<br>manufacturers of treatments in the network and/or<br>whether some of the authors are content experts<br>with professional conflicts of interest that could<br>affect use of treatments in the network. | 27-28 |

Abbreviations: PICOS - population, intervention, comparators, outcomes, study design \* Text in italics indicates wording specific to reporting of network meta-analyses that has been added to guidance from the PRISMA statement.

† Authors may wish to plan for use of appendices to present all relevant information in full detail for items in this section.

# **Supplementary Online Content**

| Appraisal of selection bias using the comparison-adjusted funnel plot<br>Additional details on the synthesis of included studies<br>References<br>Appendix C. Newcastle-Ottawa Scale scoring guide<br>Appendix D. List of included studies<br>Appendix E. Additional information on search results<br>Appendix F. Key excluded studies<br>References |                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Additional details on the synthesis of included studies<br>References                                                                                                                                                                                                                                                                                |                       |
| Appendix C. Newcastle-Ottawa Scale scoring guide<br>Appendix D. List of included studies<br>Appendix E. Additional information on search results<br>Appendix F. Key excluded studies<br>References                                                                                                                                                   |                       |
| Appendix D. List of included studies                                                                                                                                                                                                                                                                                                                 |                       |
| Appendix E. Additional information on search results<br>Appendix F. Key excluded studies<br>References                                                                                                                                                                                                                                               |                       |
| Appendix F. Key excluded studies                                                                                                                                                                                                                                                                                                                     |                       |
| References                                                                                                                                                                                                                                                                                                                                           |                       |
|                                                                                                                                                                                                                                                                                                                                                      |                       |
| Appendix G. Table of Individual Study characteristics                                                                                                                                                                                                                                                                                                |                       |
| Appendix H. Table of Patient characteristics                                                                                                                                                                                                                                                                                                         |                       |
| Appendix I. Methodological quality of observational studies - Newcastle Otta                                                                                                                                                                                                                                                                         | wa Scal               |
| Appendix J. Comparison-adjusted funnel plots*                                                                                                                                                                                                                                                                                                        |                       |
| Appendix K. Statistically significant network meta-analysis results along with results, transitivity, and inconsistency assessments                                                                                                                                                                                                                  | meta-ar               |
| Appendix L. Frequencies, events and samples sizes, SUCRA values, and total treatment and outcome                                                                                                                                                                                                                                                     | group r               |
| Appendix M. Rank-heat plot of cognitive developmental delay, autism/dyspra developmental delay, language delay, and attention deficit hyperactivity disor                                                                                                                                                                                            | xia, psy<br>der outco |
| Appendix N. Number of studies and treatments per outcome                                                                                                                                                                                                                                                                                             |                       |
|                                                                                                                                                                                                                                                                                                                                                      |                       |
|                                                                                                                                                                                                                                                                                                                                                      |                       |
|                                                                                                                                                                                                                                                                                                                                                      |                       |
|                                                                                                                                                                                                                                                                                                                                                      |                       |
|                                                                                                                                                                                                                                                                                                                                                      |                       |
|                                                                                                                                                                                                                                                                                                                                                      |                       |

# Appendix A. Outcome measures and diagnostic scales used in analysis

| Cognitive developmental delay                              |                                                                                                                                                                                                                            |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bayley Scales of Infant Development (children ≤42 mo.)     | Score $\geq 2$ standard deviations below the mean                                                                                                                                                                          |
| Griffiths Scale of Infant Development (children >42 mo.)   | Score $\geq 2$ standard deviations below the mean                                                                                                                                                                          |
| McCarthy Scales of Children's Abilities (children >30 mo.) | Score $\geq 1$ standard deviations below the mean                                                                                                                                                                          |
| Stanford-Binet IV Intelligence scale for children          | Intelligence quotient <u>&lt;</u> 80                                                                                                                                                                                       |
| Touwen's Test                                              | Above average number of items rated abnormal in one or more domains                                                                                                                                                        |
| Wechsler Scale of Preschool and Primary Intelligence       | Intelligence quotient <90                                                                                                                                                                                                  |
| Wechsler Intelligence Scale for Children - III             | Intelligence quotient <80; verbal intelligence quotient <69                                                                                                                                                                |
| Developmental Assessment                                   | Confirmed diagnosis by developmental pediatrician or pediatric neurologist                                                                                                                                                 |
| Autism/dyspraxia                                           |                                                                                                                                                                                                                            |
| Developmental Assessment                                   | Diagnosis confirmed by developmental specialists at 2 years of age                                                                                                                                                         |
| Medical Records                                            | Confirmed diagnosis recorded in medical history; registry records (ICD-10 codes F84.0, F84.1, F84.5, F84.8, and F84.9)                                                                                                     |
| Modified checklist for autism in toddlers                  | Scored positive for $\geq 2$ out of 6 critical items OR $\geq 3$ any items of the total scale                                                                                                                              |
| Psychomotor developmental delay                            |                                                                                                                                                                                                                            |
| Ages and Stages Questionnaire                              | >3 standard deviations from the test mean                                                                                                                                                                                  |
| Bayley Scales of Infant Development – Psychomotor<br>Index | >2 standard deviations below the standardized mean for the test                                                                                                                                                            |
| Touwen's Test                                              | Demonstrated dysfunctions in fine motor balance, fine motor functions, and coordination of extremities                                                                                                                     |
| Schedule of Growing Skills II                              | Scored as 'delayed' in $\geq 1$ domain of the test                                                                                                                                                                         |
| Developmental Assessment                                   | Infant scored >2 negative items (administered by general practitioner or pediatrician); diagnosis of neuromotor deficit confirmed by a trained nurse practitioner; infant failing to sit by 10 months or walk by 18 months |
| Health/Medical Records                                     | Diagnosis of psychomotor delay recorded in medical records                                                                                                                                                                 |
|                                                            | · · ·                                                                                                                                                                                                                      |

| Page | 51 ( | of | 90 |
|------|------|----|----|
|------|------|----|----|

**BMJ Open** 

| Language Delay                                                                                                                                                                                    |                                                                                                                                                                                                               |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Ages and Stages Questionnaire                                                                                                                                                                     | >3 standard deviations from the test mean                                                                                                                                                                     |  |  |
| Clinical Evaluation of Language Fundamentals – 4 <sup>th</sup><br>Edition                                                                                                                         | Score <70 in core language domain; score <84 overall                                                                                                                                                          |  |  |
| Learning Accomplishment Profile                                                                                                                                                                   | Below average performance in expressive speech (adjusted for age)                                                                                                                                             |  |  |
| Comprehensive Language Assessment (Peabody<br>Picture Vocabulary Test; Receptive Expressive<br>Emergent Language Scale; Expressive One Word<br>Picture Vocabulary Test, or Sequenced Inventory of | Scores/assessment indicate a >6 moth delay in age appropriate language development                                                                                                                            |  |  |
| Communication Development)                                                                                                                                                                        |                                                                                                                                                                                                               |  |  |
| ADHD                                                                                                                                                                                              |                                                                                                                                                                                                               |  |  |
| Attention Problems and Hyperactivity Scales                                                                                                                                                       | Score >1 standard deviations from the test mean                                                                                                                                                               |  |  |
| Child Behaviour Checklist                                                                                                                                                                         | ≥6 positive items on checklist                                                                                                                                                                                |  |  |
| Diagnostic and Statistical Manual – IV                                                                                                                                                            | $\geq$ 5 positive items on checklist                                                                                                                                                                          |  |  |
| Medical Records                                                                                                                                                                                   | Confirmed diagnosis in hospital/medical records made by a pediatrician or child psychiatrist                                                                                                                  |  |  |
| Neonatal Seizure                                                                                                                                                                                  |                                                                                                                                                                                                               |  |  |
| Medical records                                                                                                                                                                                   | Record of seizures during 1 <sup>st</sup> year; confirmation of neonatal seizure by electroencephalography or diagnosis                                                                                       |  |  |
| Social Impairment                                                                                                                                                                                 |                                                                                                                                                                                                               |  |  |
| Developmental Assessment (Ages and Stages<br>Questionnaire [6 and 18 months]; Child Behaviour<br>Checklist [36 months])                                                                           | Scores dichotomized into 'normal' or 'adverse' range based on pre-defined values used by scale, for scales without pre-defined values cut-off was set at a score >2 standard deviations outside the test mean |  |  |
| L                                                                                                                                                                                                 |                                                                                                                                                                                                               |  |  |
|                                                                                                                                                                                                   |                                                                                                                                                                                                               |  |  |

## Appendix B. Additional Information on the Methods

### **Information sources**

An experienced librarian executed search strategies for MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trials. The search strategy for MEDLINE was peer reviewed by another librarian using the PRESS checklist,<sup>1</sup> and is available in the protocol.<sup>2</sup> The literature search was initially conducted from inception to March 18, 2014, and a rapid search update of these databases was subsequently conducted on December 15, 2015. Authors of AED studies were contacted for unpublished study data, and the reference lists of all included studies were scanned to identify additional studies.

### Study selection and data collection

Prior to screening, two pilot-tests were conducted to assess the eligibility criteria and screening form. Once reviewers reached  $\geq$ 80% agreement, pairs of reviewers independently screened titles and abstracts (level 1) and later screened potentially relevant full-text articles (level 2). Upon completion of title and abstract screening, 6% of citations were discrepant between reviewer pairs and had to be resolved by discussion or a third reviewer. At the conclusion of full-text screening, 16% of articles were discrepant and had to be resolved by discussion. The same process was used for data abstraction and quality appraisal. Three rounds of pilot testing were conducted prior to data abstraction to train reviewers and refine the data abstraction form. For studies published in the last 10 years, authors were contacted to request clarification or additional data.

### Appraisal of selection bias using the comparison-adjusted funnel plot

All eligible medications were ordered from oldest to newest using their international market approval dates. To overcome some of the correlations induced by multi-arm studies, which may possibly cause overestimation and mask funnel plot asymmetry, we plotted data points corresponding to the study-specific basic parameters (treatment comparisons with common comparator). In each study, we used the control group as the common comparator or if this was missing, we used the oldest treatment comparator against the remaining AEDs. We used the fixed-effect model, as the random-effects model gives more weight to smaller studies and this may impact the assessment of small-study effects. We planned to explore observed asymmetry through subgroup analysis or meta-regression.

### Additional details on the synthesis of included studies

Due to the complexity of the data and the studies' underreporting, differences in drug dosages could not be accounted for, and it was assumed that different dosages of the same AED were equally effective. When a study reported multiple dosages for the same treatment, we combined the data for this treatment. We assessed the transitivity assumption for each outcome *a priori* using the treatment effect modifiers: age, baseline risk, treatment indication, timing, and methodological quality. The mean of each continuous effect modifier and the mode of each categorical effect modifier for each pairwise comparison were presented in tables for each outcome.<sup>3</sup> The consistency assumption was evaluated for the entire network of each outcome

### **BMJ Open**

using the design-by-treatment interaction model.<sup>4</sup> If inconsistency was identified, further examination for local inconsistency in parts of the network was completed using the loopspecific method.<sup>5 6</sup> Common within-network between-study variance ( $\tau^2$ ) across treatment comparisons was assumed in the conventional meta-analysis, NMA, and design-by-treatment interaction model, so that treatment comparisons including a single study can borrow strength from the remaining network. This assumption was clinically reasonable, as the treatments included were of the same nature. In the loop-specific approach, common within-loop  $\tau^2$  was assumed.

For cognitive developmental delay and autism/dyspraxia outcomes, network meta-regression analyses for maternal age and baseline risk (i.e., using the control group) were conducted, when at least 10 studies provided relevant information, assuming a common fixed coefficient across treatment comparisons. Sensitivity analyses for cognitive developmental delay and autism/dyspraxia outcomes were performed for studies with the treatment indication of epilepsy, large study size (i.e., >300), maternal alcohol intake, maternal tobacco use, only first-generation AEDs, and higher methodological quality for the two items of the Newcastle-Ottawa Scale that had the highest percentage of low methodological quality (adequacy of follow-up of cohorts and comparability of cohorts items for cohort studies). Severity of epilepsy, which may be a risk factor variable, was not evaluated in our analyses since this was not commonly reported. For autism/dyspraxia, a sensitivity analysis on maternal IQ/psychiatric history was additionally conducted. We measured the goodness of fit using the posterior mean of the residual deviance, the degree of between-study heterogeneity, and the deviance information criterion. In a wellfitting model the posterior mean residual deviance should be close to the number of data points.<sup>7</sup> <sup>8</sup> A difference of 3 units in the deviance information criterion was considered important and the lowest value of the deviance information criterion corresponded to the model with the best fit.<sup>78</sup>

All analyses were conducted in OpenBUGS,<sup>9</sup> assuming non-informative priors for all model parameters and a half normal prior distribution for the between-study standard deviation  $(\tau \sim N(0,1), \tau > 0)$ . The first 10,000 iterations were discarded and then 100,000 simulations were run with thinning of 10 values. Convergence was checked by visual inspection of the evaluation of the mixing of two chains. The median and 95% CrI were calculated for each parameter value, since medians are not overly influenced by outliers. The *network* command<sup>10</sup> was used to apply the design-by-treatment interaction model.

### References

1. McGowan J, Sampson M, Salzwedel DM, Cogo E, Foerster V, Lefebvre C. PRESS Peer Review of Electronic Search Strategies: 2015 Guideline Statement. *J Clin Epidemiol*. 2016;75:40-6.

2. Tricco AC, Cogo E, Angeliki VA, et al. Comparative safety of anti-epileptic drugs among infants and children exposed in utero or during breastfeeding: protocol for a systematic review and network meta-analysis. *Syst Rev.* 2014;3:68.

3. Jansen JP, Naci H. Is network meta-analysis as valid as standard pairwise meta-analysis? It all depends on the distribution of effect modifiers. *BMC Med.* 2013;11:159.

 White IR, Barrett JK, Jackson D, Higgins JP. Consistency and inconsistency in network metaanalysis: model estimation using multivariate meta-regression. *Res Synth Methods*. 2012;3(2):111-25.
 Song F, Altman DG, Glenny AM, Deeks JJ. Validity of indirect comparison for estimating efficacy of competing interventions: empirical evidence from published meta-analyses. *BMJ*. 2003;326(7387):472.

BMJ Open

6. Veroniki AA, Vasiliadis HS, Higgins JP, Salanti G. Evaluation of inconsistency in networks of interventions. *Int J Epidemiol*. 2013;42(1):332-45.

7. Welton NJ, Sutton AJ, Cooper N, Abrams KR, Ades A. Evidence synthesis for decision making in healthcare. New York: Wiley; 2012.

8. Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A. Bayesian measures of model complexity and fit. *J R Stat Soc Ser B Stat Methodol*. 2002;64(4):583-639.

9. Lunn D, Spiegelhalter D, Thomas A, Best N. The BUGS project: Evolution, critique and future directions. *Stat Med*. 2009;28(25):3049-67.

10. Palmer T, Sterne J. Meta-Analysis in Stata: An Updated Collection from the Stata Journal. White I, editor. Texas: Stata Press; 2016.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

# Appendix C. Newcastle-Ottawa Scale scoring guide

# **COHORT Studies**

| Excel Column        | NOS* Answer Options**                                                                                                                                                                                                                                                   | NOS Coding Manual*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RefID               | Enter the report's RefID.                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DA                  | Enter your initials.                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| First author        | Enter the first author's last name.                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Year of publication | Enter the year of the publication.                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SELECTION:          | -                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1) Representative-  | a) truly representative of the                                                                                                                                                                                                                                          | Item is assessing the representativeness of exposed individuals in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ness of the exposed | average pregnant woman                                                                                                                                                                                                                                                  | community, not the representativeness of the sample of women from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| cohort              | <ul> <li>taking AEDs in the community</li> <li>b) somewhat representative of the average pregnant woman taking AEDs in the community</li> <li>c) selected group of users e.g., nurses, volunteers</li> <li>d) no description of the derivation of the cohort</li> </ul> | some general population.<br>For example, subjects derived from groups likely to contain middle class,<br>better educated, health oriented women are likely to be representative of<br>postmenopausal estrogen users while they are not representative of all<br>women (e.g. members of a health maintenance organisation (HMO) will<br>be a representative sample of estrogen users. While the HMO may have<br>an under-representation of ethnic groups, the poor, and poorly educated,<br>these excluded groups are not the predominant users of estrogen).<br><u>Note:</u><br>Truly representative (A) is a population-based cohort at the provincial or |
|                     |                                                                                                                                                                                                                                                                         | <ul><li>national levels (e.g., a sample from 2 cities is not enough). We need very 'broad' sample of the population.</li><li>Somewhat representative (B) includes private clinics, hospital-based, or</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                            |

|                                                                                         |                                                                                                                                                                                                             | community-based                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2) Selection of the                                                                     | a) drawn from the same                                                                                                                                                                                      | Note:                                                                                                                                                                                                                                                                                                                                                                         |
| non-exposed cohort                                                                      | <ul> <li>a) drawn from the same<br/>community as the exposed<br/>cohort</li> <li>b) drawn from a different source</li> <li>c) no description of the<br/>derivation of the non-exposed<br/>cohort</li> </ul> | In our review of mostly multi-arm studies, this question pertains to the study's comparator group(s) – including "active" controls (for example, a less teratogenic AED). Therefore, this will often be 'A' for our studies.                                                                                                                                                  |
| 3) Ascertainment<br>of exposure                                                         | <ul> <li>a) secure record (e.g., surgical records)</li> <li>b) structured interview</li> <li>c) written self-report</li> <li>d) no description</li> </ul>                                                   | Note:         Option 'A' includes patient hospital records, prescription drug database, or hospital/clinic visits (e.g., patient is asked about "current" AED use during a visit with their doctor).         Option 'B' includes a hospital/clinic visit, but the patients are asked to remember their AED use during pregnancy (e.g., retrospectively ascertained exposure). |
|                                                                                         |                                                                                                                                                                                                             | 'A'.                                                                                                                                                                                                                                                                                                                                                                          |
| 4) Demonstration<br>that outcome of<br>interest was not<br>present at start of<br>study | a) yes<br>b) no                                                                                                                                                                                             | In the case of mortality studies, outcome of interest is still the presence of a disease/incident, rather than death. That is to say that a statement of 'no history of disease or incident' earns a star (i.e. option 'A'). Note: Since our review is on program twomen this question is 'A' for all                                                                         |
|                                                                                         |                                                                                                                                                                                                             | Please email us if a study involves breastfeeding women                                                                                                                                                                                                                                                                                                                       |
| COMPARABILITY                                                                           | •                                                                                                                                                                                                           | Trease chian as it a study involves breastreeuning women.                                                                                                                                                                                                                                                                                                                     |
| 1) Comparability<br>of cohorts on the<br>basis of the design<br>or analysis             | <ul> <li>a) answer is BOTH B &amp; C (i.e. study controls for age and one other important factor)</li> <li>b) study controls for age of the women</li> </ul>                                                | Either exposed and non-exposed individuals must be matched in the design and/or confounders must be adjusted for in the analysis. Statements of no differences between groups or that differences were not statistically significant are not sufficient for establishing comparability.                                                                                       |

| c) | study controls for any other important factor                | Note: If the relative risk for the exposure of interest is adjusted for the confounders listed, then the groups will be considered to be comparable |
|----|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| d) | study does not control for any important factor or it is not | on each variable used in the adjustment.                                                                                                            |
|    | described                                                    | There may be multiple ratings for this item for different categories of                                                                             |
|    |                                                              | exposure (e.g., ever vs. never, current vs. previous or never). [A maximum of 2 stars can be allotted in this category].                            |
|    |                                                              | Note:                                                                                                                                               |
|    |                                                              | The study should have initially matched the groups or presented adjuste                                                                             |
|    |                                                              | odds ratios, AND in addition, since in our review we are analyzing each                                                                             |
|    |                                                              | AED arm separately (instead of the whole exposed conort), the study<br>must also report the factor of interest for 'each AED arm' (or state that    |
|    |                                                              | <b>'each AED arm'</b> is matched).                                                                                                                  |
|    |                                                              |                                                                                                                                                     |
|    |                                                              | Thus, there are 2 parts to this question:                                                                                                           |
|    |                                                              | 1) The study should have matched/adjusted for age at whatever level                                                                                 |
|    |                                                              | of groups they were focused on (even if they aren't our abstracted AED                                                                              |
|    |                                                              | arms); AND                                                                                                                                          |
|    |                                                              | 2) Then the study should also have reported the age for each AED ar                                                                                 |
|    |                                                              | If they haven't done both of these 2 things, it's a 'D' here (unless they                                                                           |
|    |                                                              | happen to combine these by reporting adjusted ORs for each of our AEI                                                                               |
|    |                                                              | <u>arms).</u>                                                                                                                                       |
|    |                                                              | For our review, this generally pertains to <b>the comparability of the</b>                                                                          |
|    |                                                              | <b>MOTHERS.</b><br>The exception here is in studies of cognitive/psychomotor development                                                            |
|    |                                                              | disorders in children - when age of the children should be comparable.                                                                              |
|    |                                                              | The "other important factors" here are any one of these:                                                                                            |

|                                         |                                                                                                                                      | <ul> <li>history of congenital malformations (CMs), fetal losses, preterm deliveries or small babies.</li> <li>family history of genetic problems or CMs.</li> <li>alcohol use.</li> <li>nutritional deficiencies (e.g., lack of folic acid).</li> <li>Example:         <ul> <li>Option 'B' indicates that the study initially matched groups based on the women's age (or reported adjusted ORs) AND they report the mean women's age for EACH of our arms (e.g., for Tx1, Tx2, etc.).</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OUTCOME:<br>1) Assessment of<br>outcome | <ul> <li>a) independent OR blind assessment</li> <li>b) record linkage</li> <li>c) self-report</li> <li>d) no description</li> </ul> | <ul> <li>For some outcomes (e.g. fractured hip), reference to the medical record is sufficient to satisfy the requirement for confirmation of the fracture. This would not be adequate for vertebral fracture outcomes where reference to x-rays would be required.</li> <li>a) Independent or blind assessment stated in the paper, or confirmation of the outcome by reference to secure records (x-rays, medical records, etc.)</li> <li>b) Record linkage (e.g. identified through ICD codes on database records)</li> <li>c) Self-report (i.e. no reference to original medical records or x-rays to confirm the outcome)</li> <li>d) No description.</li> </ul> Note: Blind (A) is if they tell us that the outcome assessors were blinded to exposures; or if the outcome is objective. For our purposes, we will focus on the primary outcome of interest of our systematic review, which is major malformations (an objective outcome). |

|                   |                                 | So most of ours will be A, unless the study is only on a secondary           |
|-------------------|---------------------------------|------------------------------------------------------------------------------|
|                   |                                 | outcome (e.g., cognitive development) and is based on the mother's self-     |
|                   |                                 | report of their child (e.g., not a clinical examination).                    |
| 2) Was follow-up  | a) yes                          | An acceptable length of time should be decided before quality assessment     |
| long enough for   | b) no                           | begins (e.g. 5 yrs. for exposure to breast implants)                         |
| outcomes to occur |                                 |                                                                              |
|                   |                                 | Note:                                                                        |
|                   |                                 | For this component, focus only on the outcomes that are reported in the      |
|                   |                                 | results.                                                                     |
|                   |                                 | For our purposes, we will focus on the primary outcome of interest of our    |
|                   |                                 | systematic review, which is major malformations.                             |
|                   |                                 |                                                                              |
|                   |                                 | • For studies focusing on 'birth' outcomes (i.e. malformations, preterm,     |
|                   |                                 | fetal losses, born small), the answer is 'A' if they follow the groups       |
|                   |                                 | until birth.                                                                 |
|                   |                                 | • For studies focusing on cognitive developmental disorders, an              |
|                   |                                 | adequate follow-up period (i.e. child's age) is 4 years.                     |
|                   |                                 | • For studies focusing on psychomotor delays, an adequate follow-up          |
|                   |                                 | period is the earliest point of detection of the disorder.                   |
|                   |                                 | • For studies focusing on neonatal seizures, an adequate follow-up           |
|                   |                                 | period (i.e. infant's age) is 6 months.                                      |
| 3) Adequacy of    | a) complete follow up - all     | This item assesses the follow-up of the exposed and non-exposed cohorts      |
| follow up of      | subjects accounted for          | to ensure that losses are not related to either the exposure or the outcome. |
| cohorts           | b) subjects lost to follow up   |                                                                              |
|                   | unlikely to introduce bias -    | Note:                                                                        |
|                   | small number lost (see          | Especially check ones that start their total sample size (or figure          |
|                   | 'Note'), or description         | diagram) with only the ones who had "complete" data (or only those           |
|                   | provided of those lost          | who they had "successfully" recruited), as these are often a 'D' (since      |
|                   | c) follow up rate is inadequate | they don't report on the ones NOT followed up).                              |
|                   | (see 'Note') and no             |                                                                              |
|                   | description of those lost       | • For a prospective study, $\geq 90\%$ follow-up rate per year is adequate   |
|                   | d) no statement                 | (e.g., 10% dropout or less for 1 year, 20% for 2 years of follow-up.         |
|                   |                                 | etc.). This includes missing or incomplete data, etc.                        |
|                   |                                 | / / ····· / ····· / ····· / ····                                             |

| • For a retrospective cohort study, ≥80% follow-up rate is adequate; including the ones that they could NOT recruit or who would NOT participate. |
|---------------------------------------------------------------------------------------------------------------------------------------------------|
| • For a survey/mail questionnaire, $\geq$ 75% response rate is adequate. (For                                                                     |
| a survey, a dropout rate is congruent to a survey response rate).                                                                                 |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
| 12                                                                                                                                                |

# **CASE-CONTROL Studies**

| Excel Column                              | NOS* Answer Options**                                                                                                                             | NOS Coding Manual*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RefID                                     | Enter the report's RefID.                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DA                                        | Enter your initials.                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| First author                              | Enter the first author's last name.                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Year of publication                       | Enter the year of the publication.                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SELECTION:                                |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1) Is the case<br>definition<br>adequate? | <ul> <li>a) yes, with independent validation</li> <li>b) yes, e.g., record linkage or based on self-reports</li> <li>c) no description</li> </ul> | <ul> <li>a) Requires some independent validation (e.g. &gt;1 person/record/time/<br/>process to extract information, or reference to primary record source<br/>such as x-rays or medical/hospital records)</li> <li>b) Record linkage (e.g. ICD codes in database) or self-report with no<br/>reference to primary record</li> <li>c) No description</li> </ul> <u>Note:</u> This question is assessing the group of infants that have the outcome of<br>interest (e.g., CMs) – i.e. the "cases" in a case-control study design. |
| 2) Representative-<br>ness of the cases   | <ul><li>a) consecutive or obviously<br/>representative series of cases</li><li>b) potential for selection biases,<br/>or not stated</li></ul>     | <ul> <li>a) All eligible cases with outcome of interest over a defined period of time, all cases in a defined catchment area, all cases in a defined hospital or clinic, group of hospitals, health maintenance organisation, or an appropriate sample of those cases (e.g. random sample)</li> <li>b) Not satisfying requirements in part (a), or not stated.</li> <li><u>Note:</u><br/>Option 'A' is a population-based sample.</li> </ul>                                                                                     |
| 3) Selection of<br>controls               | <ul><li>a) community controls</li><li>b) hospital controls</li><li>c) no description</li></ul>                                                    | This item assesses whether the control series used in the study is derived<br>from the same population as the cases and essentially would have been<br>cases had the outcome been present.                                                                                                                                                                                                                                                                                                                                       |

|                     |                                   | a) Community controls (i.e. same community as cases and would be                                                        |
|---------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|                     |                                   | cases II had outcome)                                                                                                   |
|                     |                                   | b) Hospital controls, within same community as cases (i.e. not another aity) but derived from a hospitalized nonulation |
|                     |                                   | a) No description                                                                                                       |
|                     |                                   | c) No description                                                                                                       |
|                     |                                   | Note:                                                                                                                   |
|                     |                                   | This question is assessing the group of infants that don't have the                                                     |
|                     |                                   | outcome (e.g., CMs) – i.e. the "controls" in a case-control study design.                                               |
|                     | 6                                 |                                                                                                                         |
|                     |                                   | Community controls (A) includes a population-based sample.                                                              |
| 4) Definition of    | a) no history of disease          | a) If cases are first occurrence of outcome, then it must explicitly state                                              |
| controls            | (endpoint)                        | that controls have no history of this outcome. If cases have new (not                                                   |
|                     | b) no description of source       | necessarily first) occurrence of outcome, then controls with previous                                                   |
|                     |                                   | occurrences of outcome of interest should not be excluded.                                                              |
|                     |                                   | b) No mention of history of outcome                                                                                     |
|                     |                                   | Nata                                                                                                                    |
|                     |                                   | $\frac{1NO(C.)}{Cince a variantia on fatal affects this question is (A) for all studies$                                |
|                     |                                   | Since our review is on retai effects, this question is A for an studies.                                                |
|                     |                                   | Thease email us in a study involves exposure during breastreeding.                                                      |
| COMPARABILITY       |                                   |                                                                                                                         |
| 1) Comparability    | a) answer is BOTH B & C (i e      | Fither cases and controls must be matched in the design and/or                                                          |
| of cases and        | study controls for age and one    | confounders must be adjusted for in the analysis Statements of no                                                       |
| controls on the     | other important factor)           | differences between groups or that differences were not statistically                                                   |
| hasis of the design | b) study controls for age of the  | significant are not sufficient for establishing comparability                                                           |
| or analysis         | women                             | significant are not sufficient for establishing comparability.                                                          |
|                     | c) study controls for any other   | Note: If the odds ratio for the exposure of interest is adjusted for the                                                |
|                     | important factor                  | confounders listed, then the groups will be considered to be comparable                                                 |
|                     | d) study does not control for any | on each variable used in the adjustment.                                                                                |
|                     | important factor or it is not     |                                                                                                                         |
|                     | described                         | There may be multiple ratings for this item for different categories of                                                 |
|                     |                                   | exposure (e.g. ever vs. never, current vs. previous or never). [A maximum                                               |
|                     |                                   |                                                                                                                         |

|                              |                                                                                                                                                                                                                                       | of 2 stars can be allotted in this category].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              |                                                                                                                                                                                                                                       | <ul> <li><u>Note:</u><br/>The study should have initially matched the groups, AND in addition, since in our review we are analyzing each AED arm separately (instead of the whole cases group), the study must also report the factor of interest for 'each AED arm' (or state that 'each AED arm' is matched).</li> <li>For our review, this generally pertains to the comparability of the MOTHERS of the cases and controls.<br/>The exception here is in studies of cognitive/psychomotor development disorders in children - when age of the children should be comparable.</li> <li>The "other important factors" here are any one of these:</li> <li>history of congenital malformations (CMs), fetal losses, preterm deliveries or small babies.</li> <li>family history of genetic problems or CMs.</li> <li>alcohol use.</li> <li>nutritional deficiencies (e.g., lack of folic acid).</li> <li>For example, Option 'B' indicates that the study initially matched groups based on the women's age AND they report the mean women's age for EACH arm (e.g., for Tx1, Tx2, etc.).</li> </ul> |
| EXPOSURE:                    |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1) Assessment of<br>exposure | <ul> <li>a) secure record (e.g., surgical records)</li> <li>b) structured interview where blind to case/control status</li> <li>c) interview not blinded to case/control status</li> <li>d) written self-report or medical</li> </ul> | Note:<br>Option 'A' includes patient hospital records, prescription drug database,<br>or hospital/clinic visits (e.g., patient is asked about "current" AED use<br>during a visit with their doctor).<br>"Interview" here includes a hospital/clinic visit, but the patients are asked<br>to remember their AED use during pregnancy (e.g., retrospectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

|                    | record only                  | ascertained exposure).                                                      |
|--------------------|------------------------------|-----------------------------------------------------------------------------|
|                    | e) no description            |                                                                             |
| 2) Same method of  | a) yes                       | Note:                                                                       |
| ascertainment for  | b) no                        | This question is asking whether the method of ascertainment of exposure     |
| cases and controls |                              | was the same for 'cases' (with the outcome) and 'controls' (without the     |
|                    |                              | outcome; in this case-control study design).                                |
| 3) Non-response    | a) same rate for both groups | Note:                                                                       |
| rate               | b) non-respondents described | For our review, this pertains to either the infants or the mothers of the   |
|                    | c) rate different and no     | case and control groups.                                                    |
|                    | designation                  |                                                                             |
|                    | e o                          | We're allowing 10% dropout per year for a prospective study $- e.g., 10\%$  |
|                    |                              | for 1 year, 20% for 2 years of follow-up, etc.                              |
|                    |                              |                                                                             |
|                    |                              | For a survey, we allow for a 75% response rate in order for it be adequate. |
|                    |                              |                                                                             |
|                    |                              | For a survey, a dropout rate is congruent to a survey response rate.        |

\*Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, Tugwell P. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Available at: <u>http://www.ohri.ca/programs/clinical\_epidemiology/oxford.asp</u> \*\*In the **"NOS Coding Manual" column**, the first section for each item is copied straight from the NOS documentation while the lower portions in each item are our "Notes" tailored for the AED review.

## Appendix D. List of included studies

1. Adab N, Kini U, Vinten J, et al. The longer term outcome of children born to mothers with epilepsy. *J Neurol Neurosurg Psychiatry*. 2004;75(11):1575-83.

2. Vinten J, Bromley RL, Taylor J, Adab N, Kini U, Baker GA. The behavioral consequences of exposure to antiepileptic drugs in utero. *Epilepsy Behav.* 2009;14(1):197-201.

3. Mawer G, Clayton-Smith J, Coyle H, Kini U. Outcome of pregnancy in women attending an outpatient epilepsy clinic: adverse features associated with higher doses of sodium valproate. *Seizure*. 2002;11(8):512-8.

4. Arkilo D, Hanna J, Dickens D, et al. Pregnancy and neurodevelopmental outcomes with in-utero antiepileptic agent exposure. A pilot study. *Eur J Paediatr Neurol*. 2015;19(1):37-40.

5. Bromley R, Baxter N, Calderbank R, Mawer G, Clayton-Smith J, Baker G. A comprehensive review of the language abilities of children exposed to valproate or carbamazepine in utero. American Epilepsy Society; Texas2010.

6. Bromley RL, Mawer GE, Briggs M, et al. The prevalence of neurodevelopmental disorders in children prenatally exposed to antiepileptic drugs. *J Neurol Neurosurg Psychiatry*. 2013;84(6):637-43.

7. Bromley RL, Mawer G, Clayton-Smith J, Baker GA. Autism spectrum disorders following in utero exposure to antiepileptic drugs. *Neurology*. 2008;71(23):1923-4.

8. Christensen J, Gronborg TK, Sorensen MJ, et al. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. *JAMA*. 2013;309(16):1696-703.

9. Cohen MJ, Meador KJ, Browning N, et al. Fetal antiepileptic drug exposure: Adaptive and emotional/behavioral functioning at age 6 years. *Epilepsy Behav*. 2013;29(2):308-15.

 Cummings C, Stewart M, Stevenson M, Morrow J, Nelson J. Neurodevelopment of children exposed in utero to lamotrigine, sodium valproate and carbamazepine. *Arch Dis Child*. 2011;96(7):643-7.
 Tomson T, Battino D, Bonizzoni E, et al. Antiepileptic drugs and intrauterine death: A prospective

11. Tomson T, Battino D, Bonizzoni E, et al. Antiepileptic drugs and intrauterine death: A prospective observational study from EURAP. *Neurology*. 2015;85(7):580-8.

 Dean JCS, Hailey H, Moore SJ, Lloyd DJ, Turnpenny PD, Little J. Long term health and neurodevelopment in children exposed to antiepileptic drugs before birth. *J Med Genet*. 2002;39(4):251-9.
 Rasalam AD, Hailey H, Williams JH, et al. Characteristics of fetal anticonvulsant syndrome associated autistic disorder. *Dev Med Child Neurol*. 2005;47(8):551-5.

14. D'Souza SW, Robertson IG, Donnai D, Mawer G. Fetal phenytoin exposure, hypoplastic nails, and jitteriness. *Arch Dis Child*. 1991;66(3):320-4.

15. Eriksson K, Viinikainen K, Mönkkönen A, et al. Children exposed to valproate in utero— Population based evaluation of risks and confounding factors for long-term neurocognitive development. *Epilepsy Res.* 2005;65(3):189-200.

16. Viinikainen K, Eriksson K, Monkkonen A, et al. The effects of valproate exposure in utero on behavior and the need for educational support in school-aged children. *Epilepsy Behav.* 2006;9(4):636-40.

17. Gaily E. Development and growth in children of epileptic mothers: a prospective controlled study. Helsinki, Finland: University of Helsinki; 1990.

18. Gaily EK, Granstrom ML, Hillesmaa VK, Bardy AH. Head circumference in children of epileptic mothers: contributions of drug exposure and genetic background. *Epilepsy Res.* 1990;5(3):217-22.

19. Hiilesmaa V. A prospective study on maternal and fetal outcome in 139 women with epilepsy. Helsinki: University of Helsinki; 1982.

20. Hiilesmaa VK, Bardy A, Teramo K. Obstetric outcome in women with epilepsy. *Am J Obstet Gynecol*. 1985;152(5):499-504.

21. Gogatishvili N, Ediberidze T, Lomidze G, Tatishvili N, Kasradze S. PO-0834 Long-term Developmental Outcome Of Children Prenatally Exposed To Antiepileptic Drugs. *Arch Dis Child*. 2014;99(Suppl 2):A526.

22. Gogatishvili N, Ediberidze T, Lomidze G, Tatishvili N, Kasradze S. Cognitive outcomes of children with fetal antiepileptic drug exposure at the age of 3-6 years-preliminary data. 1st Congress of the European Academy of Neurology; Berlin: European Journal of Neurology; 2015. p. 329.

23. Jones KL, Lacro RV, Johnson KA, Adams J. Pattern of malformations in the children of women treated with carbamazepine during pregnancy. *N Engl J Med*. 1989;320(25):1661-6.

**BMJ Open** 

 Katz JM, Pacia SV, Devinsky O. Current Management of Epilepsy and Pregnancy: Fetal Outcome, Congenital Malformations, and Developmental Delay. *Epilepsy Behav*. 2001;2(2):119-23.
 Koch S, Jager-Roman E, Losche G, Nau H, Rating D, Helge H. Antiepileptic drug treatment in pregnancy: drug side effects in the neonate and neurological outcome. *Acta Paediatr*. 1996;85(6):739-46.
 Lacroix I, Hurault-Delarue C, Guitard C, et al. Psychomotor effects of in utero exposure to psychotropic medications: A comparative study in EFEMERIS database. Congrès de Physiologie Pharmacologie et Thérapeutique: Dijon, France2012.

27. Miskov S, Juraski RG, Fucic A, et al. Croatian Pregnant Women with Epilepsy and Effects of Antiepileptic Drugs Exposure in their Offspring - seven years of prospective surveillance. American Epilepsy Society; Texas2010.

 Nadebaum C, Anderson VA, Vajda F, Reutens DC, Barton S, Wood AG. Language skills of school-aged children prenatally exposed to antiepileptic drugs. *Neurology*. 2011;76(8):719-26.
 Rihtman T, Parush S, Ornoy A. Developmental outcomes at preschool age after fetal exposure to

valproic acid and lamotrigine: cognitive, motor, sensory and behavioral function. *Reprod Toxicol.* 2013;41:115-25.

30. Scolnik D, Nulman I, Rovet J, et al. Neurodevelopment of children exposed in utero to phenytoin and carbamazepine monotherapy. *JAMA*. 1994;271(10):767-70.

 Shankaran S, Woldt E, Nelson J, Bedard M, Delaney-Black V. Antenatal phenobarbital therapy and neonatal outcome. II: Neurodevelopmental outcome at 36 months. *Pediatrics*. 1996;97(5):649-52.
 van der Pol MC, Hadders-Algra M, Huisjes HJ, Touwen BC. Antiepileptic medication in pregnancy: late effects on the children's central nervous system development. *Am J Obstet Gynecol*.

1991;164(1 Pt 1):121-8.
33. Veiby G, Engelsen BA, Gilhus NE. Early child development and exposure to antiepileptic drugs prenatally and through breastfeeding: a prospective cohort study on children of women with epilepsy. *JAMA neurology*. 2013;70(11):1367-74.

34. Veiby G, Daltveit AK, Schjolberg S, et al. Exposure to antiepileptic drugs in utero and child development: a prospective population-based study. *Epilepsia*. 2013;54(8):1462-72.

35. Wood AG, Nadebaum C, Anderson V, et al. Prospective assessment of autism traits in children exposed to antiepileptic drugs during pregnancy. *Epilepsia*. 2015;56(7):1047-55.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

### Appendix E. Additional information on search results

Of the included 110 studies, nine were written in languages other than English and three were conference abstracts or letter to the editor with usable data. Scanning of reference lists of included articles and related reviews identified 13 additional studies. Forty-eight percent of contacted authors (22/46) provided clarification or additional data. Additionally, 29% (13/45) of authors of conference abstracts provided additional unpublished data. We were unable to contact 11 authors due to non-working email addresses. One author provided a manuscript and three authors provided unpublished data that were included in the analysis.

# Appendix F. Key excluded studies

| Author,<br>Year               | Research Group                                                                                            | Title                                                                                                                   | Reason for Exclusion                              |
|-------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Meador,<br>2009 <sup>1</sup>  | Neurodevelopmental<br>Effects of Antiepileptic<br>Drug (NEAD) Study<br>Group                              | Cognitive Function at 3 Years of Age after Fetal Exposure to<br>Antiepileptic Drugs                                     | Outcomes only reported<br>as continuous variables |
| Meador,<br>2010 <sup>2</sup>  | Neurodevelopmental<br>Effects of Antiepileptic<br>Drug (NEAD) Study<br>Group                              | Effects of breastfeeding in children of women taking antiepileptic drugs                                                | Outcomes only reported as continuous variables    |
| Meador, 2011 <sup>3</sup>     | Neurodevelopmental<br>Effects of Antiepileptic<br>Drug (NEAD) Study<br>Group                              | Foetal antiepileptic drug exposure and verbal versus non-verbal abilities at three years of age                         | Outcomes only reported as continuous variables    |
| Meador,<br>2012 <sup>4</sup>  | Neurodevelopmental<br>Effects of Antiepileptic<br>Drug (NEAD) Study<br>Group                              | Effects of fetal antiepileptic drug exposure: Outcomes at age 4.5 years                                                 | Outcomes only reported as continuous variables    |
| Meador,<br>2013 <sup>5</sup>  | Neurodevelopmental<br>Effects of Antiepileptic<br>Drug (NEAD) Study<br>Group                              | Fetal antiepileptic drug exposure and cognitive outcomes at age 6 years (NEAD study): a prospective observational study | Outcomes only reported as continuous variables    |
| Shallcross, 2011 <sup>6</sup> | Liverpool and<br>Manchester<br>Neurodevelopment<br>Group and The UK<br>Epilepsy and Pregnancy<br>Register | Child development following in utero exposure:<br>Levetiracetam vs. sodium valproate                                    | Outcomes only reported<br>as continuous variables |
| Shallcross, 2014 <sup>7</sup> | Liverpool and<br>Manchester                                                                               | In utero exposure to levetiracetam vs. valproate:<br>Development and language at 3 years of age                         | Outcomes only reported as continuous variables    |

|                                                                                                                                                                                                                                                                                                                                                                                                                     | Neurodevelopment<br>Group and The UK<br>Epilepsy and Pregnancy                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                    |                                                                                                                                                                                                 |                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| References                                                                                                                                                                                                                                                                                                                                                                                                          | Register                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                    |                                                                                                                                                                                                 |                                                                                                                                                                              |
| 1.         Mead           2009;360(16)         2.         Mead           2010;75(22):'         3.         Mead           3.         Mead         2012;75(22):'           3.         Mead         2012;75(16):'           5.         Mead         2012;78(16):'           5.         Mead         2012;78(16):'           6.         Shalle         sodium valprof           7.         Shalle         age. Neurolog | or KJ, Baker GA, Browning N,<br>(1597-605.<br>or KJ, Baker GA, Browning N,<br>954-60.<br>or KJ, Baker GA, Browning N,<br>34(Pt 2):396-404.<br>or KJ, Baker GA, Browning N,<br>207-14.<br>or KJ, Baker GA, Browning N,<br>bservational study. <i>Lancet Ne</i><br>cross R, Bromley RL, Irwin B,<br>bate. <i>Neurology</i> . 2011;76(4):38<br>cross R, Bromley RL, Cheyne<br><i>gy</i> . 2014;82(3):213-21. | et al. Cognitive function at<br>et al. Effects of breastfeed<br>et al. Foetal antiepileptic of<br>et al. Effects of fetal antiepileptic dr<br><i>urol.</i> 2013;12(3):244-52.<br>Bonnett LJ, Morrow J, Bak<br>33-9.<br>CP, et al. In utero exposur | t 3 years of age after fetal<br>ding in children of women t<br>drug exposure and verbal v<br>pileptic drug exposure: out<br>rug exposure and cognitive<br>er GA. Child development<br>re to levetiracetam vs valpr | exposure to antiepileptic<br>taking antiepileptic drugs<br>versus non-verbal abiliti<br>comes at age 4.5 years<br>e outcomes at age 6 yea<br>following in utero expos<br>roate: development and | c drugs. <i>N Engl J Me</i><br>s. <i>Neurology</i> .<br>es at three years of a<br><i>Neurology</i> .<br>ars (NEAD study): a<br>sure: levetiracetam vs<br>language at 3 years |
|                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                    |                                                                                                                                                                                                 |                                                                                                                                                                              |

**BMJ Open** 

| Author, Year                                                                                | Country of conduct | Registry or Setting                                                                                                                                                                | Study<br>period | Interventions                           | Outcomes                                                                      | Funding                      |
|---------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------|-------------------------------------------------------------------------------|------------------------------|
| Adab, 2004 <sup>1</sup><br>[CR: Vinten,<br>2009 <sup>2</sup> ; Mawer,<br>2002 <sup>3*</sup> | UK                 | Mersey Regional<br>Epilepsy Clinic; Epilepsy<br>Clinic at the Manchester<br>Royal Infirmary;<br>Antenatal clinic at St<br>Mary's Hospital,<br>Manchester                           | 2000-<br>2001   | Carbam, Control, Valpro                 | Cognitive<br>Developmental<br>Delay,<br>Psychomotor<br>Developmental<br>Delay | NR                           |
| Arkilo, 2015 <sup>4</sup>                                                                   | USA                | Minnesota Epilepsy<br>Group                                                                                                                                                        | 2006-<br>2011   | Carbam, Lamot, Levet,<br>Pheny, Valpro  | Autism/Dyspraxia,<br>Psychomotor<br>Developmental<br>Delay                    | NR                           |
| Bromley,<br>2010 <sup>5</sup>                                                               | UK                 | Liverpool and Manchester<br>Neurodevelopment Group                                                                                                                                 | NR              | Carbam, Valpro                          | Language Delay                                                                | NR                           |
| Bromley,<br>2013 <sup>6</sup> [CR:<br>Bromley,<br>2008 <sup>7</sup> ]                       | UK                 | Liverpool and Manchester<br>Neurodevelopment group                                                                                                                                 | 2000-<br>2004   | Carbam, Control, Lamot,<br>Valpro       | Autism/Dyspraxia,<br>ADHD                                                     | mixed<br>public &<br>private |
| Christensen,<br>2013 <sup>8</sup> †                                                         | Denmark            | Danish Civil Registration<br>System; Danish<br>Prescription Register;<br>Danish Psychiatric<br>Central Register; Danish<br>Birth Register; Danish<br>National Hospital<br>Register | 1996-<br>2006   | Carbam, Clonaz, Lamot,<br>Oxcar, Valpro | Autism/Dyspraxia                                                              | public                       |

Appendix G. Table of Individual Study characteristics

Page 71 of 90

### BMJ Open

| Cohen, 2013 <sup>9</sup>                                                                                                                     | USA;UK              | Neurodevelopmental<br>Effects of Antiepileptic<br>Drugs Study Group                                     | 1999-<br>2004 | Carbam, Lamot, Pheny,<br>Valpro,                                                                                                                | ADHD                                                                           | public                     |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------|
| Cummings,<br>2011 <sup>10</sup> † [CR:<br>Tomson,<br>2015 <sup>11</sup> ]                                                                    | Northern<br>Ireland | UK Epilepsy and<br>Pregnancy Register<br>(Northern Ireland);<br>Northern Ireland Child<br>Health System | 1996-<br>2005 | Carbam, Lamot, Valpro,                                                                                                                          | Cognitive<br>Developmental<br>Delay                                            | public                     |
| Dean, 2002 <sup>12</sup><br>[CR: Rasalam,<br>2005 <sup>13</sup> ]                                                                            | Scotland            | Aberdeen Maternity<br>Hospital                                                                          | 1976-<br>2000 | Carbam, Carbam+Pheno,<br>Carbam+Pheny,<br>Carbam+Valpro, Control,<br>Ethos, Pheno, Pheno+Pheny,<br>Pheno+Valpro, Pheny,<br>Primid, Valpro       | Psychomotor<br>Developmental<br>Delay,<br>ADHD                                 | NR                         |
| D'Souza,<br>1991 <sup>14</sup>                                                                                                               | United<br>Kingdom   | St Mary's Hospital                                                                                      | 1980-<br>1982 | Carbam, Control, Pheno,<br>Pheny, Valpro                                                                                                        | Cognitive<br>Developmental<br>Delay                                            | public                     |
| Eriksson,<br>2005 <sup>15</sup> † [CR:<br>Viinikainen,<br>2006 <sup>16</sup> ]                                                               | Finland             | Kuopio University<br>Hospital                                                                           | 1989-<br>2000 | Carbam, Control, Valpro                                                                                                                         | Cognitive<br>Developmental<br>Delay, Psychomotor<br>Developmental<br>Delay     | public                     |
| Gaily, 1990 <sup>17</sup><br>[CR: Gaily,<br>1990 <sup>18</sup> ;<br>Hiilesmaa,<br>1982 <sup>19</sup> ;<br>Hiilesmaa,<br>1985 <sup>20</sup> ] | Finland             | Helsinki University<br>Central Hospital                                                                 | 1975-<br>1979 | Carbam,<br>Carbam+Pheno+Pheny,<br>Carbam+Pheny,<br>Carbam+Valpro, Control,<br>Ethos+Pheny, Pheno+Pheny,<br>Pheny, Pheny+Primid,<br>Pheny+Valpro | Cognitive<br>Developmental<br>Delay ,<br>Psychomotor<br>Developmental<br>Delay | mixed<br>public<br>private |
| Gogatishvili,<br>2014 <sup>21</sup>                                                                                                          | Georgia             | Georgian National AED-<br>Pregnancy Registry                                                            | NR            | Carbam, Lamot, Valpro                                                                                                                           | Cognitive<br>Developmental                                                     | public                     |
|                                     |         |                                                                                                                                                                       |               |                                                                  | Delay                                                                         |        |
|-------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------|-------------------------------------------------------------------------------|--------|
| Gogatishvili,<br>2015 <sup>22</sup> | Georgia | Georgian National AED-<br>Pregnancy Registry                                                                                                                          | NR            | Carbam, Carbam+Levet,<br>Lamot, Pheno, Valpro                    | Language Delay                                                                | public |
| Jones, 1989 <sup>23</sup> †         | US      | California Teratogen<br>Registry                                                                                                                                      | 1979-<br>1988 | Carbam, Carbam+Pheno,<br>Carbam+Pheno+Valpro,<br>Carbam+Primid   | Cognitive<br>Developmental<br>Delay,<br>Psychomotor<br>Developmental<br>Delay | public |
| Katz, 2001 <sup>24</sup>            | USA     | Mount Sinai<br>Comprehensive Epilepsy<br>Center                                                                                                                       | 1990-<br>2000 | Carbam, Control, Lamot,<br>Pheno, Pheny, Primid,<br>Valpro       | Cognitive<br>Developmental<br>Delay                                           | NR     |
| Koch, 1996 <sup>25</sup>            | Germany | NR                                                                                                                                                                    | 1976-<br>1983 | Pheno, Pheny, Primid,<br>Valpro                                  | Cognitive<br>Developmental<br>Delay                                           | public |
| Lacroix,<br>2012 <sup>26</sup>      | France  | EFEMERIS database -<br>Caisse Primaire<br>d'Assurance Maladie of<br>Haute-Garonne and<br>Maternal and Infant<br>Protection Service;<br>Antenatal Diagnostic<br>Centre | 2004-<br>2008 | Carbam, Clobaz, Clonaz,<br>Gabap, Lamot, Pheno, Topir,<br>Valpro | Psychomotor<br>Developmental<br>Delay                                         | NR     |
| Mawer, 2002 <sup>3</sup>            | England | Manchester Royal<br>Infirmary                                                                                                                                         | 1990-<br>1999 | Carbam, Lamot, Pheny,<br>Valpro                                  | Cognitive<br>Developmental<br>Delay                                           | NR     |

| Page | 73 | of | 90 |
|------|----|----|----|
|------|----|----|----|

| Miskov,<br>2010 <sup>27</sup>      | Croatia     | NR                                                                                                                                    | 2003-<br>2010                                                                                        | Carbam, Control, Gabap,<br>Lamot, Valpro | Psychomotor<br>Developmental<br>Delay, Neonatal<br>Seizures | NR                           |
|------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------|------------------------------|
| Nadebaum,<br>2011 <sup>28</sup> †  | Australia   | Australian Registry of<br>Antiepileptic Drug Use in<br>Pregnancy                                                                      | Australian Registry of<br>Antiepileptic Drug Use in 2007-<br>2009 Carbam, Lamot, Valpro<br>Pregnancy |                                          | Language Delay                                              | mixed<br>public &<br>private |
| Rihtman,<br>2013 <sup>29</sup>     | Israel      | Israeli Teratogen<br>Information Service                                                                                              | NR                                                                                                   | Lamot, Valpro                            | Neonatal Seizure                                            | mixed<br>public &<br>private |
| Scolnik,<br>1994 <sup>30</sup>     | Canada      | Hospital for Sick Children<br>- Motherisk Program;<br>North York General<br>Hospital; Toronto<br>Hospital;<br>Oshawa General Hospital | 1987-<br>1992                                                                                        | Carbam, Pheny                            | Cognitive<br>Developmental<br>Delay                         | public                       |
| Shankaran,<br>1996 <sup>31</sup>   | USA         | Children's Hospital of<br>Michigan                                                                                                    | NR                                                                                                   | Control, PHENO,                          | Psychomotor<br>Developmental<br>Delay, Language<br>Delay    | public                       |
| Van der Pol,<br>1991 <sup>32</sup> | Netherlands | Groningen University<br>Hospital                                                                                                      | 1973-<br>1981                                                                                        | Carbam, Carbam+Pheno,<br>Control, Pheno  | Psychomotor<br>Developmental<br>Delay                       | public                       |
| Veiby,<br>2013a <sup>33</sup> †    | Norway      | Norwegian Institute of<br>Public Health- Mother<br>and Child Cohort Study                                                             | 1999-<br>2009                                                                                        | Carbam, Control, Lamot,<br>Valpro        | Social Impairment                                           | public                       |
| Veiby,<br>2013b <sup>34</sup> †    | Norway      | Medical Birth Registry of<br>Norway                                                                                                   | 1999-<br>2008                                                                                        | Carbam, Control, Lamot,<br>Valpro        | Psychomotor<br>Developmental<br>Delay,<br>Autism/Dyspraxia, | public                       |

|                                                                                             |                                                                                            |                                |                                                                                  | Language Delay,<br>ADHD                         |                |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------|----------------|
| Wood, 2015 <sup>35</sup> † Australia                                                        | Australian Registry of<br>Antiepileptic Drug Use in<br>Pregnancy                           | 2007-<br>2010                  | Carbam, Carbam+Clonaz,<br>Carbam+Lamot,<br>Carbam+Pheny,<br>Lamot+Valpro, Valpro | Autism/Dyspraxia                                | public         |
| Abbreviations: ADHD – Atte                                                                  | ention Deficit Hyperactivity D                                                             | Disorder;                      | NR – Not Reported                                                                |                                                 |                |
| Carbam = Carbamazepine; Cl<br>Lamotrigine; Levet = Levetira<br>Topir = Topiramate; Valpro = | obaz = Clobazam; Clonaz = C<br>acetam; Oxcar = Oxcarbazepin<br>Valproate; Vigab = Viagabat | Clonazepa<br>ne; Phenc<br>trin | um; Ethos = Ethosuximide; Gab<br>o = Phenobarbital; Pheny = Phe                  | ap = Gabapentin; Lamo<br>nytoin; Pridmid = Prim | ot =<br>idone; |
| *Single publication reporting<br>†Registry Studies                                          | on two separate cohorts                                                                    |                                |                                                                                  |                                                 |                |
|                                                                                             |                                                                                            |                                |                                                                                  |                                                 |                |
|                                                                                             |                                                                                            |                                |                                                                                  |                                                 |                |
|                                                                                             |                                                                                            |                                |                                                                                  |                                                 |                |
|                                                                                             |                                                                                            |                                |                                                                                  |                                                 |                |
|                                                                                             |                                                                                            |                                |                                                                                  |                                                 |                |
|                                                                                             |                                                                                            | 27                             |                                                                                  |                                                 |                |

### Appendix H. Table of Patient characteristics

| Author, Year                                                                                 | Indication | Sample<br>Size* | Mean Age<br>(Women) | Mean Age<br>(Children)/<br>Follow-up<br>period† | AED<br>Exposure<br>Timing | Maternal<br>Alcohol Use<br>n/N‡ | Maternal<br>Tobacco Use<br>n/N‡ |
|----------------------------------------------------------------------------------------------|------------|-----------------|---------------------|-------------------------------------------------|---------------------------|---------------------------------|---------------------------------|
| Adab, 2004a <sup>1</sup> §<br>[CR: Vinten, 2009 <sup>2</sup> ;<br>Mawer, 2002 <sup>3</sup> ] | Epilepsy   | 177             | 26.1                | 9-10.5                                          | NR                        | 24/279‡                         | 68/249‡                         |
| Adab, 2004b <sup>1</sup> §<br>[CR: Vinten, 2009 <sup>2</sup> ;<br>Mawer, 2002 <sup>3</sup> ] | Epilepsy   | 81              | 26.1                | 3-3.33                                          | NR                        | 24/279‡                         | 68/249‡                         |
| Arkilo, 2015 <sup>4</sup>                                                                    | Epilepsy   | 59              | NR                  | NA                                              | First trimester           | NR                              | NR                              |
| Bromley, 2010 <sup>5</sup>                                                                   | NR         | 60              | NR                  | 6-7                                             | Whole pregnancy           | NR                              | NR                              |
| Bromley, 2013 <sup>6</sup><br>[CR: Bromley, 2008 <sup>7</sup> ]                              | Epilepsy   | 156             | 28                  | 6                                               | NR                        | 28/156                          | 42/156                          |
| Christensen, 2013 <sup>8</sup>                                                               | NR         | 2011            | NR                  | NR                                              | Whole pregnancy           | NR                              | NR                              |
| Cohen, 2013 <sup>9</sup>                                                                     | Epilepsy   | 108             | 30                  | 6                                               | NR                        | 12/192‡                         | NR                              |
| Cummings, 2011 <sup>10</sup><br>[CR: Tomson, 2015 <sup>11</sup> ]                            | Epilepsy   | 142             | NR                  | 2-3                                             | Whole<br>pregnancy        | 32/108‡                         | 19/108‡                         |
| Dean, 2002 <sup>12</sup><br>[CR: Rasalam, 2005 <sup>13</sup> ]                               | Epilepsy   | 287             | 27                  | 3.75-15.5                                       | First trimester           | NR                              | NR                              |
| D'Souza, 1991 <sup>14</sup>                                                                  | Epilepsy   | 42              | 26.5                | 2.5-3.5                                         | Whole pregnancy           | NR                              | NR                              |
| Eriksson, 2005 <sup>15</sup><br>[CR: Viinikainen, 2006 <sup>16</sup> ]                       | Epilepsy   | 39              | 28.2                | NR                                              | NR                        | NR                              | NR                              |

| Gaily, 1990 <sup>17</sup><br>[CR: Gaily, 1990 <sup>18</sup> ;<br>Hiilesmaa, 1982 <sup>19</sup> ;<br>Hiilesmaa, 1985 <sup>20</sup> | Epilepsy       | 134    | 27.8       | 5.5    | First trimester    | NR | NR      |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------|--------|------------|--------|--------------------|----|---------|
| Gogatishvili, 2014 <sup>21</sup>                                                                                                  | NR             | 39     | NR         | 2 to 4 | NR                 | NR | NR      |
| Gogatishvili, 2015 <sup>22</sup>                                                                                                  | NR             | 23     | NR         | 3 to 6 | NR                 | NR | NR      |
| Jones, 1989 <sup>23</sup>                                                                                                         | Epilepsy       | 63     | NR         | NR     | Whole<br>pregnancy | NR | NR      |
| Katz, 2001 <sup>24</sup>                                                                                                          | Epilepsy       | 51     | 31         | NR     | NR                 | NR | NR      |
| Koch, 1996 <sup>25</sup>                                                                                                          | Epilepsy       | 40     | NR         | 6      | First trimester    | NR | NR      |
| Lacroix, 2012 <sup>26</sup>                                                                                                       | NR             | 109    | NR         | 0.75   | NR                 | NR | NR      |
| Mawer, 2002 <sup>3</sup>                                                                                                          | Epilepsy       | 52     | NR         | NR     | NR                 | NR | NR      |
| Miskov, 2010 <sup>27</sup>                                                                                                        | Epilepsy       | 55     | NR         | NR     | NR                 | NR | NR      |
| Nadebaum, 2011 <sup>28</sup>                                                                                                      | Epilepsy       | 66     | 31.6       | 7.4    | First trimester    | NR | 5/66    |
| Rihtman, 2013 <sup>29</sup>                                                                                                       | Epilepsy       | 72     | NR         | NR     | Whole pregnancy    | NR | NR      |
| Scolnik, 1994 <sup>30</sup>                                                                                                       | Epilepsy       | 75     | NR         | 1.5-3  | 1st trimester      | NR | NR      |
| Shankaran, 1996 <sup>31</sup>                                                                                                     | NR             | 96     | NR         | NR     | NR                 | NR | NR      |
| Van der Pol, 1991 <sup>32</sup>                                                                                                   | Epilepsy       | 57     | NR         | 6-13   | NR                 | NR | NR      |
| Veiby, 2013a <sup>33</sup>                                                                                                        | Epilepsy       | 422    | NR         | 0.5    | NR                 | NR | NR      |
| Veiby, 2013b <sup>34</sup>                                                                                                        | Epilepsy       | 248    | 28.9       | 3      | NR                 | NR | 68/726‡ |
| Wood, 2015 <sup>35</sup>                                                                                                          | Epilepsy       | 77     | NR         | 6-8    | NR                 | NR | NR      |
| Abbrowistions NA N                                                                                                                | at amplicable. | ID Mat | non out od |        |                    |    |         |

Abbreviations: NA – Not applicable; NR – Not reported

\* Sample size used for analysis; ineligible treatment arms (i.e. treatment arms with excluded drugs or unspecified polytherapy) are not included in the count

<sup>†</sup> The mean age for children/follow-up period data were only collected for outcomes related to cognitive and/or psychomotor development

‡ Total sample size is based on the number of women enrolled in the study; may differ from the sample size used for analysis

§ Single publication reporting on two separate cohorts

Page 77 of 90

BMJ Open

| Appendix I. Methodological qualit | y of observational studies - | - Newcastle Ottawa Scale results |
|-----------------------------------|------------------------------|----------------------------------|
|-----------------------------------|------------------------------|----------------------------------|

| First<br>Author,<br>Year             | Representativen<br>ess of the<br>exposed cohort | Selection<br>of the<br>non-<br>exposed<br>cohort | Ascertainme<br>nt of<br>exposure | Demonstratio<br>n that<br>outcome of<br>interest was<br>not present<br>at start of<br>study | Comparabili<br>ty of cohorts<br>on the basis<br>of the design<br>or analysis | Assessmen<br>t of<br>outcome | Was<br>follow-up<br>long<br>enough<br>for<br>outcomes<br>to occur | Adequac<br>y of<br>follow up<br>of<br>cohorts |
|--------------------------------------|-------------------------------------------------|--------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------|-----------------------------------------------|
| Adab, 2004 <sup>1</sup>              | В                                               | А                                                | А                                | А                                                                                           | С                                                                            | А                            | А                                                                 | С                                             |
| Arkilo,<br>2015 <sup>4</sup>         | В                                               | А                                                | В                                | А                                                                                           | D                                                                            | А                            | А                                                                 | С                                             |
| Bromley,<br>2010 <sup>5</sup>        | D                                               | А                                                | D                                | А                                                                                           | D                                                                            | D                            | В                                                                 | D                                             |
| Bromley, 2013 <sup>6</sup>           | А                                               | А                                                | A                                | A                                                                                           | А                                                                            | А                            | А                                                                 | С                                             |
| Christensen<br>, 2013 <sup>8</sup>   | А                                               | А                                                | А                                | A                                                                                           | А                                                                            | В                            | А                                                                 | В                                             |
| Cohen,<br>2013 <sup>9</sup>          | А                                               | А                                                | D                                | A                                                                                           | A                                                                            | А                            | А                                                                 | С                                             |
| Cummings, 2011 <sup>10</sup>         | А                                               | А                                                | А                                | А                                                                                           | А                                                                            | А                            | А                                                                 | С                                             |
| Dean,<br>2002 <sup>12</sup>          | В                                               | А                                                | А                                | А                                                                                           | D                                                                            | А                            | А                                                                 | С                                             |
| D'Souza,<br>1991 <sup>14</sup>       | В                                               | А                                                | A                                | A                                                                                           | D                                                                            | A                            | А                                                                 | А                                             |
| Eriksson,<br>2005 <sup>15</sup>      | В                                               | А                                                | А                                | А                                                                                           | В                                                                            | А                            | А                                                                 | D                                             |
| Gaily,<br>1990 <sup>17</sup>         | В                                               | А                                                | А                                | А                                                                                           | D                                                                            | А                            | А                                                                 | А                                             |
| Gogatishvil<br>i, 2014 <sup>21</sup> | А                                               | А                                                | D                                | А                                                                                           | D                                                                            | А                            | А                                                                 | D                                             |

| 1          |  |
|------------|--|
| 2          |  |
| 3          |  |
| 4          |  |
| 5          |  |
| 6          |  |
| 7          |  |
| 0          |  |
| 0          |  |
| 9          |  |
| 10         |  |
| 11         |  |
| 12         |  |
| 13         |  |
| 14         |  |
| 15         |  |
| 16         |  |
| 17         |  |
| 18         |  |
| 19         |  |
| 20         |  |
| 21         |  |
| 22         |  |
| 23         |  |
| 24         |  |
| 25         |  |
| 26         |  |
| 27         |  |
| 28         |  |
| 29         |  |
| 30         |  |
| 31         |  |
| 32         |  |
| 33         |  |
| 34         |  |
| 35         |  |
| 36         |  |
| 37         |  |
| 38         |  |
| 30         |  |
| <u>4</u> 0 |  |
| 40<br>∕11  |  |
| 41<br>10   |  |
| 4∠<br>∕\?  |  |
| 43         |  |
| 44         |  |
| 45         |  |
| 46         |  |
| 47         |  |
| 48         |  |
| 10         |  |

| Gogatishvil<br>i, 2015 <sup>22</sup> | А | А | D | А | D | А | А | D |
|--------------------------------------|---|---|---|---|---|---|---|---|
| Jones,<br>1989 <sup>23</sup>         | А | А | В | А | D | А | А | В |
| Katz,<br>2001 <sup>24</sup>          | В | А | А | А | D | А | А | D |
| Koch,<br>1996 <sup>25</sup>          | В | А | В | А | D | А | А | C |
| Lacroix,<br>2012 <sup>26</sup>       | А | А | А | А | А | А | А | A |
| Mawer, 2002 <sup>3</sup>             | В | A | A | A | D | А | А | В |
| Miskov,<br>2010 <sup>27</sup>        | D | А | D | А | D | D | А | D |
| Nadebaum,<br>2011 <sup>28</sup>      | А | А | A | A | А | А | А | В |
| Rihtman,<br>2013 <sup>29</sup>       | А | В | А | А | А | А | А | С |
| Scolnik,<br>1994 <sup>30</sup>       | В | А | А | A | D | А | А | А |
| Shankaran,<br>1996 <sup>31</sup>     | В | А | А | А | D | А | А | В |
| Van der<br>Pol, 1991 <sup>32</sup>   | В | А | D | А | А | А | А | В |
| Veiby,<br>2013a <sup>33</sup>        | А | А | А | А | А | А | А | D |
| Veiby,<br>2013b <sup>34</sup>        | А | А | А | А | А | А | А | С |
| Wood,<br>2015 <sup>35</sup>          | А | А | А | А | D | А | А | С |

30 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml



## Log-odds ratio centered at comparison-specific pooled effect

\* Funnel plots have been produced only for outcomes with  $\geq 10$  studies. For multi-arm studies we plot data points from each study-specific basic parameter (treatment comparisons with a study-specific common comparator)

| Appendix K. Statistically significant network meta-analysis results along with meta-analysis results, transitivity, and |
|-------------------------------------------------------------------------------------------------------------------------|
| inconsistency assessments                                                                                               |

| Treatment<br>Comparison                                                 | Number<br>of<br>Studies<br>(Mean<br>Baseline<br>Risk) | Number<br>of<br>patients<br>(Mean<br>Age) | Treatme<br>nt<br>Indicatio<br>n | Timin<br>g           | Comparabili<br>ty of cohorts | Adequac<br>y of<br>follow<br>up of<br>cohorts | MA Odds<br>Ratio<br>(95% CrI) | NMA Odds Ratio<br>(95% CrI) (95%<br>PrI) |  |  |  |
|-------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------|---------------------------------|----------------------|------------------------------|-----------------------------------------------|-------------------------------|------------------------------------------|--|--|--|
| Cognitive Developmental Delay (10 studies, 748 patients, 14 treatments) |                                                       |                                           |                                 |                      |                              |                                               |                               |                                          |  |  |  |
| Carbam+Pheno+V<br>alpro vs Control                                      | NA                                                    | NR                                        | NR                              | NR                   | NR                           | NR                                            | NA                            | 17.31<br>(1.03-434.50) (0.86-<br>488.60) |  |  |  |
| Lamot vs Valpro                                                         | 4 (NA)                                                | 140<br>(31.00)                            | Epilepsy                        | NR                   | Н                            | Н                                             | 0.17 (0.02-<br>0.80)          | 0.13<br>(0.02-0.57) (0.01-<br>0.79)      |  |  |  |
| Valpro vs Carbam                                                        | 1 (NA)                                                | 23<br>(31.00)                             | Epilepsy                        | NR                   | Н                            | Н                                             | 0.44 (0.00-<br>11.07)         | 3.69<br>(1.72-7.63) (0.94-<br>13.88)     |  |  |  |
| Valpro vs Control                                                       | 3 (0.06)                                              | 165<br>(28.80)                            | Epilepsy                        | NR                   | Н                            | Н                                             | 10.45 (3.42-<br>33.73)        | 8.63<br>(3.01-25.74) (1.82-<br>38.93)    |  |  |  |
| Valpro vs Pheno                                                         | 3 (NA)                                                | 36<br>(31.00)                             | Epilepsy                        | 1st<br>trimest<br>er | Н                            | Н                                             | 4.41 (0.79-<br>38.91)         | 5.87<br>(1.26-42.27) (0.93-<br>56.07)    |  |  |  |
| Valpro vs Pheny                                                         | 3 (NA)                                                | 58<br>(31.00)                             | Epilepsy                        | 1st<br>trimest<br>er | Н                            | Н                                             | 3.28 (0.81-<br>14.38)         | 3.01<br>(1.06-9.18) (0.71-<br>14.27)     |  |  |  |
| Common between-s                                                        | tudy varian                                           | ce across tre                             | atment com                      | parisons             |                              |                                               | 0.13 (0.00-<br>1.01)          | 0.15 (0.00-1.25) (NA)                    |  |  |  |
| Residual deviance: 4<br>Data points: 42                                 | 40                                                    |                                           |                                 |                      |                              |                                               |                               |                                          |  |  |  |

Page 81 of 90

| Treatment<br>Comparison    | Number<br>of<br>Studies<br>(Mean<br>Baseline<br>Risk) | Number<br>of<br>patients<br>(Mean<br>Age) | Treatme<br>nt<br>Indicatio<br>n | Timin<br>g           | Comparabili<br>ty of cohorts | Adequac<br>y of<br>follow<br>up of<br>cohorts | MA Odds<br>Ratio<br>(95% CrI) | NMA Odds Ratio<br>(95% CrI) (95%<br>PrI)                                                            |
|----------------------------|-------------------------------------------------------|-------------------------------------------|---------------------------------|----------------------|------------------------------|-----------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------|
| DIC: 69                    |                                                       |                                           |                                 |                      |                              |                                               |                               |                                                                                                     |
|                            |                                                       |                                           |                                 | Chi-                 | square test:                 |                                               |                               |                                                                                                     |
| Evaluation of consis       | tency using                                           | the design-                               | by-treatment                    | 13.3                 | 3                            | P- value: 0.                                  | 64                            |                                                                                                     |
| interaction model          |                                                       |                                           |                                 | Deg                  | rees of                      | Heterogene                                    | eity: 0                       |                                                                                                     |
|                            |                                                       |                                           |                                 | Free                 | edom: 16                     |                                               |                               |                                                                                                     |
|                            |                                                       | Autism                                    | n Dyspraxia                     | (5 studie            | es, 2551 patients            | s, 12 treatme                                 | ents)                         |                                                                                                     |
| Lamot vs Control           | 2 (0.00)                                              | 254<br>(27.75)                            | Epilepsy                        | 1st<br>trimest<br>er | Н                            | Н                                             | 13.77 (2.06-<br>188.00)       | 8.88<br>(1.29-112.00) (0.94<br>146.80)                                                              |
| Lamot+Valpro vs<br>Carbam  | 1 (NA)                                                | 40 (NR)                                   | Epilepsy                        | NR                   | L                            | L                                             | 15.02 (2.04-<br>171.90)       | 22.89<br>(2.58-219.00) (1.90<br>282.20)                                                             |
| Lamot+Valpro vs<br>Clonaz  | NA                                                    | NR                                        | NR                              | NR                   | NR                           | NR                                            | NA                            | 20.21<br>(1.48-351.30) (1.15<br>455.00)                                                             |
| Lamot+Valpro vs<br>Control | NA                                                    | NR                                        | NR                              | NR                   | NR                           | NR                                            | NA                            | $   \begin{array}{r} 132.70 \\   (7.41-3.9 \times 10^3) \\   (5.82-4.6 \times 10^3)   \end{array} $ |
| Lamot+Valpro vs<br>Lamot   | NA                                                    | NR                                        | NR                              | NR                   | NR                           | NR                                            | NA                            | 14.61<br>(1.51-149.10) (1.14<br>196.80)                                                             |
| Oxcar vs Control           | NA                                                    | NR                                        | NR                              | NR                   | NR                           | NR                                            | NA                            | 13.51<br>(1.28-221.40) (0.86<br>267.40)                                                             |
| Valpro vs Carbam           | 5 (NA)                                                | 1003<br>(27.83)                           | Epilepsy                        | 1st<br>trimest       | L                            | L                                             | 3.20 (1.20-<br>8.68)          | 3.02 (1.09-8.40) (0.57-                                                                             |

| Treatment<br>Comparison                                                                                                                                                        | Number<br>of<br>Studies<br>(Mean<br>Baseline<br>Risk) | Number<br>of<br>patients<br>(Mean<br>Age)                     | Treatme<br>nt<br>Indicatio<br>n                           | Timin<br>g                                                                    | Comparabili<br>ty of cohorts                                | Adequac<br>y of<br>follow<br>up of<br>cohorts                              | MA Odds<br>Ratio<br>(95% CrI)                                           | NMA Odds Ratio<br>(95% CrI) (95%<br>PrI)                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                |                                                       |                                                               |                                                           | er                                                                            |                                                             |                                                                            |                                                                         | 14.31)                                                                                                                                                                                                                 |
| Valpro vs Control                                                                                                                                                              | 2 (0.00)                                              | 249<br>(27.75)                                                | Epilepsy                                                  | 1st<br>trimest<br>er                                                          | Н                                                           | Н                                                                          | 9.19 (1.14-<br>132.10)                                                  | 17.29<br>(2.40-217.60) (1.61-<br>274.90)                                                                                                                                                                               |
| Common between-st                                                                                                                                                              | tudy variand                                          | ce across tre                                                 | atment comp                                               | parisons                                                                      |                                                             |                                                                            | 0.12 (0.00-<br>1.37)                                                    | 0.16 (0.00-1.95) (NA)                                                                                                                                                                                                  |
| Residual deviance: 2<br>Data points: 24<br>DIC: 44                                                                                                                             | 24                                                    |                                                               | -6                                                        |                                                                               |                                                             |                                                                            | , , , , , , , , , , , , , , , , , , ,                                   |                                                                                                                                                                                                                        |
|                                                                                                                                                                                |                                                       |                                                               |                                                           | Chi                                                                           | square test.                                                |                                                                            |                                                                         |                                                                                                                                                                                                                        |
| Evaluation of consis interaction model                                                                                                                                         | tency using                                           | the design-                                                   | by-treatment                                              | t 3.79<br>Deg<br>Free                                                         | rees of<br>dom: 5                                           | P- value: 0.<br>Heterogene                                                 | 57<br>ity: 0                                                            |                                                                                                                                                                                                                        |
| Evaluation of consis interaction model                                                                                                                                         | tency using                                           | the design-                                                   | by-treatment                                              | t 3.79<br>Deg<br>Free<br>al Delay (                                           | rees of<br>dom: 5<br>11 studies, 114                        | P- value: 0.<br>Heterogene<br>5 patients, 18                               | 57<br>ity: 0<br>8 treatments)                                           |                                                                                                                                                                                                                        |
| Evaluation of consis<br>interaction model<br>Carbam+Pheno+V<br>alpro vs Control                                                                                                | tency using<br>Psyc<br>NA                             | the design-<br>homotor Do<br>NR                               | by-treatment<br>evelopmenta<br>NR                         | t 3.79<br>Deg<br>Free<br>al Delay (                                           | rees of<br>dom: 5<br>11 studies, 114<br>NR                  | P- value: 0.<br>Heterogene<br><b>5 patients, 1</b><br>NR                   | 57<br>ity: 0<br><b>8 treatments)</b><br>NA                              | 19.12<br>(1.49-337.50) (1.34-<br>370.40)                                                                                                                                                                               |
| Evaluation of consis<br>interaction model<br>Carbam+Pheno+V<br>alpro vs Control<br>Carbam+Pheno+V<br>alpro vs Pheno                                                            | tency using<br>Psyc<br>NA<br>NA                       | the design-<br>homotor Do<br>NR<br>NR                         | by-treatment<br>evelopment:<br>NR<br>NR                   | t 3.79<br>Deg<br>Free<br>al Delay (<br>NR                                     | rees of<br>dom: 5<br>11 studies, 114<br>NR<br>NR            | P- value: 0.<br>Heterogene<br><b>5 patients, 1</b><br>NR<br>NR             | 57<br>ity: 0<br>8 treatments)<br>NA<br>NA                               | 19.12<br>(1.49-337.50) (1.34-<br>370.40)<br>19.86<br>(1.38-393.60) (1.26-<br>423.30)                                                                                                                                   |
| Evaluation of consis<br>interaction model<br>Carbam+Pheno+V<br>alpro vs Control<br>Carbam+Pheno+V<br>alpro vs Pheno<br>Levet vs<br>Carbam+Pheno+V<br>alpro                     | tency using Psyc NA NA NA                             | the design-                                                   | by-treatment<br>evelopmenta<br>NR<br>NR<br>NR             | t 3.79<br>Deg<br>Free<br>al Delay (<br>NR<br>NR                               | rees of<br>dom: 5<br>11 studies, 114<br>NR<br>NR<br>NR      | P- value: 0.<br>Heterogene<br><b>5 patients, 1</b><br>NR<br>NR<br>NR       | 57<br>ity: 0<br>8 treatments)<br>NA<br>NA<br>NA                         | $19.12 \\ (1.49-337.50) (1.34-370.40) \\ 19.86 \\ (1.38-393.60) (1.26-423.30) \\ 0.01 \\ (0.00-0.58) (0.00-0.62) \\ 0.62)$                                                                                             |
| Evaluation of consis<br>interaction model<br>Carbam+Pheno+V<br>alpro vs Control<br>Carbam+Pheno+V<br>alpro vs Pheno<br>Levet vs<br>Carbam+Pheno+V<br>alpro<br>Valpro vs Carbam | tency using<br>Psyc<br>NA<br>NA<br>NA<br>7 (NA)       | the design-<br>homotor Do<br>NR<br>NR<br>NR<br>331<br>(27.80) | by-treatment<br>evelopments<br>NR<br>NR<br>NR<br>Epilepsy | t 3.79<br>Deg<br>Free<br>al Delay (<br>NR<br>NR<br>NR<br>Ist<br>trimest<br>er | rees of<br>dom: 5<br>11 studies, 114<br>NR<br>NR<br>NR<br>H | P- value: 0.<br>Heterogene<br><b>5 patients, 13</b><br>NR<br>NR<br>NR<br>H | 57<br>ity: 0<br>8 treatments)<br>NA<br>NA<br>NA<br>2.72 (1.39-<br>5.67) | $ \begin{array}{r}     19.12 \\     (1.49-337.50) (1.34-370.40) \\     19.86 \\     (1.38-393.60) (1.26-423.30) \\     0.01 \\     (0.00-0.58) (0.00-0.62) \\     2.45 \\     (1.27-4.88) (0.95-6.77) \\ \end{array} $ |

| Treatment<br>Comparison                          | Number<br>of<br>Studies<br>(Mean<br>Baseline<br>Risk) | Number<br>of<br>patients<br>(Mean<br>Age) | Treatme<br>nt<br>Indicatio<br>n | Timin<br>g                  | Comparabili<br>ty of cohorts             | Adequac<br>y of<br>follow<br>up of<br>cohorts | MA Odds<br>Ratio<br>(95% CrI) | NMA Odds Ratio<br>(95% CrI) (95%<br>PrI) |
|--------------------------------------------------|-------------------------------------------------------|-------------------------------------------|---------------------------------|-----------------------------|------------------------------------------|-----------------------------------------------|-------------------------------|------------------------------------------|
|                                                  |                                                       | (28.38)                                   |                                 | trimest<br>er               |                                          |                                               | 8.64)                         | (2.04-8.75) (1.52-<br>12.05)             |
| Valpro vs Pheno                                  | 2 (NA)                                                | 141 (NR)                                  | Epilepsy                        | 1st<br>trimest<br>er        | Н                                        | Н                                             | 3.68 (1.17-<br>12.30)         | 4.32<br>(1.72-11.20) (1.34-<br>14.51)    |
| Common between-s                                 | study variance                                        | ce across tre                             | atment comp                     | parisons                    |                                          |                                               | 0.05 (0.00-<br>0.49)          | 0.06 (0.00-0.63) (NA                     |
| Residual deviance:<br>Data points: 51<br>DIC: 78 | 45                                                    |                                           |                                 |                             |                                          |                                               |                               |                                          |
| Evaluation of consist<br>interaction model       | stency using                                          | the design-l                              | by-treatment                    | Chi-<br>13.4<br>Deg<br>Free | square test:<br>6<br>rees of<br>cdom: 21 | P- value: 0.<br>Heterogene                    | 89<br>ity: 0                  |                                          |
|                                                  |                                                       | Lang                                      | guage Delay                     | (5 studie                   | es, 509 patients,                        | , 5 treatment                                 | s)                            |                                          |
| Valpro vs Control                                | 1 (0.03)                                              | 173<br>(28.90)                            | Epilepsy                        | NR                          | L                                        | Н                                             | 6.96 (1.14-<br>37.03)         | 7.95<br>(1.50-49.13) (0.96-<br>74.52)    |
| Common between-s                                 | study variance                                        | ce across tre                             | atment comp                     | parisons                    |                                          |                                               | 0.15 (0.00-<br>1.85)          | 0.16 (0.00-2.15) (NA                     |
| Residual deviance:<br>Data points: 14<br>DIC: 23 | 12                                                    |                                           |                                 |                             |                                          |                                               |                               |                                          |
| Evaluation of consist interaction model          | stency using                                          | the design-l                              | by-treatment                    | Chi-<br>2.33<br>Deg<br>Free | rees of<br>edom: 3                       | P- value: 0.<br>Heterogene                    | 50<br>ity: 0                  |                                          |
|                                                  | F                                                     | or peer revi                              | ew only - http                  | o://bmjop                   | <sup>35</sup><br>en.bmj.com/site/        | /about/guideli                                | nes.xhtml                     |                                          |

Page 83 of 90

| Treatment<br>Comparison                                          | Number<br>of<br>Studies<br>(Mean<br>Baseline<br>Risk) | Number<br>of<br>patients<br>(Mean<br>Age)   | Treatme<br>nt<br>Indicatio<br>n              | Timin<br>g                       | Comparabili<br>ty of cohorts            | Adequac<br>y of<br>follow<br>up of<br>cohorts | MA Odds<br>Ratio<br>(95% CrI)         | NMA Odds Ratio<br>(95% CrI) (95%<br>PrI)        |
|------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------|----------------------------------------------|----------------------------------|-----------------------------------------|-----------------------------------------------|---------------------------------------|-------------------------------------------------|
|                                                                  |                                                       |                                             | ADHD (4 st                                   | udies, 75                        | 50 patients, 6 tro                      | eatments)                                     |                                       |                                                 |
| Residual deviance:<br>Data points: 17<br>DIC: 22                 | :12                                                   |                                             |                                              |                                  |                                         |                                               |                                       |                                                 |
| Abbreviations: A<br>high risk of bias; I<br>PrI - Predictive Int | DHD - Atten<br>2 - low risk of<br>erval; ROB -        | tion Deficit<br>f bias; MA -<br>Risk of Bia | Hyperactivit<br>Meta-analys                  | y Disorde<br>sis; NA -           | er; CrI - Credible<br>Not applicable; ] | e Interval; DI<br>NMA - Netw                  | C - Deviance Inf<br>ork Meta-analys   | ormation Criterion; H-<br>is; NR- Not Reported; |
| Carbam = Carbam<br>Lamotrigine; Leve<br>Topir = Topiramat        | azepine; Clol<br>et = Levetirac<br>e; Valpro = V      | oaz = Cloba:<br>etam; Oxcai<br>/alproate; V | zam; Clonaz<br>z = Oxcarbaz<br>ïigab = Viaga | = Clonaz<br>epine; Ph<br>abatrin | zepam; Ethos = H<br>neno = Phenobar     | Ethosuximide<br>bital; Pheny =                | e; Gabap = Gabar<br>= Phenytoin; Pric | pentin; Lamot =<br>Imid = Primidone;            |
|                                                                  |                                                       |                                             |                                              |                                  |                                         |                                               |                                       |                                                 |
|                                                                  |                                                       |                                             |                                              |                                  |                                         |                                               |                                       |                                                 |
|                                                                  |                                                       |                                             |                                              |                                  |                                         |                                               |                                       |                                                 |
|                                                                  |                                                       |                                             |                                              |                                  |                                         |                                               |                                       |                                                 |
|                                                                  |                                                       |                                             |                                              |                                  | 36                                      |                                               |                                       |                                                 |
|                                                                  | F                                                     | For peer revi                               | ew only - http                               | p://bmjop                        | en.bmj.com/site/                        | about/guideli                                 | ines.xhtml                            |                                                 |

| Appendix L. Frequencies, events and samples size | es, SUCRA values, and total group risks |
|--------------------------------------------------|-----------------------------------------|
| per treatment and outcome                        |                                         |

| Treatment                       | Frequency<br>of treatment<br>in network | Total #<br>events/Total<br>Sample size | Median<br>SUCRA<br>(95% CrI) | Total<br>Group<br>Risk<br>Median<br>(IQR) |  |  |  |  |  |
|---------------------------------|-----------------------------------------|----------------------------------------|------------------------------|-------------------------------------------|--|--|--|--|--|
| Cognitive Developmental Delay   |                                         |                                        |                              |                                           |  |  |  |  |  |
| Carbamazepine+Levetiraceta      | 1                                       | 0/2                                    | 0.86 (0.07-                  | 0.00 (0.00-                               |  |  |  |  |  |
| <u>m</u>                        |                                         |                                        | 1.00)                        | 0.00)                                     |  |  |  |  |  |
| Carbamazepine+Phenobarbita      | 1                                       | 0/3                                    | 0.86 (0.14-                  | 0.00 (0.00-                               |  |  |  |  |  |
| 1                               |                                         |                                        | 1.00)                        | 0.00)                                     |  |  |  |  |  |
| Control                         | 4                                       | 8/125                                  | 0.79 (0.43-                  | 0.04 (0.00-                               |  |  |  |  |  |
|                                 |                                         |                                        | 0.93)                        | 0.09)                                     |  |  |  |  |  |
| Lamotrigine                     | 4                                       | 0/43                                   | 0.71 (0.29-                  | 0.00 (0.00-                               |  |  |  |  |  |
|                                 |                                         | 0, 10                                  | 1.00)                        | 0.00)                                     |  |  |  |  |  |
| Phenobarbital+Phenytoin         | 1                                       | 0/15                                   | 0.71 (0.07-                  | 0.00 (0.00-                               |  |  |  |  |  |
|                                 |                                         | 0/10                                   | 1.00)                        | 0.00)                                     |  |  |  |  |  |
| Phenobarbital                   | 3                                       | 1/12                                   | 0.64 (0.21-                  | 0.00 (0.00-                               |  |  |  |  |  |
|                                 | 3                                       | 1/ 12                                  | 1.00)                        | 0.33)                                     |  |  |  |  |  |
| Carbamazenine                   | 9                                       | 29/238                                 | 0.50 (0.29-                  | 0.15 (0.05-                               |  |  |  |  |  |
|                                 | ,                                       | 29/238                                 | 0.79)                        | 0.20)                                     |  |  |  |  |  |
| Primidone                       | 2                                       | 2/13                                   | 0.50 (0.14-                  | 0.09 (0.00-                               |  |  |  |  |  |
|                                 | 2                                       | 2,15                                   | 0.93)                        | 0.18)                                     |  |  |  |  |  |
| Dhonytoin                       | 5                                       | 11/111                                 | 0.43 (0.21-                  | 0.10 (0.00-                               |  |  |  |  |  |
|                                 | 5                                       | 11/111                                 | 0.79)                        | 0.21)                                     |  |  |  |  |  |
| Dhanutain+Valproata             | 1                                       | 0/5                                    | 0.36 (0.00-                  | 0.00 (0.00-                               |  |  |  |  |  |
| r nenytom+ v aproate            | 1                                       | 0/3                                    | 1.00)                        | 0.00)                                     |  |  |  |  |  |
| Carbamazepine+Phenobarbita      | 1                                       | 0/4                                    | 0.29 (0.00-                  | 0.00 (0.00-                               |  |  |  |  |  |
| l+Phenytoin                     | 1                                       | 0/4                                    | 1.00)                        | 0.00)                                     |  |  |  |  |  |
| Eth a gravingi da   Dh anartain | 1                                       | 0/2                                    | 0.21 (0.00-                  | 0.00 (0.00-                               |  |  |  |  |  |
| EthosuxImide+Phenytoin          | 1                                       | 0/3                                    | 1.00)                        | 0.00)                                     |  |  |  |  |  |
| Value at a                      | 7                                       | 50/1/0                                 | 0.21 (0.00-                  | 0.35 (0.25-                               |  |  |  |  |  |
| valproate                       | /                                       | 50/160                                 | 0.43)                        | 0.50)                                     |  |  |  |  |  |
|                                 | 1                                       | 1/11                                   | 0.14 (0.00-                  | 0.09 (0.09-                               |  |  |  |  |  |
| Carbamazepine+Pnenytoin         | 1                                       | 1/11                                   | 0.79)                        | 0.09)                                     |  |  |  |  |  |
| Carbamazepine+Phenobarbita      | 1                                       | 2/2                                    | 0.07 (0.00-                  | 0.67 (0.67-                               |  |  |  |  |  |
| l+Valproate                     | 1                                       | 2/3                                    | 0.71)                        | 0.67)                                     |  |  |  |  |  |
| Autism/Dyspraxia                |                                         |                                        |                              |                                           |  |  |  |  |  |
| Cantral                         | 2                                       | 1/100                                  | 0.91 (0.55-                  | 0.00 (0.00-                               |  |  |  |  |  |
| Control                         | 2                                       | 1/180                                  | 1.00)                        | 0.01)                                     |  |  |  |  |  |
| I                               | 1                                       | 0/11                                   | 0.73 (0.09-                  | 0.00 (0.00-                               |  |  |  |  |  |
| Levetiracetam                   | 1                                       | 0/11                                   | 1.00)                        | 0.00)                                     |  |  |  |  |  |
| Carbamazepine                   | 5                                       | 8/518                                  | 0.64 (0.36-                  | 0.03 (0.01-                               |  |  |  |  |  |
| <b>I</b>                        |                                         | -                                      | (                            | (                                         |  |  |  |  |  |

| Treatment                        | Frequency<br>of treatment<br>in network | Total #<br>events/Total<br>Sample size | Median<br>SUCRA<br>(95% CrI) | Total<br>Group<br>Risk<br>Median<br>(IQR) |
|----------------------------------|-----------------------------------------|----------------------------------------|------------------------------|-------------------------------------------|
|                                  |                                         |                                        | 0.91)                        | 0.06)                                     |
| Carbamazepine+Lamotrigine        | 1                                       | 0/5                                    | 0.64 (0.00-<br>1.00)         | 0.00 (0.00-<br>0.00)                      |
| Clonazenam                       | 1                                       | 3/269                                  | 0.64 (0.18-                  | 0.01 (0.01-                               |
|                                  | -                                       | 0/202                                  | 0.91)                        | 0.01)                                     |
| Carbamazepine+Phenytoin          | 1                                       | 0/3                                    | 0.55 (0.00-<br>1 00)         | 0.00 (0.00-<br>0.00)                      |
|                                  |                                         | o / =                                  | 0.55 (0.00-                  | 0.00 (0.00-                               |
| Phenytoin                        | 1                                       | 0/5                                    | 1.00)                        | 0.00)                                     |
| Carbamazenine+Clonazenam         | 1                                       | 0/3                                    | 0.45 (0.00-                  | 0.00 (0.00-                               |
| Carbanazepine - Cionazepan       |                                         | 0/5                                    | 1.00)                        | 0.00)                                     |
| Lamotrigine                      | 4                                       | 14/745                                 | 0.45 (0.18-                  | 0.04 (0.01-                               |
| Luniourgine                      |                                         | 11// 10                                | 0.82)                        | 0.08)                                     |
| Oxcarbazepine                    |                                         | 7/321                                  | 0.36 (0.09-                  | 0.02 (0.02-                               |
| F                                |                                         |                                        | 0.82)                        | 0.02)                                     |
| Valproate                        | 5                                       | 21/485                                 | 0.27 (0.09-                  | 0.05 (0.03-                               |
|                                  |                                         |                                        | 0.55)                        | 0.08)                                     |
| Lamotrigine+Valproate            | 1                                       | 3/6                                    | 0.00 (0.00-0.27)             | 0.50 (0.50-<br>0.50)                      |
| Neonatal Seizure                 |                                         |                                        | ,                            |                                           |
| Lamotrigine                      | 1                                       | 3/42                                   | NA                           | 0.07 (NA)                                 |
| Valproate                        | 1                                       | 0/30                                   | NA                           | 0.00 (NA)                                 |
| <b>Psychomotor Developmental</b> | Delay                                   |                                        |                              |                                           |
| Levetiracetam                    | 1                                       | 0/11                                   | 0.94 (0.29-                  | 0.00 (0.00-                               |
|                                  | 1                                       | 0/11                                   | 1.00)                        | 0.00)                                     |
| Phenobarbital+Phenytoin          | 1                                       | 0/15                                   | 0.82 (0.12-                  | 0.00 (0.00-                               |
| Thenobulottur Thenytom           | I                                       | 0/10                                   | 1.00)                        | 0.00)                                     |
| Carbamazepine+Phenvtoin          | 1                                       | 0/11                                   | 0.76 (0.06-                  | 0.00 (0.00-                               |
|                                  |                                         |                                        | 1.00)                        | 0.00)                                     |
| Control                          | 8                                       | 21/323                                 | 0.76 (0.53-                  | 0.06 (0.03-                               |
|                                  |                                         |                                        | 0.94)                        | 0.10)                                     |
| Phenobarbital                    | 4                                       | 11/117                                 | 0.76 (0.47-                  | 0.07 (0.02-                               |
|                                  |                                         |                                        | 0.94)                        | 0.17                                      |
| Carbamazepine                    | 10                                      | 32/249                                 | 0.39 (0.33-                  | 0.10 (0.00-                               |
| Carbamazenine+Phenobarbita       |                                         |                                        | 0.59 (0.18-                  | 0.13 (0.00-                               |
|                                  | 2                                       | 3/15                                   | 0.94)                        | 0 25)                                     |
|                                  |                                         |                                        | 0.53 (0.24-                  | 0.09(0.06-                                |
| Lamotrigine                      | 4                                       | 11/126                                 | 0.82)                        | 0.12)                                     |
|                                  | 1                                       | 4/27                                   | 0.47 (0.12-                  | 0.15 (0.15-                               |
| Cionazepam                       | 1                                       | 4/2/                                   | 0.88)                        | 0.15)                                     |

| Treatment                                 | Frequency<br>of treatment<br>in network | Total #<br>events/Total<br>Sample size | Median<br>SUCRA<br>(95% CrI) | Total<br>Group<br>Risk<br>Median<br>(IQR) |
|-------------------------------------------|-----------------------------------------|----------------------------------------|------------------------------|-------------------------------------------|
| Phenytoin+Valproate                       | 1                                       | 0/5                                    | 0.47 (0.00-                  | 0.00 (0.00-                               |
| Carbamazepine+Phenobarbita<br>l+Phenytoin | 1                                       | 0/4                                    | 0.41 (0.00-<br>1.00)         | 0.00 (0.00-<br>0.00)                      |
| Clobazam                                  | 1                                       | 1/6                                    | 0.41 (0.00-0.94)             | 0.17 (0.17-0.17)                          |
| Phenytoin                                 | 3                                       | 10/83                                  | 0.41 (0.12-0.71)             | 0.04 (0.00-0.33)                          |
| Ethosuximide+Phenytoin                    | 1                                       | 0/3                                    | 0.35 (0.00-<br>1.00)         | 0.00 (0.00-<br>0.00)                      |
| Topiramate                                | 2                                       | 1/6                                    | 0.29 (0.00-<br>0.88)         | 0.13 (0.00-0.25)                          |
| Valproate                                 | 7                                       | 36/137                                 | 0.24 (0.06-<br>0.53)         | 0.28 (0.11-<br>0.38)                      |
| Gabapentin                                | 2                                       | 1/4                                    | 0.12 (0.00-<br>0.76)         | 0.25 (0.00-<br>0.50)                      |
| Carbamazepine+Phenobarbita<br>l+Valproate | 1                                       | 2/3                                    | 0.06 (0.00-<br>0.59)         | 0.67 (0.67-<br>0.67)                      |
| Language Delay                            |                                         |                                        |                              |                                           |
| Control                                   | 2                                       | 17/209                                 | 0.75 (0.50-<br>1.00)         | 0.13 (0.03-<br>0.24)                      |
| Phenobarbital                             | 1                                       | 10/41                                  | 0.75 (0.00-<br>1.00)         | 0.24 (0.24-<br>0.24)                      |
| Carbamazepine                             | 4                                       | 17/117                                 | 0.50 (0.00-<br>0.75)         | 0.15 (0.06-<br>0.25)                      |
| Lamotrigine                               | 3                                       | 6/59                                   | 0.50 (0.00-<br>1.00)         | 0.00 (0.00-<br>0.14)                      |
| Valproate                                 | 4                                       | 21/83                                  | 0.00 (0.00-<br>0.50)         | 0.22 (0.12-<br>0.35)                      |
| ADHD                                      |                                         |                                        |                              |                                           |
| Phenytoin                                 | 2                                       | 2/41                                   | 1.00 (0.20-<br>1.00)         | 0.05 (0.04-<br>0.06)                      |
| Control                                   | 3                                       | 6/218                                  | 0.80 (0.20-<br>1.00)         | 0.03 (0.00-<br>0.05)                      |
| Phenobarbital                             | 1                                       | 4/61                                   | 0.60 (0.00-<br>1.00)         | 0.07 (0.07-<br>0.07)                      |
| Lamotrigine                               | 3                                       | 7/105                                  | 0.40 (0.00-<br>0.80)         | 0.07 (0.00-0.13)                          |
| Carbamazepine                             | 4                                       | 17/182                                 | 0.20 (0.00-<br>0.60)         | 0.09 (0.04-0.13)                          |
| Valproate                                 | 4                                       | 12/143                                 | 0.20 (0.00-                  | 0.08 (0.03-                               |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| 2      |  |
|--------|--|
| 3      |  |
| 4      |  |
| 4      |  |
| 5      |  |
| 6      |  |
| 7      |  |
| ۰<br>۵ |  |
| 0      |  |
| 9      |  |
| 10     |  |
| 11     |  |
| 12     |  |
| 12     |  |
| 13     |  |
| 14     |  |
| 15     |  |
| 16     |  |
| 17     |  |
| 40     |  |
| IÖ     |  |
| 19     |  |
| 20     |  |
| 21     |  |
| 22     |  |
| 22     |  |
| 23     |  |
| 24     |  |
| 25     |  |
| 26     |  |
| 20     |  |
| 21     |  |
| 28     |  |
| 29     |  |
| 30     |  |
| 31     |  |
| 20     |  |
| 32     |  |
| 33     |  |
| 34     |  |
| 35     |  |
| 36     |  |
| 30     |  |
| 37     |  |
| 38     |  |
| 39     |  |
| 40     |  |
| 40     |  |
| 41     |  |
| 42     |  |
| 43     |  |
| 44     |  |
| 45     |  |
| 40     |  |
| 46     |  |
| 47     |  |
| 48     |  |
| 49     |  |
| F0     |  |
| 50     |  |
| 51     |  |
| 52     |  |
| 53     |  |
| 54     |  |
| 54     |  |
| 55     |  |
| 56     |  |
| 57     |  |
| 58     |  |
| EO     |  |
| 59     |  |
| 60     |  |

| Treatment         | Frequency<br>of treatment<br>in network | Total #<br>events/Total<br>Sample size | Median<br>SUCRA<br>(95% CrI) | Total<br>Group<br>Risk<br>Median<br>(IQR) |
|-------------------|-----------------------------------------|----------------------------------------|------------------------------|-------------------------------------------|
|                   |                                         |                                        | 0.80)                        | 0.16)                                     |
| Social Impairment |                                         |                                        |                              |                                           |
| Carbamazepine     | 1                                       | 6/48                                   | NA                           | 0.13 (NA)                                 |
| Control           | 1                                       | 37/276                                 | NA                           | 0.13 (NA)                                 |
| Lamotrigine       | 1                                       | 9/71                                   | NA                           | 0.13 (NA)                                 |
| Valproate         | 1                                       | 1/27                                   | NA                           | 0.04 (NA)                                 |

**Abbreviations:** ADHD - attention deficit hyperactivity disorder; CrI - Credible Interval; IQR - interquartile range; NA - Not applicable; SUCRA - surface under the cumulative ranking curve

Carbam = Carbamazepine; Clobaz = Clobazam; Clonaz = Clonazepam; Ethos = Ethosuximide; Gabap = Gabapentin; Lamot = Lamotrigine; Levet = Levetiracetam; Oxcar = Oxcarbazepine; Pheno = Phenobarbital; Pheny = Phenytoin; Pridmid = Primidone; Topir = Topiramate; Valpro = Valproate; Vigab = Viagabatrin

## Appendix M. Rank-heat plot of cognitive developmental delay, autism/dyspraxia, psychomotor developmental delay, language delay, and attention deficit hyperactivity disorder outcomes\*



**Abbreviations:** carbam - carbamazepine, clobaz - clobazam, clonaz - clonazepam, ethos - ethosuximide, gabap - gabapentin, lamot - lamotrigine, levet - levetiracetam, oxcar - oxcarbazepine, pheno - phenobarbital, pheny - phenytoin, primid - primidone, topir - topiramate, valpro - valproate, vigab - vigabatrin

\*Rank-heat plot of cognitive developmental delay, autism/dyspraxia, psychomotor developmental delay, language delay, and attention deficit hyperactivity disorder outcomes (5 circles) and 25 treatments (25 radii). Each sector is coloured according to the surface under the cumulative ranking curve value of the corresponding treatment and outcome using the transformation of three colours red (0%), For Deer review only yellow (50%), and green (100%).

| Total studies        | Range<br>of study<br>arms | # of<br>treatments | # of<br>patients | # of direct<br>treatment<br>comparisons | # of NMA<br>treatment<br>comparisons | Statistically<br>significant<br>NMA<br>treatment<br>effects | # of<br>studies<br>with zero<br>events in<br>all arms | # of studies<br>with<br>ineligible<br>outcome<br>definition* |
|----------------------|---------------------------|--------------------|------------------|-----------------------------------------|--------------------------------------|-------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------|
| <b>Cognitive Dev</b> | elopmental                | Delay              |                  |                                         |                                      |                                                             |                                                       |                                                              |
| 10                   | (2,8)                     | 14                 | 748              | 53                                      | 105                                  | 6                                                           | 0                                                     | 5                                                            |
| Autism/Dyspr         | axia                      |                    |                  |                                         |                                      |                                                             |                                                       |                                                              |
| 5                    | (4,6)                     | 12                 | 2551             | 34                                      | 66                                   | 8                                                           | 0                                                     | 4                                                            |
| Neonatal Seizi       | ıre                       |                    |                  |                                         |                                      |                                                             |                                                       |                                                              |
| 1                    | (2,2)                     | 2                  | 69               | 1                                       | 0                                    | 0                                                           | 1                                                     | 1                                                            |
| <b>Psychomotor</b>   | Developme                 | ntal Delay         |                  |                                         |                                      |                                                             |                                                       |                                                              |
| 11                   | (2,8)                     | 18                 | 1145             | 74                                      | 153                                  | 6                                                           | 0                                                     | 5                                                            |
| Language Dela        | ay                        |                    |                  |                                         |                                      |                                                             |                                                       |                                                              |
| 5                    | (2,4)                     | 5                  | 509              | 7                                       | 10                                   | 1                                                           | 0                                                     | 3                                                            |
| ADHD                 |                           |                    |                  |                                         |                                      |                                                             |                                                       |                                                              |
| 4                    | (4,5)                     | 6                  | 750              | 14                                      | 15                                   | 0                                                           | 0                                                     | 0                                                            |
| Social Impair        | ment                      |                    |                  |                                         |                                      |                                                             |                                                       |                                                              |
| 1                    | (4,4)                     | 4                  | 422              | 1                                       | 0                                    | 0                                                           | 0                                                     | 0                                                            |

# **BMJ Open**

#### Comparative safety of anti-epileptic drugs for neurological development in children exposed during pregnancy and breastfeeding: a systematic review and network metaanalysis

| Journal:                             | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                        | bmjopen-2017-017248.R1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Article Type:                        | Research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Date Submitted by the Author:        | 25-May-2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Complete List of Authors:            | Veroniki, Areti Angeliki; Li Ka Shing Knowledge Institute, St. Michael's<br>Hospital<br>Rios, Patricia; Li Ka Shing Knowledge Institute, St. Michael's Hospital<br>Cogo, Elise; Li Ka Shing Knowledge Institute, St. Michael's Hospital<br>Straus, Sharon; Li Ka Shing Knowledge Institute, St. Michael's Hospital;<br>University of Toronto, Department of Medicine<br>Finkelstein, Yaron; The Hospital for Sick Children; University of Toronto,<br>Department of Paediatrics<br>Kealey, M.; Li Ka Shing Knowledge Institute, St. Michael's Hospital<br>Reynen, Emily; Li Ka Shing Knowledge Institute, St. Michael's Hospital<br>Soobiah, Charlene; Li Ka Shing Knowledge Institute, St. Michael's Hospital;<br>University of Toronto, Institute for Health Policy Management & Evaluation<br>Thavorn, Kednapa; University of Ottawa, School of Epidemiology, Public<br>Health and Preventive Medicine, Faculty of Medicine; The Ottawa Hospital<br>Research Institute, Clinical Epidemiology Program<br>Hutton, Brian; University of Ottawa, School of Epidemiology, Public Health<br>and Preventive Medicine, Faculty of Medicine; Ottawa Hospital Research<br>Institute, Center for Practice Changing Research<br>Hemmelgarn, BR; University of Calgary, Departments of Medicine and<br>Community Health Sciences<br>Yazdi, Fatemeh; Li Ka Shing Knowledge Institute, St. Michael's Hospital<br>D'Souza, Jennifer; Li Ka Shing Knowledge Institute, St. Michael's Hospital<br>MacDonald, Heather; Li Ka Shing Knowledge Institute, St. Michael's Hospital<br>Tricco, Andrea; Li Ka Shing Knowledge Institute, St. Michael's Hospital;<br>University of Toronto, Epidemiology Division, Dalla Lana School of Public<br>Health |
| <b>Primary Subject<br/>Heading</b> : | Neurology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Secondary Subject Heading:           | Obstetrics and gynaecology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Keywords:                            | multiple treatment meta-analysis, knowledge synthesis, Epilepsy < NEUROLOGY, pregnancy, infants, developmental delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



| 2        |
|----------|
| 2        |
| 3        |
| 4        |
| 5        |
| 6        |
| 7        |
| 0        |
| 8        |
| 9        |
| 10       |
| 11       |
| 40       |
| 12       |
| 13       |
| 14       |
| 15       |
| 16       |
| 10       |
| 17       |
| 18       |
| 19       |
| 20       |
| 20       |
| 21       |
| 22       |
| 23       |
| 2/       |
| 24<br>05 |
| 25       |
| 26       |
| 27       |
| 28       |
| 20       |
| 29       |
| 30       |
| 31       |
| 32       |
| 02       |
| 33       |
| 34       |
| 35       |
| 36       |
| 07       |
| 37       |
| 38       |
| 39       |
| 40       |
| 11       |
| 41       |
| 42       |
| 43       |
| 44       |
| 15       |
| 40       |
| 46       |
| 47       |
| 48       |
| 10       |
| 73       |
| 50       |
| 51       |
| 52       |
| 52       |
| 55       |
| 54       |
| 55       |
| 56       |
| 57       |
| 50       |
| 20       |
| 59       |
| 60       |

1

2

3

# Comparative safety of anti-epileptic drugs for neurological development in children exposed during pregnancy and breastfeeding: a systematic review and network meta-analysis Areti Angeliki Veroniki, PhD, MSc<sup>1</sup> Email: VeronikiA@smh.ca

| 4  | Areti Angeliki Veroniki, PhD, MSc <sup>1</sup> | Email: <u>VeronikiA@smh.ca</u>              |
|----|------------------------------------------------|---------------------------------------------|
| 5  | Patricia Rios, MSc <sup>1</sup>                | Email: <u>RiosP@smh.ca</u>                  |
| 6  | Elise Cogo, ND, MLIS <sup>1</sup>              | Email: <u>CogoE@smh.ca</u>                  |
| 7  | Sharon E. Straus, MD, MSc <sup>1,2</sup>       | Email: <u>Sharon.straus@utoronto.ca</u>     |
| 8  | Yaron Finkelstein, MD <sup>3,4,5</sup>         | Email: <u>Yaron.Finkelstein@sickkids.ca</u> |
| 9  | Ryan Kealey, PhD <sup>1</sup>                  | Email: <u>ryan.kealey@utoronto.ca</u>       |
| 10 | Emily Reynen, MD, CM, PharmD <sup>1</sup>      | Email: <u>ereynen@gmail.com</u>             |
| 11 | Charlene Soobiah, PhD (Cand.) <sup>1,6</sup>   | Email: <u>SoobiahC@smh.ca</u>               |
| 12 | Kednapa Thavorn, PhD <sup>7,8,9</sup>          | Email: <u>kthavorn@ohri.ca</u>              |
| 13 | Brian Hutton, PhD, MSc <sup>7,10</sup>         | Email: <u>bhutton@ohri.ca</u>               |
| 14 | Brenda R. Hemmelgarn, MD, PhD <sup>11</sup>    | Email: <u>Bhemmelg@ucalgary.ca</u>          |
| 15 | Fatemeh Yazdi, MSc <sup>1</sup>                | Email: <u>SabaghYazdiF@smh.ca</u>           |
| 16 | Jennifer D'Souza, HBSc <sup>1</sup>            | Email: jennifer.dsouza@mail.utoronto.ca     |
| 17 | Heather MacDonald, MSc <sup>1</sup>            | Email: <u>hrmacdonald@gmail.com</u>         |
| 18 | Andrea C. Tricco, PhD, MSc <sup>1,12,*</sup>   | Email: <u>TriccoA@smh.ca</u>                |
| 19 | AUTHOR DETAILS                                 |                                             |

- 20 <sup>1</sup> Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, East Building,
- 21 Toronto, Ontario, M5B 1W8, Canada

#### BMJ Open

| 2              |    |                                                                                                         |
|----------------|----|---------------------------------------------------------------------------------------------------------|
| 3<br>4         | 22 | <sup>2</sup> Department of Medicine, University of Toronto, 27 King's College Circle, Toronto, Ontario  |
| 5<br>6<br>7    | 23 | M5S 1A1, Canada                                                                                         |
| 7<br>8<br>9    | 24 | <sup>3</sup> The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canad    |
| 10<br>11       | 25 | <sup>4</sup> Department of Paediatrics, University of Toronto, 172 St. George Street, Toronto, Ontario, |
| 12<br>13<br>14 | 26 | M5R 0A3, Canada                                                                                         |
| 15<br>16       | 27 | <sup>5</sup> Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences         |
| 17<br>18<br>10 | 28 | Building, Room 4207, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada                         |
| 20<br>21       | 29 | <sup>6</sup> Institute for Health Policy Management & Evaluation, University of Toronto, 4th Floor,     |
| 22<br>23       | 30 | 155 College Street, Toronto, Ontario, M5T 3M6, Canada                                                   |
| 24<br>25<br>26 | 31 | <sup>7</sup> School of Epidemiology, Public Health and Preventive Medicine, Faculty of Medicine,        |
| 27<br>28       | 32 | University of Ottawa, Roger-Guindon Building, 451 Smyth Road, Ottawa, Ontario, K1H 8M5                  |
| 29<br>30<br>21 | 33 | Canada                                                                                                  |
| 32<br>33       | 34 | <sup>8</sup> Clinical Epidemiology Program, Ottawa Hospital Research Institute, The Ottawa Hospital,    |
| 34<br>35       | 35 | 501 Smyth Road, Ottawa, Ontario, K1H 8L6, Canada                                                        |
| 36<br>37<br>38 | 36 | <sup>9</sup> Institute of Clinical and Evaluative Sciences (ICES uOttawa), 1053 Carling Avenue, Ottawa  |
| 39<br>40       | 37 | Ontario, K1Y 4E9, Canada                                                                                |
| 41<br>42<br>43 | 38 | <sup>10</sup> Ottawa Hospital Research Institute, Center for Practice Changing Research, The Ottawa     |
| 43<br>44<br>45 | 39 | Hospital–General Campus, 501 Smyth Road, PO Box 201B, Ottawa, Ontario, K1H 8L6,                         |
| 46<br>47       | 40 | Canada.                                                                                                 |
| 48<br>49<br>50 | 41 | <sup>11</sup> Departments of Medicine and Community Health Sciences, University of Calgary, TRW         |
| 51<br>52       | 42 | Building, 3rd Floor, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada                          |
| 53<br>54<br>55 | 43 | <sup>12</sup> Epidemiology Division, Dalla Lana School of Public Health, University of Toronto, 6th     |
| 56<br>57       | 44 | Floor, 155 College Street, Toronto, Ontario, M5T 3M7, Canada                                            |
| 58<br>59       |    |                                                                                                         |
| 60             |    |                                                                                                         |

## **\*Corresponding author**

- 46 Prof. Andrea C. Tricco, PhD
- 47 Scientist, Knowledge Translation Program,
- 48 Li Ka Shing Knowledge Institute, St. Michael's Hospital,
- 49 209 Victoria Street, East Building, Toronto, Ontario, M5B 1W8, Canada
  - 50 Phone: 416-864-6060, Fax: 416-864-5805, Email: <u>TriccoA@smh.ca</u>

- **Keywords:** multiple treatment meta-analysis, knowledge synthesis, epilepsy, pregnancy,
- 53 infants, developmental delay.
- **Word count**: abstract (300 words); main text (4,000 words); 2 tables; 3 figures; 3
- 55 additional files; 51 references

Page 5 of 90

**BMJ Open** 

| 1              |    |                                                                                                       |
|----------------|----|-------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4    | 56 | ABSTRACT                                                                                              |
| 5<br>6<br>7    | 57 | Objectives: Compare the safety of anti-epileptic drugs (AEDs) on neurodevelopment of                  |
| 8<br>9         | 58 | infants/children exposed in-utero or during breastfeeding.                                            |
| 10<br>11<br>12 | 59 | Design and Setting: Systematic review and Bayesian random-effects network meta-                       |
| 13<br>14       | 60 | analysis (NMA). Medline, EMBASE, and the Cochrane Central Register of Controlled Trials               |
| 15<br>16<br>17 | 61 | were searched until April 27 <sup>th</sup> , 2017. Screening, data abstraction, and quality appraisal |
| 18<br>19       | 62 | were completed in duplicate by independent reviewers.                                                 |
| 20<br>21<br>22 | 63 | <b>Participants</b> : 29 cohort studies including 5,100 infants/children.                             |
| 22<br>23<br>24 | 64 | Interventions: Mono- and poly-therapy AEDs including first-generation (carbamazepine,                 |
| 25<br>26       | 65 | clobazam, clonazepam, ethosuximide, phenobarbital, phenytoin, primidone, valproate) and               |
| 27<br>28<br>29 | 66 | newer-generation (gabapentin, lamotrigine, levetiracetam, oxcarbazepine, topiramate,                  |
| 30<br>31       | 67 | vigabatrin) AEDs. Epileptic women who did not receive AEDs during pregnancy or                        |
| 32<br>33<br>34 | 68 | breastfeeding served as the control group.                                                            |
| 35<br>36       | 69 | Primary and secondary Outcome measures: Cognitive developmental delay and                             |
| 37<br>38<br>20 | 70 | autism/dyspraxia were primary outcomes. Attention deficit hyperactivity disorder,                     |
| 39<br>40<br>41 | 71 | language delay, neonatal seizures, psychomotor developmental delay, and social                        |
| 42<br>43       | 72 | impairment were secondary outcomes.                                                                   |
| 44<br>45<br>46 | 73 | Results: The NMA on cognitive developmental delay (11 cohort studies, 933 children, 18                |
| 47<br>48       | 74 | treatments) suggested among all AEDs only valproate was statistically significantly                   |
| 49<br>50       | 75 | associated with more children experiencing cognitive developmental delay when compared                |
| 52<br>53       | 76 | with control (odds ratio (OR)=7.40, 95% credible interval (CrI): 3.00-18.46). The NMA on              |
| 54<br>55       | 77 | autism (5 cohort studies, 2,551 children, 12 treatments), suggested that oxcarbazepine                |
| 56<br>57<br>58 | 78 | (OR=13.51, CrI: 1.28-221.40), valproate (N=485, OR=17.29, 95% CrI: 2.40-217.60),                      |
| 59<br>60       |    | 4                                                                                                     |

| lamotrigine (OR=8.88, CrI: 1.28-112.00), and lamotrigine+valproate (OR=132.70, CrI:   |
|---------------------------------------------------------------------------------------|
| 7.41-3,851.00) were associated with significantly greater odds of developing autism   |
| compared with control. The NMA on Psychomotor developmental delay (11 cohort studies, |
| 1,145 children, 18 treatments) found that valproate (OR=4.16, CrI: 2.04-8.75) and     |
| carbamazepine+phenobarbital+valproate (OR=19.12, CrI: 1.49-337.50) were associated    |
| with significantly greater odds of psychomotor delay compared with control.           |
| Conclusions: Valproate alone or combined with another AED is associated with the      |
| greatest odds of adverse neurodevelopmental outcomes compared with control.           |
| Oxcarbazepine and lamotrigine were associated with increased occurrence of autism.    |
| Counselling is advised for women considering pregnancy to tailor the safest regimen.  |
|                                                                                       |
| Registration: PROSPERO database (CRD42014008925).                                     |
| Keywords: multiple treatment meta-analysis, knowledge synthesis, epilepsy, pregnancy, |
| infants, developmental delay.                                                         |
|                                                                                       |
| ARTICLE SUMMARY                                                                       |
| Strengths and limitations of this study                                               |
| Strengths and minutions of this study                                                 |
| • 29 cohort studies involving 5,100 children of women who took AEDs were included     |
| in this systematic review. More evidence from long-term follow-up studies is          |
| required.                                                                             |
| • This study was the first that compared and ranked the safety of AEDs, including     |
| comparative safety of treatments that have not been directly compared.                |

| 1<br>2                                                                                                                                                                                    |     |   |                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|------------------------------------------------------------------------------------|
| 2<br>3<br>4                                                                                                                                                                               | 100 | ٠ | Across all neurological outcomes and treatments compared with control, valproate   |
| 5<br>6<br>7                                                                                                                                                                               | 101 |   | alone or combined with another AED is associated with the greatest odds of adverse |
| 7<br>8<br>9                                                                                                                                                                               | 102 |   | development.                                                                       |
| 10<br>11                                                                                                                                                                                  | 103 | • | Oxcarbazepine and lamotrigine were associated with increased occurrence of         |
| $\begin{array}{c} 12\\ 13\\ 14\\ 56\\ 17\\ 89\\ 02\\ 12\\ 23\\ 45\\ 26\\ 78\\ 90\\ 12\\ 33\\ 33\\ 35\\ 37\\ 38\\ 90\\ 14\\ 23\\ 45\\ 67\\ 89\\ 01\\ 22\\ 35\\ 55\\ 55\\ 56\\ \end{array}$ | 104 |   | autism.                                                                            |

**INTRODUCTION** 

Anti-epileptic drugs (AEDs) are used by pregnant women for various conditions, such as epilepsy, pain syndromes, psychiatric disorders, and chronic migraine.<sup>1</sup> AED use during pregnancy is associated with risks to the fetus, as these drugs can cross the placenta or may be transferred to the infant through breastfeeding and may be associated with adverse neurodevelopment outcomes.<sup>2-4</sup> Two systematic reviews examined the association between AED exposure and neurodevelopment *in utero*, and reported that exposure to valproate was linked to significantly lower IQ scores and poorer overall neurodevelopmental outcomes in the children of women who used these medications.<sup>56</sup> No significant associations were found between neurodevelopment and exposure to other AEDs such as carbamazepine, lamotrigine, or phenytoin.<sup>5-8</sup> However, there is a lack of sufficiently powered studies to assess the impact of AEDs on neurodevelopment in children of women exposed to these agents, especially for newer generation drugs, thus highlighting the need for a systematic review.910 The aim of this study was to compare the safety of AEDs and assess their impact on neurodevelopment in infants and children exposed *in-utero* or during breastfeeding, employing a systematic review and network meta-analysis (NMA). 

# METHODS The methods are briefly described here; details can be found in the published protocol (Additional File 1).<sup>11</sup> This study was registered with PROSPERO (CRD42014008925). We followed the ISPOR<sup>12</sup> guidelines for our NMA, and reported our findings using the PRISMA extension for NMA (Additional File 2).<sup>13</sup> Eligibility criteria All randomized clinical trials (RCTs), quasi-RCTs, and observational studies were eligible.

Included studies assessed infants or children  $\leq 12$  years of age whose mothers consumed AEDs during pregnancy and/or while breastfeeding. Both mono- and poly-therapy AEDs were eligible, including first-generation (i.e., carbamazepine, clobazam, clonazepam, ethosuximide, phenobarbital, phenytoin, primidone, valproate) and newer-generation (i.e., marketed >1990: gabapentin, lamotrigine, levetiracetam, oxcarbazepine, topiramate, vigabatrin), with no restrictions on AED dosage. Placebo, no AED, other AEDs alone or in combination, were considered as comparators. Duplicate studies that used the same registry or population sample (i.e., companion studies) were used for supplementary information only. No language or other restrictions were imposed. The primary neurological outcomes were cognitive developmental delay and autism/dyspraxia, and the secondary outcomes included attention deficit hyperactivity disorder (ADHD), language delay, neonatal seizures, psychomotor developmental delay, and social impairment. Table 2 shows the outcome measures and diagnostic scales used. We initially intended to evaluate all safety outcomes in infants/ children exposed to AEDs *in-utero* or during breastfeeding in one publication, but given the breadth of evidence we

| 1<br>2         |     |                                                                                                                       |   |
|----------------|-----|-----------------------------------------------------------------------------------------------------------------------|---|
| 2<br>3<br>4    | 144 | identified, we report results related to risk of major congenital malformations, birth, and                           |   |
| 5<br>6<br>7    | 145 | prenatal outcomes in a companion paper. <sup>14</sup>                                                                 |   |
| 7<br>8<br>9    | 146 | Information sources                                                                                                   |   |
| 10<br>11       | 147 | An experienced librarian executed search strategies for MEDLINE, EMBASE, and the                                      |   |
| 12<br>13<br>14 | 148 | Cochrane Central Register of Controlled Trials up to March 18, 2014, and then updated the                             | ì |
| 15<br>16       | 149 | search in April 27 <sup>th</sup> 2017. The search strategy for MEDLINE was peer-reviewed by another                   | ſ |
| 17<br>18<br>19 | 150 | librarian using the PRESS checklist, <sup>15</sup> and is available in the protocol. <sup>11</sup> Additional studies |   |
| 20<br>21       | 151 | were identified by scanning references and contacting authors. Unpublished studies were                               |   |
| 22<br>23<br>24 | 152 | sought by searching clinical trial registries and conference abstracts.                                               |   |
| 24<br>25<br>26 | 153 | Study selection and data collection                                                                                   |   |
| 27<br>28       | 154 | After a calibration exercise, titles/abstracts (level 1) and full-text papers (level 2) were                          |   |
| 29<br>30<br>31 | 155 | screened by two reviewers independently. Upon completion of level 1, 6% of citations wer                              | e |
| 32<br>33       | 156 | discrepant between reviewer pairs, whereas at the conclusion of level 2, 16% of articles                              |   |
| 34<br>35<br>36 | 157 | were discrepant. Conflicts were resolved through discussion or by a third reviewer. The                               |   |
| 37<br>38       | 158 | same approach was used for data abstraction and appraisal of methodological quality.                                  |   |
| 39<br>40       | 159 | Three rounds of pilot testing were conducted prior to data abstraction to train reviewers                             |   |
| 41<br>42<br>43 | 160 | and refine the data abstraction form. For studies published in the last 10 years, authors                             |   |
| 44<br>45       | 161 | were contacted to request clarification or additional data.                                                           |   |
| 46<br>47<br>48 | 162 | Appraisal of methodological quality                                                                                   |   |
| 49<br>50       | 163 | Only observational studies were identified and included for analysis, and their                                       |   |
| 51<br>52<br>53 | 164 | methodological quality was appraised with the Newcastle-Ottawa Scale (NOS) (Additional                                |   |
| 54<br>55       | 165 | File 3: Appendix A). <sup>16</sup> For each outcome with $\geq$ 10 studies, the comparison-adjusted funnel            |   |
| 56<br>57       | 166 | plot was used to assess small-study effects, <sup>17</sup> where the overall treatment effect for each                |   |
| 50<br>59<br>60 |     |                                                                                                                       | 9 |

| 1<br>2         |     |                                                                                                       |
|----------------|-----|-------------------------------------------------------------------------------------------------------|
| 3<br>4         | 167 | comparison was estimated under the fixed-effect meta-analysis model. All eligible                     |
| 5<br>6<br>7    | 168 | medications were ordered from oldest to newest using their international market approval              |
| 8<br>9         | 169 | dates. Hence, the comparison-adjusted funnel plot additionally assesses the hypothesis that           |
| 10<br>11       | 170 | newer AEDs are favoured over older ones. To overcome some of the correlations induced                 |
| 12<br>13<br>14 | 171 | by multi-arm studies, which may cause overestimation and mask funnel plot asymmetry,                  |
| 15<br>16       | 172 | we plotted data points corresponding to the study-specific basic parameters (treatment                |
| 17<br>18<br>10 | 173 | comparisons with common comparator). In each study, we used the control group as the                  |
| 20<br>21       | 174 | common comparator or if this was missing, we used the oldest treatment comparator                     |
| 22<br>23       | 175 | against the remaining AEDs.                                                                           |
| 24<br>25<br>26 | 176 | Synthesis of included studies                                                                         |
| 27<br>28       | 177 | We used the odds ratio (OR) for each dichotomous outcome, and outcome data were                       |
| 29<br>30<br>31 | 178 | pooled using hierarchical meta-analysis and NMA models and the Markov Chain Monte                     |
| 32<br>33       | 179 | Carlo sampling method in a Bayesian framework. To account for anticipated                             |
| 34<br>35<br>26 | 180 | methodological and clinical heterogeneity across studies, and to achieve the highest                  |
| 36<br>37<br>38 | 181 | generalizability in the meta-analytical treatment effects, we applied a random-effects                |
| 39<br>40       | 182 | model. <sup>18</sup>                                                                                  |
| 41<br>42<br>43 | 183 | A NMA was applied for connected evidence networks and pre-specified treatment nodes. <sup>19</sup>    |
| 44<br>45       | 184 | We assessed the transitivity assumption for each outcome <i>a priori</i> using the effect             |
| 46<br>47<br>48 | 185 | modifiers: age, baseline risk, treatment indication, timing, and methodological quality. The          |
| 49<br>50       | 186 | mean of each continuous effect modifier and the mode of each categorical effect modifier              |
| 51<br>52       | 187 | for each pairwise comparison were presented in tables for each outcome. <sup>20</sup> The consistency |
| 53<br>54<br>55 | 188 | assumption was evaluated for the entire network of each outcome using the random-                     |
| 56<br>57       | 189 | effects design-by-treatment interaction model when multiple studies were available in                 |
| ວຽ<br>59<br>60 |     | 10                                                                                                    |

| 1  |
|----|
| 2  |
| 3  |
| 4  |
| 5  |
| 5  |
| 6  |
| 7  |
| 8  |
| à  |
| 10 |
| 10 |
| 11 |
| 12 |
| 13 |
| 14 |
| 14 |
| 15 |
| 16 |
| 17 |
| 18 |
| 10 |
| 19 |
| 20 |
| 21 |
| 22 |
| 23 |
| 23 |
| 24 |
| 25 |
| 26 |
| 27 |
| 21 |
| 28 |
| 29 |
| 30 |
| 31 |
| 20 |
| 32 |
| 33 |
| 34 |
| 35 |
| 26 |
| 30 |
| 37 |
| 38 |
| 39 |
| 40 |
| 40 |
| 41 |
| 42 |
| 43 |
| 11 |
|    |
| 45 |
| 46 |
| 47 |
| 48 |
| 40 |
| 49 |
| 50 |
| 51 |
| 52 |
| 52 |
| 55 |
| 54 |
| 55 |
| 56 |
| 57 |
| 57 |
| 58 |
| 59 |
| 60 |

1

190 each network design or the fixed-effect design-by-treatment interaction model when a 191 single study informed each network design.<sup>21</sup> If inconsistency was identified, further 192 examination for local inconsistency in parts of the network was completed using the loopspecific method.<sup>22 23</sup> Common within-network between-study variance ( $\tau^2$ ) across 193 194 treatment comparisons was assumed in the meta-analysis, NMA, and design-by-treatment 195 interaction model, so that treatment comparisons including a single study can borrow 196 strength from the remaining network. This assumption was clinically reasonable, as the 197 treatments included were of the same nature. In the loop-specific approach, common 198 within-loop  $\tau^2$  was assumed. 199 For cognitive developmental delay and autism/dyspraxia outcomes, network meta-200 regression analyses for maternal age and baseline risk (i.e., using the control group) were 201 conducted, when  $\geq 10$  studies provided relevant information, assuming a common fixed 202 coefficient across treatment comparisons for AEDs vs. control. Sensitivity analyses for 203 cognitive developmental delay and autism/dyspraxia outcomes were performed for 204 treatment indication of epilepsy, large study size (i.e., >300), maternal alcohol intake, 205 maternal tobacco use, only first-generation AEDs, and methodological quality. The 206 sensitivity analysis for methodological quality was restricted to studies with low risk of 207 bias for the two items on the NOS where the greatest proportion of studies received a low-208 quality score: adequacy of follow-up of cohorts and comparability of cohorts. For 209 autism/dyspraxia, a sensitivity analysis on maternal IQ/psychiatric history was 210 additionally conducted. We measured the goodness of fit using the posterior mean of the 211 residual deviance, the degree of  $\tau^2$ , and the deviance information criterion (DIC). In a well-212 fitting model the posterior mean residual deviance should be close to the number of data

Page 13 of 90

1

 $\begin{array}{r} 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 55\\ 56\\ 57\\ 58\\ 59\\ \end{array}$ 

60

#### **BMJ Open**

| 2              |     |                                                                                                           |
|----------------|-----|-----------------------------------------------------------------------------------------------------------|
| 3<br>4         | 213 | points. <sup>24 25</sup> A difference of 3 units in the DIC between a NMA and a network meta-             |
| 5<br>6<br>7    | 214 | regression model was considered important and the lowest value of the DIC corresponded                    |
| 8<br>9         | 215 | to the model with the best fit. <sup>24 25</sup>                                                          |
| 10<br>11       | 216 | All analyses were conducted in OpenBUGS <sup>26</sup> assuming non-informative priors for all model       |
| 12<br>13<br>14 | 217 | parameters, and $\tau \sim N(0,1)$ , $\tau > 0$ . The first 10,000 iterations were discarded and then     |
| 15<br>16       | 218 | 100,000 simulations were run with thinning of 10 values. Convergence was checked by                       |
| 17<br>18<br>10 | 219 | visual inspection of the evaluation of the mixing of two chains. The median and 95% CrI                   |
| 20<br>21       | 220 | were calculated for each parameter value. The <i>network</i> command <sup>27</sup> was used to apply the  |
| 22<br>23       | 221 | design-by-treatment interaction model.                                                                    |
| 24<br>25<br>26 | 222 | For NMA estimates, a 95% predictive interval (PrI) is also reported to capture the                        |
| 27<br>28       | 223 | magnitude of $	au^2$ and present the interval within which the treatment effect of a future               |
| 29<br>30       | 224 | study is expected to lie. <sup>28 29</sup> The estimated safety of the included AEDs was ranked using the |
| 31<br>32<br>33 | 225 | surface under the cumulative ranking (SUCRA) curve. <sup>30</sup> The larger the SUCRA for a              |
| 34<br>35       | 226 | treatment, the higher its safety rank among all the available treatment options. SUCRA                    |
| 36<br>37<br>38 | 227 | values are presented along with 95% CrIs to capture the uncertainty in the parameter                      |
| 39<br>40       | 228 | values. <sup>31</sup>                                                                                     |
| 41<br>42       |     |                                                                                                           |
| 43<br>44       |     |                                                                                                           |

#### RESULTS

#### Literature search and included studies

Our literature search identified 5,707 titles and abstracts, which after the screening process yielded 681 articles potentially relevant for inclusion (Figure 1). After full-text review, 95 studies fulfilled eligibility criteria along with 17 studies identified through supplemental methods. Of the 112 total eligible studies in the complete review,<sup>14</sup> 29 articles with seven companion reports and two potentially overlapping registry studies included one or more relevant neurological outcomes (Additional File 3: Appendix B). Four of the studies included in this analysis were conference abstracts with usable data.<sup>32-35</sup> and four studies,<sup>36-39</sup> not captured in the original literature search, were identified through reference scanning. A table with the key excluded studies and a rationale for their exclusion is presented in Additional File 3: Appendix C. Study and patient characteristics We included 29 cohort studies (5,100 patients) published between 1989 and 2016 (Table 1; Additional File 3: Appendix D, E). The number of patients included in each study ranged from 23 to 2,011 (median 74.5). Most studies (76%) were published after 2000, 62% of the studies included fewer than 100 patients, and the 52% of the studies included a control group of pregnant/breastfeeding women with epilepsy who did not receive AEDs. The mean maternal age ranged from 24 to 34 years. About half of the studies (52%) were funded through government/public research funding. 

Methodological quality results 

Twenty-nine observational studies were appraised using the NOS (Additional File 3:

Appendix F). Overall, the studies were of good methodological quality and were rated as

#### **BMJ Open**

| 3<br>4         | 252 | high quality across most items: 28 studies (97%) selected the non-exposed cohort from                          | the |
|----------------|-----|----------------------------------------------------------------------------------------------------------------|-----|
| 5<br>6<br>7    | 253 | same community as the exposed cohort, 26 (90%) included a representative or somewhat                           | at  |
| 7<br>8<br>9    | 254 | representative sample, 27 (93%) assessed outcomes independently, with blinding, or via                         | a   |
| 10<br>11       | 255 | record linkage (e.g., identified through database records), and 23 (79%) ascertained                           |     |
| 12<br>13<br>14 | 256 | exposure via secured records (e.g., database records) or structured interviews. The                            |     |
| 15<br>16       | 257 | comparability of cohorts and adequacy of follow-up were the lowest scoring items acros                         | S   |
| 17<br>18       | 258 | the studies with only 12 (41%) and 10 (34%) studies rated as high quality on these item                        | s.  |
| 19<br>20<br>21 | 259 | No evidence for small-study effects was identified by the visual inspection of the                             |     |
| 22<br>23       | 260 | comparison-adjusted funnel plots (Additional File 3: Appendix G).                                              |     |
| 24<br>25<br>26 | 261 | Statistical analysis results                                                                                   |     |
| 20<br>27<br>28 | 262 | No important concerns were raised regarding the violation of the transitivity assumption                       | n   |
| 29<br>30       | 263 | when maternal age, baseline risk, treatment indication, and timing were assessed                               |     |
| 31<br>32<br>33 | 264 | (Additional File 3: Appendix H). However, the average methodological quality appraisal                         |     |
| 34<br>35       | 265 | across treatment comparisons varied across treatment comparisons. The evaluation of the                        | he  |
| 36<br>37<br>38 | 266 | consistency assumption using the design-by-treatment interaction model suggested that                          | -   |
| 39<br>40       | 267 | there was no evidence of significant inconsistency across all outcomes (Additional File 3                      | :   |
| 41<br>42<br>42 | 268 | Appendix H).                                                                                                   |     |
| 43<br>44<br>45 | 269 | In the following sections, we present the significant NMA results by outcome for AEDs                          |     |
| 46<br>47       | 270 | compared with control (i.e., no exposure to AEDs), while the SUCRA values from all                             |     |
| 48<br>49<br>50 | 271 | outcomes are presented in Figure 2 and depicted in a rank-heat plot ( <u>http://rh.ktss.ca/</u> ) <sup>4</sup> | 40  |
| 50<br>51<br>52 | 272 | in Additional File 3: Appendix I.                                                                              |     |
| 53<br>54       | 273 | Cognitive developmental delay                                                                                  |     |
| 55<br>56<br>57 |     |                                                                                                                |     |
| 58<br>59       |     |                                                                                                                | 1 / |
| 60             |     |                                                                                                                | 14  |
| 2        |   |
|----------|---|
| 3        |   |
| 4        | 4 |
| 5        |   |
| 6        | 4 |
| 7        |   |
| 8        | 2 |
| 9<br>10  |   |
| 10       |   |
| 12       |   |
| 12       |   |
| 14       | 4 |
| 15       |   |
| 16       | 4 |
| 17       |   |
| 18       | 2 |
| 19       |   |
| 20       |   |
| 21       | 4 |
| 22       |   |
| 23       | 4 |
| 24       |   |
| 25       | 2 |
| 26       |   |
| 27       | ; |
| 28       | - |
| 29       |   |
| 30<br>31 | 4 |
| 32       |   |
| 33       | 4 |
| 34       |   |
| 35       | 2 |
| 36       |   |
| 37       |   |
| 38       | • |
| 39       |   |
| 40       | 4 |
| 41       |   |
| 42       | 2 |
| 43       |   |
| 44<br>45 | 2 |
| 45<br>46 |   |
| 40<br>17 |   |
| 47<br>78 | 4 |
| 40<br>40 |   |
| 50       | 4 |
| 51       |   |
| 52       | 2 |
| 53       |   |
| 54       | : |
| 55       | • |
| 56       |   |
| 57       |   |
| 58       |   |
| 59       |   |
| 60       |   |

1

| 274 | The NMA for cognitive developmental delay (definitions in Table 1) included 11 cohort                    |
|-----|----------------------------------------------------------------------------------------------------------|
| 275 | studies, 933 children, and examined 18 treatments (Figure 3a; Additional File 3: Appendix                |
| 276 | J; $\tau^2$ =0.12, 95% CrI: 0.00-1.15). One study included children exposed to AEDs both <i>in-utero</i> |
| 277 | and through breastfeeding, and ten included children exposed to AEDs in-utero. Across all                |
| 278 | AEDs, only valproate was associated with significantly increased odds of cognitive                       |
| 279 | developmental delay when compared with control (odds ratio (OR)=7.40, 95% credible                       |
| 280 | interval (CrI): 3.00-18.46; Figure 2a; Additional File 3: Appendix H).                                   |
| 281 | The same results were observed in a network meta-regression of baseline risk for offspring               |
| 282 | of women with epilepsy who were not exposed to AEDs (estimated regression coefficient                    |
| 283 | on OR scale: 1.01, 95% CrI: 0.76-1.56; τ²=0.16, 95% CrI: 0.00-1.24; residual deviance=                   |
| 284 | 45.27, data points= 47, DIC= 80.17). Similarly, the sensitivity analyses restricted to: a)               |
| 285 | studies that only included women receiving AEDs to treat epilepsy (10 studies, 910                       |
| 286 | children, 17 treatments; $\tau^2$ =0.16, 95% CrI: 0.00-1.36), b) studies comparing only first-           |
| 287 | generation AEDs (6 studies, 480 children, 13 treatments; $\tau^2$ =0.28, 95% CrI: 0.00-2.97), c)         |
| 288 | studies that reported maternal alcohol or tobacco use (3 studies, 504 children, 7                        |
| 289 | treatments; $\tau^2$ =0.27, 95% CrI: 0.00-3.29), and d) studies with high methodological quality         |
| 290 | on NOS item 'comparability of cohorts' (3 studies, 366 children, 7 treatments; $\tau^2$ =0.38, 95%       |
| 291 | CrI: 0.00-4.14), were consistent with the NMA results (Additional File 3: Appendix K). The               |
| 292 | sensitivity analysis with studies of high methodological quality on the NOS item 'adequacy               |
| 293 | of follow-up' found no statistically significant results (4 studies, 283 patients, 12                    |
| 294 | treatments; $\tau^2$ =1.01, 95% CrI: 0.01-5.85; Additional File 3: Appendix K).                          |
| 295 | Autism/dyspraxia                                                                                         |
|     |                                                                                                          |

Page 17 of 90

1

## **BMJ Open**

| 2        |   |
|----------|---|
| 3<br>₄   | 2 |
| 4<br>5   |   |
| 6        | 2 |
| 7<br>8   | 2 |
| 9        | 2 |
| 10<br>11 | 2 |
| 12       |   |
| 13<br>14 | 3 |
| 15       | 2 |
| 16<br>17 | 5 |
| 18       | 3 |
| 19       |   |
| 20<br>21 | 3 |
| 22       | 3 |
| 23<br>24 | 0 |
| 25       | 3 |
| 26<br>27 | 2 |
| 28       | 3 |
| 29<br>30 | 3 |
| 31       |   |
| 32<br>33 | 3 |
| 34       | 2 |
| 35<br>36 | З |
| 37       | 3 |
| 38<br>39 |   |
| 40       | 3 |
| 41<br>42 | 3 |
| 43       | 0 |
| 44<br>45 | 3 |
| 46       | 0 |
| 47<br>48 | 3 |
| 49       | 3 |
| 50<br>51 | - |
| 52       | 3 |
| 53<br>54 | n |
| 55       | 3 |
| 56       |   |
| ว/<br>58 |   |
| 59       |   |
| 60       |   |

| 296 | The NMA on autism/dyspraxia (definitions in Table 1) included five cohort studies, 2,551            |
|-----|-----------------------------------------------------------------------------------------------------|
| 297 | children exposed <i>in utero</i> , and examined 12 treatments ( $\tau^2$ =0.16, 95% CrI: 0.00-1.95; |
| 298 | Figure 3b; Additional File 3: Appendix H). Compared with control, only valproate                    |
| 299 | (OR=17.29, 95% CrI: 2.40-217.60), oxcarbazepine (OR= 13.51, 95% CrI: 1.28-221.40),                  |
| 300 | lamotrigine (OR= 8.88, 95% CrI: 1.28-112.00), and lamotrigine+valproate (OR=132.70,                 |
| 301 | 95% CrI: 7.41-3851.00) were significantly associated with increased occurrence of                   |
| 302 | autism/dyspraxia (Figure 2b).                                                                       |
| 303 | Restricting the NMA to studies including only women with epilepsy as their treatment                |
| 304 | indication produced results that were generally in agreement with the NMA results, except           |
| 305 | that oxcarbazepine was no longer in the network (4 cohort studies, 540 children, 10                 |
| 306 | treatments; $\tau^2$ =0.31, 95% CrI: 0.00-304). Two cohort studies of 404 offspring of women        |
| 307 | with a history of tobacco use compared 4 treatments and found similar results except that           |
| 308 | oxcarbazepine and lamotrigine+valproate were no longer in the network ( $	au^2$ =0.39, 95%          |
| 309 | CrI: 0.00-4.47). The results were in agreement in sensitivity analyses including only higher        |
| 310 | methodological quality studies in the 'comparability of cohorts' item on the NOS (4 studies,        |
| 311 | 2,395 children, 12 treatments; $\tau^2$ =0.19, 95% CrI: 0.00-2.43) and the 'adequacy of follow-up   |
| 312 | of cohorts' (3 studies, 2244 children, 10 treatments; $\tau^2$ =0.23, 95% CrI: 0.00-2.88), except   |
| 313 | that lamotrigine was no longer statistically significant than control for the latter                |
| 314 | (Additional File 3: Appendix K).                                                                    |
| 315 | Neonatal Seizure                                                                                    |
| 316 | One cohort study included 72 children who were exposed to AEDs in-utero as well as                  |
| 317 | through breastfeeding reported on the incidence of neonatal seizures. The study compared            |
|     |                                                                                                     |

| 2              |     |                                                                                                         |
|----------------|-----|---------------------------------------------------------------------------------------------------------|
| 3<br>4         | 318 | valproate against lamotrigine and found no significant difference in neonatal seizures                  |
| 5<br>6<br>7    | 319 | between the two drugs (OR=0.18, 95% CI: 0.01-3.70).                                                     |
| 7<br>8<br>9    | 320 | Psychomotor developmental delay                                                                         |
| 10<br>11       | 321 | The NMA on psychomotor developmental delay (definitions in Table 1) included 11 cohort                  |
| 12<br>13<br>14 | 322 | studies, 1,145 children exposed <i>in utero</i> , and examined 18 treatments ( $\tau^2$ =0.06, 95% CrI: |
| 15<br>16       | 323 | 0.00-0.63; Figure 3c; Additional File 3: Appendices H, J). Valproate (OR=4.16, 95% CrI:                 |
| 17<br>18<br>10 | 324 | 2.04-8.75) and carbamazepine+phenobarbital+valproate (OR=19.12, 95% CrI: 1.49-                          |
| 20<br>21       | 325 | 337.50) were significantly more harmful than control (Figure 2c).                                       |
| 22<br>23       | 326 | Language delay                                                                                          |
| 24<br>25<br>26 | 327 | The NMA on language delay (definitions in Table 1) included five cohort studies, 509                    |
| 20<br>27<br>28 | 328 | children, and examined five treatments ( $\tau^2$ =0.16, 95% CrI: 0.00-2.15; Figure 3d; Additional      |
| 29<br>30       | 329 | File 3: Appendices H, J). One study included children exposed to AEDs <i>in-utero</i> and through       |
| 31<br>32<br>33 | 330 | breastfeeding, and four included children exposed to AEDs in-utero. Compared with                       |
| 34<br>35       | 331 | control, valproate was the only treatment significantly associated with increased odds of               |
| 36<br>37<br>38 | 332 | language delay (OR=7.95, 95% CrI: 1.50-49.13; Figure 2d).                                               |
| 39<br>40       | 333 | Attention deficit hyperactivity disorder                                                                |
| 41<br>42<br>43 | 334 | The NMA on ADHD (definitions in Table 1) included five cohort studies, 816 children, and                |
| 44<br>45       | 335 | examined seven treatments ( $\tau^2$ =0.11, 95% CrI: 0.00-1.29). One study included children            |
| 46<br>47       | 336 | exposed to AEDs in-utero and through breastfeeding, while four studies included children                |
| 48<br>49<br>50 | 337 | exposed to AEDs in-utero. None of the treatment comparisons reached statistical                         |
| 51<br>52       | 338 | significance (Figure 3e; Figure 2e; Additional File 3: Appendices H, J).                                |
| 53<br>54<br>55 | 339 | Social Impairment                                                                                       |
| 56<br>57<br>58 |     |                                                                                                         |
| 59<br>60       |     | 17                                                                                                      |
|                |     |                                                                                                         |

1

Page 19 of 90

## **BMJ Open**

| 2                                                                                              |     |                                                                                            |
|------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------|
| 3<br>4                                                                                         | 340 | One cohort study included 422 children exposed to AEDs in-utero as well as through         |
| 5<br>6<br>7                                                                                    | 341 | breastfeeding. The children were exposed to carbamazepine (n=48), lamotrigine (n=71),      |
| 7<br>8<br>9                                                                                    | 342 | valproate (n=27) and control (n=278). No significant differences in social impairment were |
| 10<br>11                                                                                       | 343 | identified. <sup>41</sup>                                                                  |
| $\begin{array}{c}12\\13\\14\\56\\78\\90\\12\\22\\22\\22\\22\\22\\22\\22\\22\\22\\22\\22\\22\\$ | 344 |                                                                                            |

## **DISCUSSION**

Our results suggest that AEDs generally pose a risk for infants and children exposed *in*-*utero* or during breastfeeding. Valproate was significantly associated with more children experiencing autism/dyspraxia, language, cognitive and psychomotor developmental delays versus children who were not exposed to AEDs. Oxcarbazepine, lamotrigine and lamotrigine+valproate were associated with increased occurrence of autism/dyspraxia, whereas for the cognitive developmental delay and psychomotor developmental delay outcomes, children exposed to the combination of carbamazepine, phenobarbital, and valproate were at greater odds of harm than those who were not exposed to AEDs. However, these results should be interpreted with caution, as a number of factors (e.g., anticonvulsant dosing, severity of epilepsy, duration of exposure, serum concentrations of exposure, mother's IQ/education) that may all influence outcomes were not identified in these studies. Also, our subsequent analyses may be underpowered due to missing data (e.g., 17 of the 27 studies did not report maternal age, 23 of 27 studies did not report alcohol use, 22 of 27 studies did not report tobacco use, and 14 of 27 studies did not include control group). NMA is a particularly useful tool for decision-makers because it allows the ranking of

361 NMA is a particularly useful tool for decision-makers because it allows the ranking of
362 treatments for each outcome. However, the results of our SUCRA curves should be
363 interpreted with caution, especially due to the small number of studies and children
364 included in each NMA, which is also reflected in the high uncertainty around the SUCRA
365 values (Figure 2).<sup>31</sup>

366 Our results are consistent with a longitudinal study of 311 children that found exposure to
367 lamotrigine was associated with significantly higher IQ scores and verbal function at six

Page 21 of 90

### **BMJ Open**

years of age compared to children exposed to valproate (Additional File 3: Appendix C).<sup>7</sup> As indicated in Additional File 3: Appendix C, we were unable to include this study because the outcome was reported as a continuous measure, where we focused on dichotomous outcomes to facilitate interpretation. Our results are supported by findings from a cohort study, which found that children exposed to levetiracetam were not at increased risk for delayed development compared to unexposed children (Additional File 3: Appendix C).<sup>42</sup> As indicated in Additional File 3: Appendix C, we were unable to include this study due to the same reason as above. A NMA of 195 RCTs (including 28,013 both male and female patients) showed that gabapentin and levetiracetam showed the best tolerability profile compared with other AEDs, whereas oxcarbazepine and topiramate had a higher withdrawal rate, and lamotrigine an intermediate withdrawal rate.<sup>43</sup> Across all outcomes, valproate alone or combined with another AED (even with a newer-generation agent, e.g., lamotrigine) was associated with the greatest odds. Similarly, two previous systematic reviews that did not conduct a NMA found valproate was associated with significantly lower IQ scores and poorer overall neurodevelopmental outcomes when compared to an unexposed control group.<sup>56</sup> Also consistent with our results, a 2014 Cochrane review including 28 studies (10 of these studies were included in the meta-analyses; with a maximum number of five studies per meta-analysis) concluded that AED polytherapy led to poorer developmental outcomes and IO compared to healthy controls, epileptic controls, and unspecified monotherapy.<sup>5</sup> This Cochrane review also concluded that insufficient data exist for newer AEDs. However, unlike our review, it included and analysed fewer studies, and did not differentiate between specific polytherapy regimens, and thus did not compare these regimens versus each other or specific monotherapy AEDs.

These risks must be balanced with the need to control seizure activity in pregnancy and 6 thus informed decision-making by patients and clinicians is critical. Strengths of our study include a comprehensive systematic review methodology that followed the Cochrane Handbook<sup>44</sup> and ISPOR<sup>12</sup> guidelines, and reported using the PRISMA extension for NMA.<sup>13</sup> To the best of our knowledge, our study was the first that compared and ranked the safety of AEDs. We evaluated the comparative safety of treatments that have not been directly compared head-to-head before. In addition, we calculated predictive intervals, which account for between-study variation and provide a predicted range for the treatment effect estimate, should a future study be conducted. On average, the predictive intervals suggested that our results are robust. Our systematic review has a few limitations worth noting. First, due to the complexity of the data and the studies' underreporting, differences in drug dosages could not be accounted for, and it was assumed that different dosages of the same AED were equally effective. When a study reported multiple dosages for the same treatment, we combined the data for this treatment. This is common for cohort studies, which report on a number of different types of exposures amongst patients. Second, several polytherapies had high SUCRA estimates but very wide CrIs, which is due to the small number of studies included for each drug combination with underpowered sample sizes. Evidence suggests that ranking probabilities for a treatment of being the best may be biased toward the treatments with the smallest number of studies, which may have influenced our SUCRA results.<sup>31 45</sup> As such, the effect sizes need to be taken into account when considering the SUCRA values. Third, due to the absence of evidence from RCTs, our conclusions were based on evidence from observational studies only, and inherent biases because of 

Page 23 of 90

### **BMJ Open**

confounding and shortcomings of these studies may have impacted our findings. For example, the included studies often failed to report important confounding variables,<sup>46</sup> such as family history of autism, ADHD, and maternal IQ, severity of epilepsy making it impossible for us to control these variables through subgroup analysis and meta-regression. Recent research has explored methods to incorporate non-randomized with randomized evidence in a NMA and have highlighted the need to carefully explore the level of confidence in the non-randomized evidence.<sup>47 48</sup> The use of observational studies allows the assessment of the safety profile of AED treatments and offers the opportunity to evaluate effects in pregnancy.<sup>49</sup> Future large-scale observational studies are needed to allow the evaluation of rare adverse events that otherwise cannot be adequately evaluated in RCTs, especially during pregnancy. Fourth, although no intransitivity for most effect modifiers assessed was evident, there was an imbalance in the methodological study quality appraisal across treatment comparisons and most outcomes, which may impact our results. Unknown factors or factors that could not be assessed due to dearth of data may pose the risk of residual confounding bias, and hence risk the validity of the transitivity assumption. However, the assessment of consistency suggested no disagreement between the different sources of evidence in the network. Fifth, although the tendency towards small-study effects is greater with observational studies than with randomized trials,<sup>50</sup> the assessment of small-study effects using adjusted funnel plots suggested no evidence for their prevalence. Also, the majority of the included studies in this review compared multiple treatments inducing correlations in each funnel plot, which may mask asymmetry. Although we plotted data points corresponding to the study-specific basic parameters to reduce correlations, this issue may still exist. Sixth, we were unable to conduct subgroup

| 1<br>2         |     |                                                                                                        |
|----------------|-----|--------------------------------------------------------------------------------------------------------|
| 3<br>4         | 437 | analysis by type of exposure (breastfeeding versus <i>in utero</i> ) due to the small number of        |
| 5<br>6<br>7    | 438 | studies included in the NMA and due to the poor reporting; 22 studies did not report                   |
| 7<br>8<br>9    | 439 | whether exposure was also in breastfeeding (additional to <i>in utero</i> ). Hence, we included all    |
| 10<br>11       | 440 | studies in the analysis irrespective of the type of exposure.                                          |
| 12<br>13<br>14 | 441 | More evidence from long-term follow-up studies is required to further delineate                        |
| 15<br>16       | 442 | neurodevelopmental risks in children. Future studies should assess the genetic                         |
| 17<br>18<br>10 | 443 | contribution from the biological father, maternal seizures during pregnancy, exposure                  |
| 20<br>21       | 444 | through breastfeeding only, types of epilepsy, and maternal family history. Registries                 |
| 22<br>23       | 445 | should aim to include a suitable control group and collect information on potential                    |
| 24<br>25<br>26 | 446 | confounders, such as alcohol and tobacco use, allowing researchers to identify the safest              |
| 27<br>28       | 447 | agents for different patient-level covariates, and enhance decision-making for healthcare              |
| 29<br>30<br>31 | 448 | providers and patients. A critical evaluation of the validity of the control group is also             |
| 32<br>33       | 449 | necessary, in order to examine potential differences between the treated and the not                   |
| 34<br>35<br>26 | 450 | treated populations. An individual patient data NMA would likely provide further clarity to            |
| 36<br>37<br>38 | 451 | the field, which allows the tailoring of management to specific patient characteristics. <sup>51</sup> |
| 39<br>40       | 452 | CONCLUSION                                                                                             |
| 41<br>42<br>43 | 453 | Across all outcomes and treatments compared with control, valproate alone or combined                  |
| 44<br>45       | 454 | with another AED was associated with the greatest odds, whereas oxcarbazepine and                      |
| 46<br>47<br>48 | 455 | lamotrigine were associated with increased occurrence of autism. Counselling is advised                |
| 49<br>50       | 456 | for women considering pregnancy to tailor the safest regimen.                                          |
| 51<br>52<br>53 |     |                                                                                                        |
| 53<br>54<br>55 |     |                                                                                                        |
| 56             |     |                                                                                                        |
| 57<br>58       |     |                                                                                                        |

59

| 1<br>2<br>3<br>4           | 457 | LIST OF ABBREVIATIONS                                                                    |    |
|----------------------------|-----|------------------------------------------------------------------------------------------|----|
| 5<br>6<br>7                | 458 | AEDs: Anti-epileptic drugs; CrI: Credible interval; NMA: Network Meta-analysis; OR: Od   | ds |
| 7<br>8<br>9                | 459 | ratio; PrI: Predictive interval; SUCRA curve: Surface under the cumulative ranking curve | Э  |
| 10<br>11<br>12             | 460 | ADDITIONAL FILES                                                                         |    |
| 13<br>14                   | 461 | Additional File 1: Protocol                                                              |    |
| 15<br>16<br>17<br>18<br>19 | 462 | Additional File 2: PRISMA NMA Checklist                                                  |    |
| 20<br>21                   | 463 | Additional File 3: Supplementary Online Content (Appendices A-O)                         |    |
| 22<br>23<br>24             | 464 | Appendix A. Newcastle-Ottawa Scale scoring guide                                         |    |
| 25<br>26                   | 465 | Appendix B. List of included studies                                                     |    |
| 27<br>28<br>29             | 466 | Appendix C. Key Excluded Studies                                                         |    |
| 30<br>31                   | 467 | Appendix D. Table of Individual Study Characteristics                                    |    |
| 32<br>33<br>34             | 468 | Appendix E. Table of Patient Characteristics                                             |    |
| 35<br>36                   | 469 | Appendix F. Methodological quality of observational studies – Newcastle Ottawa Scale     |    |
| 37<br>38<br>20             | 470 | Appendix G. Comparison-adjusted funnel plots                                             |    |
| 39<br>40<br>41             | 471 | Appendix H. Statistically significant network meta-analysis results along with meta-     |    |
| 42<br>43                   | 472 | analysis results, transitivity, and inconsistency assessments                            |    |
| 44<br>45<br>46             | 473 | Appendix I. Rank-heat plot of cognitive developmental delay, autism/dyspraxia,           |    |
| 47<br>48                   | 474 | psychomotor developmental delay, language delay, and attention deficit hyperactivity     |    |
| 49<br>50<br>51             | 475 | disorder outcomes                                                                        |    |
| 52<br>53                   | 476 | Appendix J. Number of studies and treatments per outcome                                 |    |
| 54<br>55                   | 477 | Appendix K. Sensitivity and network meta-regression analyses - Anti-epileptic drugs      |    |
| 50<br>57<br>58<br>59<br>60 | 478 | compared with Control                                                                    | 2  |

| 2        |
|----------|
| 3        |
| 4        |
| 5        |
| 6        |
| 7        |
| 8        |
| à        |
| 10       |
| 10       |
| 11       |
| 12       |
| 13       |
| 14       |
| 15       |
| 16       |
| 10       |
| 17       |
| 18       |
| 19       |
| 20       |
| 21       |
| 22       |
| ~~<br>22 |
| 23       |
| 24       |
| 25       |
| 26       |
| 27       |
| 28       |
| 20       |
| 29       |
| 30       |
| 31       |
| 32       |
| 33       |
| 34       |
| 24       |
| 35       |
| 36       |
| 37       |
| 38       |
| 39       |
| 40       |
|          |
| 41       |
| 42       |
| 43       |
| 44       |
| 45       |
| 46       |
| /7       |
| 41<br>40 |
| 48       |
| 49       |
| 50       |
| 51       |
| 52       |
| 52       |
| 50       |
| 04<br>55 |
| 55       |
| 56       |
| 57       |
| 58       |
| 50       |
| 60       |
| ())]     |

# 479**FIGURE LEGENDS**

# 480 **Figure 1. Study flow diagram**

# 481 Figure 2. Forest plots for cognitive developmental delay, autism/dyspraxia,

# 482 psychomotor developmental delay, language delay, and attention deficit

# 483 hyperactivity disorder outcome

# 484 Figure 3. Network diagrams for cognitive developmental delay, autism/dyspraxia,

# 485 **psychomotor developmental delay, language delay, and attention deficit**

# 486 hyperactivity disorder outcomes

# 487 Each treatment node is weighted according to the number of patients that have received the

# 488 particular treatment, and each edge is weighted according to the number of studies

# 489 *comparing the treatments it connects.*

# 490 <u>Abbreviations:</u> carbam - carbamazepine, clobaz - clobazam, clonaz - clonazepam, ethos -

# 491 ethosuximide, gabap - gabapentin, lamot - lamotrigine, levet - levetiracetam, oxcar -

# 492 oxcarbazepine, pheno - phenobarbital, pheny - phenytoin, primid - primidone, topir -

# 493 topiramate, valpro - valproate, vigab – vigabatrin

# **DECLARATIONS**

## **CONTRIBUTORS**

AAV analysed the data, interpreted the results, and drafted the manuscript. ACT and SES conceived and designed the study, helped obtain funding, interpreted the results, and helped write sections of the manuscript. PR and EC coordinated the review, screened citations and full-text articles, abstracted data, appraised quality, resolved discrepancies, contacted authors, and edited the manuscript. CS provided methodological support and screened citations and full-text articles and edited the manuscript. RK, ER, FY, JDS, KT, and HM screened citations and full-text articles, abstracted data, and/or appraised quality. BH, BRH and YF helped conceive the study and edited the manuscript. All authors read and approved the final manuscript.

# 30 505 ACKNOWLEDGEMENTS 31

We thank Dr. David Moher for providing his feedback on our protocol. We thank Dr. Laure Perrier for conducting the literature searches, Becky Skidmore for peer-reviewing the MEDLINE search, and Alissa Epworth for obtaining the full-text articles. We thank Alistair Scott, Wing Hui, and Geetha Sanmugalingham for screening some of the citations and/or abstracting some of the data for a few of the included studies, Misty Pratt and Mona Ghannad for helping scan reference lists, and Ana Guzman, Susan Le, and Inthuja Selvaratnam for contacting authors and formatting the manuscript. FUNDING 

516 Fellowship Program from the CIHR. SES is funded by a Tier 1 Canada Research Chair in

| 2              |     |                                                                                            |
|----------------|-----|--------------------------------------------------------------------------------------------|
| 3<br>4         | 517 | Knowledge Translation. BH is funded by a CIHR/DSEN New Investigator Award in               |
| 5<br>6<br>7    | 518 | Knowledge Synthesis. BRH receives funding from the Alberta Heritage Foundation for         |
| 7<br>8<br>9    | 519 | Medical Research. ACT is funded by a Tier 2 Canada Research Chair in Knowledge             |
| 10<br>11       | 520 | Synthesis. The funder had no role in the design and conduct of the study; collection,      |
| 12<br>13<br>14 | 521 | management, analysis, and interpretation of the data; preparation, review, or approval of  |
| 15<br>16       | 522 | the manuscript; or decision to submit the manuscript for publication.                      |
| 17<br>18<br>19 | 523 | COMPETING INTERESTS                                                                        |
| 20<br>21       | 524 | None declared.                                                                             |
| 22<br>23       | 525 | ETHICS APPROVAL                                                                            |
| 24<br>25<br>26 | 526 | Not applicable.                                                                            |
| 27<br>28       | 527 | PROVENANCE AND PEER REVIEW                                                                 |
| 29<br>30<br>31 | 528 | Not commissioned; externally peer reviewed.                                                |
| 32<br>33       | 529 | DATA SHARING STATEMENT                                                                     |
| 34<br>35<br>26 | 530 | All datasets generated and/or analysed during the current study are available from the     |
| 36<br>37<br>38 | 531 | corresponding author on reasonable request.                                                |
| 39<br>40       | 532 | OPEN ACCESS                                                                                |
| 41<br>42<br>43 | 533 | This is an Open Access article distributed in accordance with the Creative Commons         |
| 44<br>45       | 534 | Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute,     |
| 46<br>47       | 535 | remix, adapt, build upon this work non-commercially, and license their derivative works on |
| 48<br>49<br>50 | 536 | different terms, provided the original work is properly cited and the use is non-          |
| 51<br>52       | 537 | commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.                           |
| 53<br>54<br>55 |     |                                                                                            |
| 56<br>57       |     |                                                                                            |
| 58<br>59       |     | 77                                                                                         |
| 60             |     | 27                                                                                         |

## BMJ Open

#### 538 REFERENCES

| 7        |            |                                                                                                      |
|----------|------------|------------------------------------------------------------------------------------------------------|
| 8        | 530        | 1 Sping F. Perugi C. Antiopilantic drugs: indications other than opilansy. <i>Epilantic Disord</i>   |
| 9        | 540        | 2004·6(2)·57-75                                                                                      |
| 10       | 541        | 2 Harden CL Pennell PR Konnel RS et al Management issues for women with enilensyfocus                |
| 11       | 542        | on pregnancy (an evidence-based review): III vitamin K folic acid blood levels and breast-feeding:   |
| 12<br>13 | 543        | report of the quality standards subcommittee and therapeutics and technology assessment              |
| 14       | 544        | subcommittee of the American Academy of Neurology and the American Enilensy Society <i>Enilensia</i> |
| 15       | 545        | 2000-50(5)-1247-55                                                                                   |
| 16       | 546        | 2 Samron FR yan Duijn CM Koch S at al Maternal use of antioniloptic drugs and the rick of            |
| 17       | 540        | 5. Saint en ED, van Duijn CM, Koch 5, et al. Maternal use of antiephephe ul us and the risk of       |
| 18       | 547        | according with maternal englangy. Englancia, 1007,22(0),021,00                                       |
| 19       | 540<br>E40 | Associated with inaternal epinepsy. Epinepsia. 1997;50(9):901-90.                                    |
| 20       | 549        | 4. Meduol K, Reynolus MW, Clean S, Fambach K, Probst C. Pregnancy outcomes in women                  |
| 21       | 550<br>EE1 | with epilepsy: a systematic review and meta-analysis of published pregnancy registries and           |
| 22       | 221        | conorts. Epilepsy Res. 2008;81(1):1-13.                                                              |
| 23       | 552        | 5. Bromley R, weston J, Adab N, et al. Treatment for epilepsy in pregnancy:                          |
| 24<br>25 | 555        | neurodevelopmental outcomes in the child. The Cochrane database of systematic reviews.               |
| 20<br>26 | 554        |                                                                                                      |
| 20       | 555        | 6. Banach R, Boskovic R, Einarson T, Koren G. Long-term developmental outcome of children            |
| 28       | 556        | of women with epilepsy, unexposed or exposed prenatally to antiepileptic drugs: a meta-analysis of   |
| 29       | 55/        | cohort studies. Drug Saf. 2010;33(1):73-9.                                                           |
| 30       | 558        | 7. Meador KJ, Baker GA, Browning N, et al. Fetal antiepileptic drug exposure and cognitive           |
| 31       | 559        | outcomes at age 6 years (NEAD study): a prospective observational study. <i>Lancet Neurol</i> .      |
| 32       | 560        | 2013;12(3):244-52.                                                                                   |
| 33       | 561        | 8. Christensen J, Gronborg TK, Sorensen MJ, et al. Prenatal valproate exposure and risk of           |
| 34       | 562        | autism spectrum disorders and childhood autism. <i>JAMA</i> . 2013;309(16):1696-703.                 |
| 35       | 563        | 9. Wlodarczyk BJ, Palacios AM, George TM, Finnell RH. Antiepileptic drugs and pregnancy              |
| 36       | 564        | outcomes. <i>Am J Med Genet A</i> . 2012;158a(8):2071-90.                                            |
| 37       | 565        | 10. Velez-Ruiz NJ, Meador KJ. Neurodevelopmental effects of fetal antiepileptic drug exposure.       |
| 30<br>30 | 566        | Drug Saf. 2015;38(3):271-8.                                                                          |
| 40       | 567        | 11. Tricco AC, Cogo E, Angeliki VA, et al. Comparative safety of anti-epileptic drugs among          |
| 41       | 568        | infants and children exposed in utero or during breastfeeding: protocol for a systematic review and  |
| 42       | 569        | network meta-analysis. <i>Systematic reviews</i> . 2014;3:68.                                        |
| 43       | 570        | 12. Jansen JP, Trikalinos T, Cappelleri JC, et al. Indirect treatment comparison/network meta-       |
| 44       | 571        | analysis study questionnaire to assess relevance and credibility to inform health care decision      |
| 45       | 572        | making: an ISPOR-AMCP-NPC Good Practice Task Force report. Value Health. 2014;17(2):157-73.          |
| 46       | 573        | 13. Hutton B, Salanti G, Caldwell DM, et al. The PRISMA extension statement for reporting of         |
| 47       | 574        | systematic reviews incorporating network meta-analyses of health care interventions: checklist and   |
| 48       | 575        | explanations. Ann Intern Med. 2015;162(11):777-84.                                                   |
| 49<br>50 | 576        | 14. Veroniki AA, Cogo E, Rios P, et al. Comparative safety of anti-epileptic drugs during            |
| 50<br>51 | 577        | pregnancy: a systematic review and network meta-analysis of congenital malformations and             |
| 52       | 578        | prenatal outcomes. BMC Med. 2017;15(1):95.                                                           |
| 53       | 579        | 15. McGowan J, Sampson M, Salzwedel DM, Cogo E, Foerster V, Lefebvre C. PRESS Peer Review            |
| 54       | 580        | of Electronic Search Strategies: 2015 Guideline Statement. J Clin Epidemiol. 2016;75:40-6.           |
| 55       | 581        | 16. Wells G, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the          |
| 56       | 582        | quality of nonrandomised studies in meta-analyses2000. Available from:                               |
| 57       | 583        | http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.                                        |
| 58       |            |                                                                                                      |
| 59       |            | 28                                                                                                   |
| 60       |            | 20                                                                                                   |

17. Chaimani A, Higgins JP, Mavridis D, Spyridonos P, Salanti G. Graphical tools for network meta-analysis in STATA. PLoS One. 2013;8(10):e76654. Furukawa TA, Guyatt GH, Griffith LE. Can we individualize the 'number needed to treat'? An 18. empirical study of summary effect measures in meta-analyses. *Int J Epidemiol*. 2002;31(1):72-6. Lu G, Ades AE. Combination of direct and indirect evidence in mixed treatment 19. comparisons. Stat Med. 2004;23(20):3105-24. Jansen JP, Naci H. Is network meta-analysis as valid as standard pairwise meta-analysis? It 20. all depends on the distribution of effect modifiers. BMC Med. 2013;11:159. White IR, Barrett JK, Jackson D, Higgins JP. Consistency and inconsistency in network meta-21. analysis: model estimation using multivariate meta-regression. Res Synth Methods. 2012;3(2):111-25. 22. Song F, Altman DG, Glenny AM, Deeks JJ. Validity of indirect comparison for estimating efficacy of competing interventions: empirical evidence from published meta-analyses. BMI. 2003;326(7387):472. 23. Veroniki AA, Vasiliadis HS, Higgins JP, Salanti G. Evaluation of inconsistency in networks of interventions. Int J Epidemiol. 2013;42(1):332-45. 24. Welton NJ, Sutton AJ, Cooper N, Abrams KR, Ades A. Evidence synthesis for decision making in healthcare. New York: Wiley; 2012. 25. Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A. Bayesian measures of model complexity and fit. *J R Stat Soc Ser B Stat Methodol*. 2002;64(4):583-639. Lunn D, Spiegelhalter D, Thomas A, Best N. The BUGS project: Evolution, critique and future 26. directions. Stat Med. 2009;28(25):3049-67. Palmer T, Sterne J. Meta-Analysis in Stata: An Updated Collection from the Stata Journal. 27. White I, editor. Texas: Stata Press; 2016. Riley RD, Higgins JP, Deeks JJ. Interpretation of random effects meta-analyses. BMJ. 28. 2011;342:d549. Higgins JP, Thompson SG, Spiegelhalter DJ. A re-evaluation of random-effects meta-analysis. 29. *J R Stat Soc Ser A Stat Soc.* 2009;172(1):137-59. Salanti G, Ades AE, Ioannidis JP. Graphical methods and numerical summaries for 30. presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin *Epidemiol.* 2011;64(2):163-71. Trinquart L, Attiche N, Bafeta A, Porcher R, Ravaud P. Uncertainty in Treatment Rankings: 31. Reanalysis of Network Meta-analyses of Randomized Trials. Ann Intern Med. 2016;164(10):666-73. 32. Bromley R, Baxter N, Calderbank R, Mawer G, Clayton-Smith J, Baker G. A comprehensive review of the language abilities of children exposed to valproate or carbamazepine in utero. American Epilepsy Society; Texas2010. Gogatishvili N, Ediberidze T, Lomidze G, Tatishvili N, Kasradze S. PO-0834 Long-term 33. Developmental Outcome Of Children Prenatally Exposed To Antiepileptic Drugs. Arch Dis Child. 2014;99(Suppl 2):A526. Gogatishvili N, Ediberidze T, Lomidze G, Tatishvili N, Kasradze S. Cognitive outcomes of 34. children with fetal antiepileptic drug exposure at the age of 3-6 years-preliminary data. 1st Congress of the European Academy of Neurology; Berlin: European Journal of Neurology; 2015. p. 329. 35. Miskov S, Juraski RG, Fucic A, et al. Croatian Pregnant Women with Epilepsy and Effects of Antiepileptic Drugs Exposure in their Offspring - seven years of prospective surveillance. American Epilepsy Society; Texas2010. Adab N, Kini U, Vinten J, et al. The longer term outcome of children born to mothers with 36. epilepsy. J Neurol Neurosurg Psychiatry. 2004;75(11):1575-83. 

| 1<br>2   |            |                                                                                                            |
|----------|------------|------------------------------------------------------------------------------------------------------------|
| 3        | 632        | 37 Dean ICS Hailey H. Moore SI Lloyd DI Turnnenny PD Little I Long term health and                         |
| 4        | 633        | neurodevelopment in children exposed to antiepileptic drugs before birth. <i>J Med Genet</i> .             |
| 5        | 634        | 2002;39(4):251-9.                                                                                          |
| 7        | 635        | 38. Gaily E. Development and growth in children of epileptic mothers: a prospective controlled             |
| 8        | 636        | study. Helsinki, Finland: University of Helsinki; 1990.                                                    |
| 9        | 637        | 39. Katz JM, Pacia SV, Devinsky O. Current Management of Epilepsy and Pregnancy: Fetal                     |
| 10       | 638        | Outcome, Congenital Malformations, and Developmental Delay. <i>Epilepsy Behav</i> . 2001;2(2):119-23.      |
| 11       | 639        | 40. Veroniki AA, Straus SE, Fyraridis A, Tricco AC. The rank-heat plot is a novel way to present           |
| 12<br>13 | 640        | the results from a network meta-analysis including multiple outcomes. <i>J Clin Epidemiol</i> . 2016.      |
| 14       | 641        | 41. Verby G, Engelsen BA, Gilnus NE. Early child development and exposure to antiepileptic                 |
| 15       | 042<br>642 | arugs prenatally and through breastreeding: a prospective conort study on children of women with           |
| 16       | 643<br>644 | 42 Shallcross R Bromley RI Irwin B Bonnett II Morrow I Baker GA Child development                          |
| 1/<br>10 | 645        | following in utero exposure: levetiracetam vs sodium valproate. <i>Neurology</i> , 2011:76(4):383-9.       |
| 19       | 646        | 43. Zaccara G. Giovannelli F. Giorgi FS. Franco V. Gasparini S. Benedetto U. Tolerability of new           |
| 20       | 647        | antiepileptic drugs: a network meta-analysis. <i>Eur J Clin Pharmacol</i> . 2017.                          |
| 21       | 648        | 44. Higgins JPT, Green S, editors. Cochrane Handbook for Systematic Reviews of Interventions.              |
| 22       | 649        | 5.1.0 ed: The Cochrane Collaboration; 2009.                                                                |
| 23       | 650        | 45. Kibret T, Richer D, Beyene J. Bias in identification of the best treatment in a Bayesian               |
| 24<br>25 | 651        | network meta-analysis for binary outcome: a simulation study. <i>Clin Epidemiol</i> . 2014;6:451-60.       |
| 26       | 652        | 46. Dalessio DJ. Seizure Disorders and Pregnancy. <i>N Engl J Med</i> . 1985;312(9):559-63.                |
| 27       | 653        | 47. Effhimiou O, Mavridis D, Debray TP, et al. Combining randomized and non-randomized                     |
| 28       | 654<br>(FF | evidence in network meta-analysis. <i>Stat Med.</i> 2017.                                                  |
| 29       | 055<br>656 | 48. Schmitz S, Adams R, Walsh C. Incorporating data from various trial designs into a mixed                |
| 30<br>31 | 657        | 49 Cameron C Fireman B Hutton B et al Network meta-analysis incornorating randomized                       |
| 32       | 658        | controlled trials and non-randomized comparative cohort studies for assessing the safety and               |
| 33       | 659        | effectiveness of medical treatments: challenges and opportunities. <i>Systematic reviews</i> . 2015:4:147. |
| 34       | 660        | 50. Easterbrook PJ, Berlin JA, Gopalan R, Matthews DR. Publication bias in clinical research.              |
| 35       | 661        | Lancet. 1991;337(8746):867-72.                                                                             |
| 37       | 662        | 51. Veroniki AA, Straus SE, Soobiah C, Elliott MJ, Tricco AC. A scoping review of indirect                 |
| 38       | 663        | comparison methods and applications using individual patient data. BMC Med Res Methodol.                   |
| 39       | 664        | 2016;16(1):47.                                                                                             |
| 40       | 665        |                                                                                                            |
| 41       |            |                                                                                                            |
| 42<br>43 |            |                                                                                                            |
| 44       |            |                                                                                                            |
| 45       |            |                                                                                                            |
| 46       |            |                                                                                                            |
| 47<br>19 |            |                                                                                                            |
| 40<br>49 |            |                                                                                                            |
| 50       |            |                                                                                                            |
| 51       |            |                                                                                                            |
| 52       |            |                                                                                                            |
| 53<br>54 |            |                                                                                                            |
| 55       |            |                                                                                                            |
| 56       |            |                                                                                                            |
| 57       |            |                                                                                                            |
| 58       |            |                                                                                                            |
| 59<br>60 |            | 30                                                                                                         |
| 00       |            |                                                                                                            |

% of Studies

3.45 20.69 17.24 58.62

68.97 17.24 3.45 6.90 3.45

100.00 0.00 0.00

37.93 62.07

62.07 31.03 3.45 0.00 0.00 3.45

13.79 17.24 27.59 27.59 6.90 6.90

> 58.62 17.24 17.24 17.24

| Study/Patient Characteristic# of S<br>(n=Year of publication1980-1989<br>1990-1999<br>2000-2009<br>2010-2015Continent (of country of study conduct)EuropeContinent (of country of study conduct)EuropeNorth America<br>Asia<br>Australia<br>Trans-ContinentalAsia<br>Australia<br>Trans-ContinentalStudy designObservational cohort<br>Case-control<br>Randomized clinical trialRegistry studyYes<br>NoSample size0-99<br>100-299<br>300-499<br>500-699<br>700-999<br>1000+Number of interventions2<br>3<br>4<br>4<br>5-7<br>8-10<br>11+Outcomes*.*7Cognitive Developmental Delay<br>Autism/Dyspraxia<br>Language Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Table 1. Summary Characteristics of in  | cluded st     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------|
| Year of publication         1980-1989         1990-1999         2000-2009         2010-2015         Continent (of country of study conduct)         Europe         North America         Asia         Australia         Trans-Continental         Study design         Observational cohort         Case-control         Randomized clinical trial         Registry study         Yes         0-99         100-299         300-499         500-699         700-999         1000+         Number of interventions         2         3         4         5-7         8-10         11+         Outcomes*.*         Cognitive Developmental Delay         Autism/Dyspraxia         Language Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Study/Patient Characteristic            | # of S<br>(n= |
| 1980-1989           1990-1999           2000-2009           2010-2015           Continent (of country of study conduct)           Europe           North America           Asia           Australia           Trans-Continental           Study design           Observational cohort           Case-control           Randomized clinical trial           Registry study           Yes           No           Sample size           0-99           100-299           300-499           500-699           700-999           1000+           Number of interventions           2           3           4           5-7           8-10           11+           Outcomes*, <sup>†</sup> Cognitive Developmental Delay           Autism/Dyspraxia           Language Delay                                                                                                                                                                                                                                                                                                                                                                                                                                           | Year of publication                     |               |
| $\begin{array}{c} 1990-1999\\ 2000-2009\\ 2010-2015\\ \hline \hline \\ \hline \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1980-1989                               | -             |
| $\begin{array}{c} 2000-2009\\ 2010-2015 \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1990-1999                               | (             |
| 2010-2015Continent (of country of study conduct)EuropeNorth AmericaAsiaAustraliaTrans-ContinentalStudy designObservational cohortCase-controlRandomized clinical trialRegistry studyYesNoSample size0-99100-299300-499500-699700-9991000+Number of interventions2345-78-1011+Outcomes*, †Cognitive Developmental DelayAutism/DyspraxiaLanguage Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2000-2009                               | -             |
| Continent (of country of study conduct)EuropeNorth AmericaAsiaAustraliaTrans-ContinentalStudy designObservational cohortCase-controlRandomized clinical trialRegistry studyYesNoSample size0-99100-299300-499500-699700-9991000+Number of interventions2345-78-1011+Outcomes*, †Cognitive Developmental DelayAutism/DyspraxiaLanguage Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2010-2015                               | 1             |
| Europe 2<br>North America<br>Asia<br>Australia<br>Trans-Continental<br><u>Study design</u><br>Observational cohort<br>Case-control<br>Randomized clinical trial<br><u>Registry study</u><br>Yes<br>No<br><u>Sample size</u><br>0-99<br>100-299<br>300-499<br>500-699<br>700-999<br>1000+<br><u>Number of interventions</u><br>2<br>3<br>4<br>5-7<br>8-10<br>11+<br><i>Outcomes*,<sup>†</sup></i><br>Cognitive Developmental Delay<br>Autism/Dyspraxia<br>Language Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Continent (of country of study conduct) |               |
| North America<br>Asia<br>Australia<br>Trans-Continental<br>Study design<br>Observational cohort<br>Case-control<br>Randomized clinical trial<br>Registry study<br>Yes<br>No<br>Sample size<br>0-99<br>100-299<br>300-499<br>500-699<br>700-999<br>1000+<br>Number of interventions<br>2<br>3<br>4<br>5-7<br>8-10<br>11+<br>Outcomes <sup>*,†</sup><br>Cognitive Developmental Delay<br>Autism/Dyspraxia<br>Language Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Europe                                  | 2             |
| Asia<br>Australia<br>Trans-Continental<br>Study design<br>Observational cohort<br>Case-control<br>Randomized clinical trial<br>Registry study<br>Yes<br>No<br>Sample size<br>0-99<br>100-299<br>300-499<br>500-699<br>700-999<br>1000+<br>Number of interventions<br>2<br>3<br>4<br>5-7<br>8-10<br>11+<br>Outcomes <sup>*, †</sup><br>Cognitive Developmental Delay<br>Autism/Dyspraxia<br>Language Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | North America                           |               |
| Australia<br>Trans-Continental<br>Study design<br>Observational cohort<br>Case-control<br>Randomized clinical trial<br>Registry study<br>Yes<br>No<br>Sample size<br>0-99<br>100-299<br>300-499<br>500-699<br>700-999<br>1000+<br>Number of interventions<br>2<br>3<br>4<br>5-7<br>8-10<br>11+<br>Outcomes <sup>*,†</sup><br>Cognitive Developmental Delay<br>Autism/Dyspraxia<br>Language Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Asia                                    |               |
| Trans-ContinentalStudy designObservational cohortCase-controlRandomized clinical trialRegistry studyYesNoSample size0-99100-299300-499500-699700-9991000+Number of interventions2345-78-1011+0utcomes* $^{\dagger}$ Cognitive Developmental DelayAutism/DyspraxiaLanguage Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Australia                               |               |
| Study designObservational cohortCase-controlRandomized clinical trialRegistry studyYesNoSample size0-99100-299300-499500-699700-9991000+Number of interventions2345-78-1011+Outcomes*, †Cognitive Developmental DelayAutism/DyspraxiaLanguage Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Trans-Continental                       |               |
| Observational cohort<br>Case-control<br>Randomized clinical trialRegistry studyYesNoSample size0-99100-299<br>300-499<br>500-699<br>700-999<br>1000+ $Number of interventions$ 2345-7<br>8-10<br>11+Outcomes*, †Cognitive Developmental Delay<br>Autism/Dyspraxia<br>Language Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Study design                            |               |
| Case-control<br>Randomized clinical trial<br>Registry study<br>Yes<br>No<br>Sample size<br>0-99<br>100-299<br>300-499<br>500-699<br>700-999<br>1000+<br>Number of interventions<br>2<br>3<br>4<br>5-7<br>8-10<br>11+<br>Outcomes <sup>*, †</sup><br>Cognitive Developmental Delay<br>Autism/Dyspraxia<br>Language Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Observational cohort                    | 2             |
| Randomized clinical trial         Registry study         Yes         No         Sample size         0-99         100-299         300-499         500-699         700-999         1000+         Number of interventions         2         3         4         5-7         8-10         11+         Outcomes*, *         Cognitive Developmental Delay         Autism/Dyspraxia         Language Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Case-control                            |               |
| Registry study         Yes           No         No           Sample size         0-99           100-299         300-499           300-499         500-699           700-999         1000+           Number of interventions         2           3         4           5-7         8-10           11+         Outcomes*, †           Cognitive Developmental Delay         2           Autism/Dyspraxia         Language Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Randomized clinical trial               |               |
| Yes         No           Sample size         0-99           100-299         300-499           300-499         500-699           700-999         1000+           Number of interventions         2           3         4           5-7         8-10           11+         0utcomes*, †           Cognitive Developmental Delay         2           Autism/Dyspraxia         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Registry study                          |               |
| No           Sample size           0-99           100-299           300-499           500-699           700-999           1000+           Number of interventions           2           3           4           5-7           8-10           11+           Outcomes*, <sup>†</sup> Cognitive Developmental Delay           Autism/Dyspraxia           Language Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes                                     | 1             |
| Sample size         0-99         100-299         100-299         100-299         300-499         500-699         700-999         1000+         Number of interventions         2         3         4         5-7         8-10         11+         Outcomes*, †         8-10         11+         Outcomes*, †         Cognitive Developmental Delay         2         3         4         3         4         3         4         3         4         3         4         3         4         3         4         11+         0         11+         0         11+         0         11+         0         11+         0         11+         0         11+         0         11+         0         11+         0         11+         0         11+         0         11+         0         11+         0         11+         0         11+         0         11+         0         11+         0         11+         0         11+         0         11+         11+         11+         11+         11+         11+         11+         11+         11+         11+         11+         11+         11+         11+         11+         11+         11+         11+         11+         11+         11+         1 | N0                                      |               |
| 0-99       100-299         300-499       500-699         500-999       1000+         Number of interventions       2         3       4         5-7       8-10         11+       0utcomes*, †         Cognitive Developmental Delay       2         Autism/Dyspraxia       1         Language Delay       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sample size                             | 1             |
| 100-299         300-499         500-699         700-999         1000+         Number of interventions         2         3         4         5-7         8-10         11+         Outcomes*, †         Cognitive Developmental Delay         Autism/Dyspraxia         Language Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0-99                                    | 1             |
| 500-499<br>500-699<br>700-999<br>1000+<br><u>Number of interventions</u><br>2<br>3<br>4<br>5-7<br>8-10<br>11+<br><u>Outcomes<sup>*, †</sup></u><br>Cognitive Developmental Delay<br><u>Autism/Dyspraxia</u><br>Language Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100-299                                 |               |
| 300-099         700-999         1000+         Number of interventions         2         3         4         5-7         8-10         11+         Outcomes*, †         Cognitive Developmental Delay         Autism/Dyspraxia         Language Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 500-499                                 |               |
| Number of interventions       2       3       4       5-7       8-10       11+       Outcomes*, †       Cognitive Developmental Delay       Autism/Dyspraxia       Language Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 700-099                                 |               |
| Number of interventions         2         3         4         5-7         8-10         11+         Outcomes*, †         Cognitive Developmental Delay         Autism/Dyspraxia         Language Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 700-399<br>1000±                        |               |
| 2<br>3<br>4<br>5-7<br>8-10<br>11+<br>Outcomes <sup>*,†</sup><br>Cognitive Developmental Delay<br>Autism/Dyspraxia<br>Language Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Number of interventions                 | -             |
| 3<br>4<br>5-7<br>8-10<br>11+<br>Outcomes <sup>*,†</sup><br>Cognitive Developmental Delay<br>Autism/Dyspraxia<br>Language Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                       | 4             |
| 4<br>5-7<br>8-10<br><u>11+</u><br><i>Outcomes</i> <sup>*,†</sup><br>Cognitive Developmental Delay<br>Autism/Dyspraxia<br>Language Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                       | ļ             |
| 5-7<br>8-10<br>11+<br>Outcomes <sup>*, †</sup><br>Cognitive Developmental Delay<br>Autism/Dyspraxia<br>Language Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                       | 8             |
| 8-10<br>11+<br>Outcomes <sup>*, †</sup><br>Cognitive Developmental Delay<br>Autism/Dyspraxia<br>Language Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5-7                                     | 8             |
| 11+<br>Outcomes <sup>*,†</sup><br>Cognitive Developmental Delay<br>Autism/Dyspraxia<br>Language Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8-10                                    | -             |
| Outcomes <sup>*,†</sup><br>Cognitive Developmental Delay<br>Autism/Dyspraxia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11+                                     | -             |
| Cognitive Developmental Delay<br>Autism/Dyspraxia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Outcomes <sup>*,†</sup>                 |               |
| Autism/Dyspraxia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cognitive Developmental Delav           | 1             |
| Language Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Autism/Dyspraxia                        | Į             |
| Dullguage Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Language Delay                          | Ţ             |

# studies

1

| Study/Patient Characteristic                 | # of Studies<br>(n=29) | % of Studies |
|----------------------------------------------|------------------------|--------------|
| Psychomotor Developmental Delay              | 11                     | 37.93        |
| Neonatal Seizures                            | 2                      | 6.90         |
| Social Impairment                            | 1                      | 3.45         |
| Funding                                      |                        |              |
| Public                                       | 15                     | 51.72        |
| Private                                      | 0                      | 0.00         |
| Mixed public and private                     | 4                      | 13.79        |
| NR/Unclear                                   | 10                     | 34.48        |
| Treatment indication                         |                        |              |
| Epilepsy                                     | 23                     | 79.31        |
| Mixed indications <sup>‡</sup>               | 0                      | 0.00         |
| Not reported                                 | 6                      | 20.69        |
| Epileptic control group <sup>§</sup>         |                        |              |
| Yes                                          | 15                     | 51.72        |
| No/NR/NA                                     | 14                     | 48.28        |
| Mean maternal age                            |                        |              |
| 24-26 y                                      | 2                      | 6.90         |
| 27-29 y                                      | 5                      | 17.24        |
| 30+ y                                        | 4                      | 13.79        |
| Not reported                                 | 18                     | 62.07        |
| AED exposure during pregnancy                |                        |              |
| Reported as during 1 <sup>st</sup> trimester | 6                      | 20.69        |
| Reported as any time during pregnancy        | 6                      | 20.69        |
| Not reported                                 | 17                     | 58.62        |
| Alcohol use during pregnancy                 |                        |              |
| Yes                                          | 5                      | 17.24        |
| NR                                           | 24                     | 82.76        |
| Tobacco use during pregnancy                 |                        |              |
| Yes                                          | 7                      | 24.14        |
| NR                                           | 22                     | 75.86        |

<sup>‡</sup> Includes individuals taking AEDs for psychiatric disorders, migraine, and

neuropathic/neurological pain

<sup>§</sup> Consisted of women with Epilepsy who did not take AEDs during pregnancy

# 667 Table 2 Outcome measures and diagnostic scales used in analysis

| Cognitive developmental delay                                 |                                                                                                                           |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Bayley Scales of Infant Development<br>(children ≤42 mo.)     | Score $\geq$ 2 standard deviations below the mean                                                                         |
| Griffiths Scale of Infant Development<br>(children >42 mo.)   | Score $\geq$ 2 standard deviations below the mean                                                                         |
| McCarthy Scales of Children's Abilities<br>(children >30 mo.) | Score $\geq$ 1 standard deviations below the mean                                                                         |
| Stanford-Binet IV Intelligence scale for children             | Intelligence quotient <u>&lt;</u> 80                                                                                      |
| Touwen's Test                                                 | Above average number of items rated abnormal in one or more domains                                                       |
| Wechsler Scale of Preschool and Primary<br>Intelligence       | Intelligence quotient <90                                                                                                 |
| Wechsler Intelligence Scale for Children - III                | Intelligence quotient <80; verbal intelligence quotient <69                                                               |
| Developmental Assessment                                      | Confirmed diagnosis by developmental pediatrician or pediatric neurologist                                                |
| Autism/dyspraxia                                              |                                                                                                                           |
| Developmental Assessment                                      | Diagnosis confirmed by developmental specialists at 2 years of age                                                        |
| Medical Records                                               | Confirmed diagnosis recorded in medical history; registry records<br>(ICD-10 codes F84.0, F84.1, F84.5, F84.8, and F84.9) |
| Modified checklist for autism in toddlers                     | Scored positive for $\geq 2$ out of 6 critical items OR $\geq 3$ any items of the total scale                             |
| Psychomotor developmental delay                               |                                                                                                                           |
| Ages and Stages Questionnaire                                 | >3 standard deviations from the test mean                                                                                 |
| Bayley Scales of Infant Development – Psychomotor<br>Index    | >2 standard deviations below the standardized mean for the test                                                           |
| Touwen's Test                                                 | Demonstrated dysfunctions in fine motor balance, fine motor functions, and coordination of extremities                    |
| Schedule of Growing Skills II                                 | Scored as 'delayed' in $\geq 1$ domain of the test                                                                        |
|                                                               |                                                                                                                           |

| 3<br>4<br>5<br>6<br>7<br>8       |     | Developmental Assessment                                                                                                                                                                                                        | Infant scored >2 negative items (administered by general practitioner<br>or pediatrician); diagnosis of neuromotor deficit confirmed by a trained<br>nurse practitioner; infant failing to sit by 10 months or walk by 18<br>months |
|----------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9<br>10                          |     | Health/Medical Records                                                                                                                                                                                                          | Diagnosis of psychomotor delay recorded in medical records                                                                                                                                                                          |
| 11                               |     | Language Delay                                                                                                                                                                                                                  |                                                                                                                                                                                                                                     |
| 12                               |     | Ages and Stages Questionnaire                                                                                                                                                                                                   | >3 standard deviations from the test mean                                                                                                                                                                                           |
| 13<br>14<br>15                   |     | Clinical Evaluation of Language Fundamentals – 4 <sup>th</sup><br>Edition                                                                                                                                                       | Score <70 in core language domain; score <84 overall                                                                                                                                                                                |
| 16                               |     | Learning Accomplishment Profile                                                                                                                                                                                                 | Below average performance in expressive speech (adjusted for age)                                                                                                                                                                   |
| 17<br>18<br>19<br>20<br>21<br>22 |     | Comprehensive Language Assessment<br>(Peabody Picture Vocabulary Test; Receptive<br>Expressive Emergent Language Scale; Expressive<br>One Word Picture Vocabulary Test, or Sequenced<br>Inventory of Communication Development) | Scores/assessment indicate a >6 moth delay in age appropriate language development                                                                                                                                                  |
| 23                               |     | ADHD                                                                                                                                                                                                                            |                                                                                                                                                                                                                                     |
| 24                               |     | Attention Problems and Hyperactivity Scales                                                                                                                                                                                     | Score >1 standard deviations from the test mean                                                                                                                                                                                     |
| 25<br>26                         |     | Child Behaviour Checklist                                                                                                                                                                                                       | ≥6 positive items on checklist                                                                                                                                                                                                      |
| 27                               |     | Diagnostic and Statistical Manual – IV                                                                                                                                                                                          | ≥5 positive items on checklist                                                                                                                                                                                                      |
| 28<br>29                         |     | Medical Records                                                                                                                                                                                                                 | Confirmed diagnosis in hospital/medical records made by a pediatrician or child psychiatrist                                                                                                                                        |
| 30<br>31                         |     | Neonatal Seizure                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |
| 32<br>33                         |     | Medical records                                                                                                                                                                                                                 | Record of seizures during 1 <sup>st</sup> year; confirmation of neonatal seizure by electroencephalography or diagnosis                                                                                                             |
| 34                               |     | Social Impairment                                                                                                                                                                                                               |                                                                                                                                                                                                                                     |
| 35<br>36                         |     | Developmental Assessment                                                                                                                                                                                                        | Scores dichotomized into 'normal' or 'adverse' range based on pre-                                                                                                                                                                  |
| 37<br>38                         |     | (Ages and Stages Questionnaire [6 and 18 months];<br>Child Behaviour Checklist [36 months])                                                                                                                                     | defined values used by scale, for scales without pre-defined values cut-<br>off was set at a score >2 standard deviations outside the test mean                                                                                     |
| 39                               | 668 |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                     |





\*29 publications reporting 30 included studies.

TITLE: Study flow diagram

| Active Treatment vs Contro | ol*       |                       | OR (95%Crl) (95%Prl)              | SUCRA (95% Crl)  |
|----------------------------|-----------|-----------------------|-----------------------------------|------------------|
| Carbam+Levet               | •         | t                     | 0.52 (0.00,16.53) (0.00,19.20)    | 0.88 (0.06,1.00) |
| Carbam+Pheno               | ·         | +                     | 0.52 (0.00,15.20) (0.00,17.13)    | 0.88 (0.12,1.00) |
| Lamot                      | +         | +                     | 0.93 (0.09,5.10) (0.08,6.34)      | 0.76 (0.29,1.00) |
| Pheno+Pheny                | ·•        | •                     | 1.32 (0.00,33.67) (0.00,38.91)    | 0.71 (0.06,1.00] |
| Pheno                      | + +       |                       | 1.36 (0.18,7.02) (0.14,8.95)      | 0.71 (0.24,0.94) |
| Gabap                      | <b>⊢</b>  | +                     | 1.46 (0.04,13.48) (0.04,16.87)    | 0.65 (0.12,1.00) |
| Carbam                     |           |                       | 2.07 (0.82,5.48) (0.51,8.46)      | 0.53 (0.29,0.76) |
| Primid                     | +         | +                     | 2.15 (0.31,12.26) (0.24,16.25)    | 0.53 (0.12,0.94) |
| Pheny                      | -+        | <b>♦</b> —- <b> -</b> | 2.55 (0.72,8.55) (0.47,12.15)     | 0.47 (0.18,0.76) |
| Topir                      | -         | <b>♦</b> +            | 3.14 (0.45,16.53) (0.35,20.69)    | 0.41 (0.06,0.88) |
| Levet                      | -+        | <b>◆</b>              | 3.42 (0.65,16.40) (0.46,22.73)    | 0.41 (0.06,0.82) |
| Pheny+Valpro               | ·         |                       | 3.99 (0.01,116.60) (0.01,136.30)  | 0.35 (0.00,1.00] |
| Carbam+Pheno+Pheny         | · · · · · | • •                   | 4.83 (0.02,158.10) (0.02,187.50)  | 0.29 (0.00,1.00) |
| Ethos+Pheny                | ,         | • •                   | 6.24 (0.02,215.80) (0.02,243.80)  | 0.24 (0.00,1.00] |
| Valpro                     | -         | • • •                 | 7.40 (3.00,18.46) (1.81,27.63)    | 0.18 (0.06,0.41) |
| Carbam+Pheny               |           | • •                   | 10.88 (0.54,137.00) (0.43,159.20) | 0.12 (0.00,0.82) |
| Carbam+Pheno+Valpro        | +         | •                     | 44.96 (0.94,359.10) (0.80,421.70) | 0.06 (0.00,0.71) |
| 4.5e-05                    | 0.007 1   | 148.4                 |                                   |                  |

\* SUCRA (95%CrI): 0.76 (0.47,0.94)

# TITLE: Forest plots for cognitive developmental delay, autism/dyspraxia, psychomotor developmental delay, language delay, and attention deficit hyperactivity disorder outcome





\* SUCRA (95%CrI): 0.91 (0.55,1.00)

# TITLE: Forest plots for cognitive developmental delay, autism/dyspraxia, psychomotor developmental delay, language delay, and attention deficit hyperactivity disorder outcome

| c. Psychomotor developmental delay |                                  |                   |  |
|------------------------------------|----------------------------------|-------------------|--|
|                                    |                                  |                   |  |
| Active Treatment vs Control*       | OR (95%Crl) (95%Prl)             | SUCRA (95% CrI)   |  |
| Levet + + +                        | 0.27 (0.00,4.26) (0.00,4.65)     | 0.94 (0.29,1.00)  |  |
| Pheno+Pheny 🔶                      | → 0.65 (0.00,13.32) (0.00,14.74) | 0.82 (0.12,1.00)  |  |
| Carbam+Pheny 🛏 🔶                   |                                  | 0.76 (0.06,1.00)  |  |
| Pheno +++                          | 0.96 (0.39,2.29) (0.32,3.02)     | 0.76 (0.47,0.94)  |  |
| Carbam+Pheno + 🔶                   | + 1.55 (0.31,6.92) (0.26,7.99)   | 0.59 (0.18,0.94)  |  |
| Carbam - + + +                     | 1.68 (0.85,3.41) (0.59,4.61)     | 0.59 (0.35,0.82)  |  |
| Lamot ++++                         | 1.86 (0.72,4.76) (0.57,6.07)     | 0.53 (0.24,0.82)  |  |
| Clonaz + +                         | → 2.23 (0.47,9.62) (0.41,11.18)  | 0.47 (0.12,0.88)  |  |
| Pheny+Valpro 🛏 🔶                   | 2.24 (0.01,46.45) (0.01,49.92)   | 0.47 (0.00,1.00)  |  |
| Carbam+Pheno+Pheny 🔶 🔶             | → 2.75 (0.01,63.24) (0.01,70.65) | 0.41 (0.00,1.00)  |  |
| Clobaz                             | 2.81 (0.21,22.20) (0.19,26.50)   | 0.41 (0.00,0.94)  |  |
| Pheny                              | + 2.84 (0.97,7.93) (0.77,9.92)   | 0.41 (0.12,0.71)  |  |
| Ethos+Pheny 🔶                      | 3.15 (0.00,84.86) (0.00,92.48)   | 0.35 (0.00,1.00)  |  |
| Topir + 🔶                          |                                  | 0.29 (0.00,0.88)) |  |
| Valpro +•                          | + 4.16 (2.04,8.75) (1.52,12.05)  | 0.24 (0.06,0.53)  |  |
| Gabap                              |                                  | 0.12 (0.00,0.76)  |  |
| Carbam+Pheno+Valpro +              |                                  | 0.06 (0.00,0.59)  |  |
| 4.5e-05 0.007 1                    | 148.4                            |                   |  |
| Active treatment safer             | Control safer                    |                   |  |

\* SUCRA (95%CrI): 0.76 (0.53,0.94)

# TITLE: Forest plots for cognitive developmental delay, autism/dyspraxia, psychomotor developmental delay, language delay, and attention deficit hyperactivity disorder outcome



\* SUCRA (95%CrI): 0.75 (0.50,1.00)

# TITLE: Forest plots for cognitive developmental delay, autism/dyspraxia, psychomotor developmental delay, language delay, and attention deficit hyperactivity disorder outcome

0.67 (0.17,1.00)

0.67 (0.00,1.00)

0.50 (0.00,1.00)

0.33 (0.00,0.67)

0.17 (0.00,0.67)

0.50 (0.00,1.00)





TITLE: Network diagrams for cognitive developmental delay, autism/dyspraxia, psychomotor developmental delay, language delay, and attention deficit hyperactivity disorder outcomes.

CAPTION: Each treatment node is weighted according to the number of patients that have received the particular treatment, and each edge is weighted according to the number of studies comparing the treatments it connects.

Abbreviations: carbam - carbamazepine, clobaz - clobazam, clonaz - clonazepam, ethos - ethosuximide, gabap - gabapentin, lamot - lamotrigine, levet - levetiracetam, oxcar - oxcarbazepine, pheno phenobarbital, pheny - phenytoin, primid - primidone, topir - topiramate, valpro - valproate, vigab – vigabatrin

# PROTOCOL



**Open Access** 

# Comparative safety of anti-epileptic drugs among infants and children exposed *in utero* or during breastfeeding: protocol for a systematic review and network meta-analysis

Andrea C Tricco<sup>1</sup>, Elise Cogo<sup>1</sup>, Veroniki A Angeliki<sup>1</sup>, Charlene Soobiah<sup>1,2</sup>, Brian Hutton<sup>3</sup>, Brenda R Hemmelgarn<sup>4</sup>, David Moher<sup>3</sup>, Yaron Finkelstein<sup>5,6,7</sup> and Sharon E Straus<sup>1,8\*</sup>

### Abstract

**Background:** Epilepsy affects about 1% of the general population. Anti-epileptic drugs (AEDs) prevent or terminate seizures in individuals with epilepsy. Pregnant women with epilepsy may continue taking AEDs. Many of these agents cross the placenta and increase the risk of major congenital malformations, early cognitive and developmental delays, and infant mortality. We aim to evaluate the comparative safety of AEDs approved for chronic use in Canada when administered to pregnant and breastfeeding women and the effects on their infants and children through a systematic review and network meta-analysis.

**Methods:** Studies examining the effects of AEDs administered to pregnant and breastfeeding women regardless of indication (e.g., epilepsy, migraine, pain, psychiatric disorders) on their infants and children will be included. We will include randomized clinical trials (RCTs), quasi-RCTs, non-RCTs, controlled before-after, interrupted time series, cohort, registry, and case-control studies. The main literature search will be executed in MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trials. We will seek unpublished literature through searches of trial protocol registries and conference abstracts. The literature search results screening, data abstraction, and risk of bias appraisal will be performed by two individuals, independently. Conflicts will be resolved through discussion. The risk of bias of experimental and quasi-experimental studies will be appraised using the Cochrane Effective Practice and Organization of Care Risk-of-Bias tool, methodological quality of observational studies will be appraised using the Newcastle-Ottawa Scale, and quality of reporting of safety outcomes will be conducted using the McMaster Quality Assessment Scale of Harms (McHarm) tool. If feasible and appropriate, we will conduct random effects meta-analysis. Network meta-analysis will be considered for outcomes that fulfill network meta-analysis assumptions.

The primary outcome is major congenital malformations (overall and by specific types), while secondary outcomes include fetal loss/miscarriage, minor congenital malformations (overall and by specific types), cognitive development, psychomotor development, small for gestational age, preterm delivery, and neonatal seizures. (Continued on next page)

Full list of author information is available at the end of the article



© 2014 Tricco et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

<sup>\*</sup> Correspondence: sharon.straus@utoronto.ca

<sup>&</sup>lt;sup>1</sup>Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street,

East Building, Toronto, Ontario M5B 1 T8, Canada

<sup>&</sup>lt;sup>8</sup>Department of Geriatric Medicine, University of Toronto, 172 St. George Street,

Toronto, Ontario M5R 0A3, Canada

Page 44 of 90

### (Continued from previous page)

**Discussion:** Our systematic review will address safety concerns regarding the use of AEDs during pregnancy and breastfeeding. Our results will be useful to healthcare providers, policy-makers, and women of childbearing age who are taking anti-epileptic medications.

### Systematic review registration: PROSPERO CRD42014008925.

**Keywords:** Anti-epileptic drug, Breastfeeding, Comparative safety, Congenital malformation, Epilepsy, Fetus, Infant, Network meta-analysis, Pregnancy, Systematic review

### Background

Epilepsy is the most common chronic neurological condition, affecting 0.6 to 1% of the population [1,2]. Individuals with uncontrolled epilepsy experience recurrent seizures, which can have psychosocial and physical consequences, including a compromised life expectancy [3,4]. The goal of anti-epileptic treatment is to improve quality of life and health outcomes by reducing the frequency of seizures [4].

Anti-epileptic medications decrease seizures by reducing excitation and enhancing inhibition of neurons [5-7]. Many of these medications target different channels, including calcium, sodium, and glutamate, and are broadly classified as first generation agents (e.g., phenobarbitone, phenytoin, carbamazepine, sodium valproate, ethosuximide) and second generation agents (e.g., lamotrigine, levetiracetam, topiramate, gabapentin, vigabatrin, oxcarbazepine, clobazam, clonazepam, zonisamide, lacosamide, rufinamide, primidone) [8]. Due to the broad and varied mechanisms of action, the indications for some of these medications also include pain syndromes, psychiatric disorders, and migraine headaches [8].

Many clinical practice guidelines recommend that women of childbearing age continue to take their anti-epileptic medications; however, medications with lower risk of teratogenic events are advised [9,10] since anti-epileptic drugs (AEDs) cross the placenta or transfer through breast milk, posing risks to the fetus and infant [9,11,12].

Some AEDs have been associated with increased risk of harm to the fetus and infants. For example, exposure to valproate has led to increased risk of major congenital malformations [10], cognitive delay, and minor congenital abnormalities [13-16]. Phenobarbital has been associated with minor congenital abnormalities and developmental delay [17,18]. Carbamazepine and lamotrigine have been associated with minor congenital abnormalities [19-22]. However, other than studies of the use of valproate, many studies have produced inconsistent findings regarding harm to the fetus and infant with use of other agents [23]. As such, our objective is to evaluate the comparative safety of AEDs for infants and children who were exposed *in utero* or during breastfeeding through a systematic review and network meta-analysis.

## Methods/Design

### Protocol

A systematic review protocol was developed and registered with the PROSPERO database (CRD42014008925, available at: http://www.crd.york.ac.uk/PROSPERO/display\_record. asp?ID=CRD42014008925). It was revised with feedback from the decision-makers who posed the query within Health Canada, healthcare practitioners, content experts, and research methodologists. The reporting of our systematic review protocol was guided by the Preferred Reporting Items for Systematic Reviews and Meta-analyses Protocols [24].

### Eligibility criteria

We will include studies examining the effects of AEDs on infants and children who were exposed in utero or during breastfeeding. We will include experimental studies (randomized clinical trials [RCTs], quasi-RCTs, non-RCTs), guasi-experimental studies (controlled before and after studies, interrupted time series), and observational studies (cohort, case-control, registry studies) of pregnant women at any stage of pregnancy and breastfeeding women and their infants/children. The rationale for including other study designs in addition to RCTs is that there are ethical issues in conducting RCTs of AEDs in pregnancy, so RCT evidence might not exist for some or all of these drugs. Given that our review includes rare outcomes, including observational evidence is crucial. In contrast to efficacy evaluation, safety assessment usually requires very large sample sizes to be able to detect adverse events. Therefore, while RCTs have lower risk of bias, they usually do not have the statistical power needed to adequately evaluate uncommon/rare safety outcomes due to Type II (i.e., false negative) error [25]. Given that our review includes rare outcomes, including observational evidence is crucial [26]. Additionally, observational studies can often provide more generalizable evidence due to the strict participant inclusion criteria in most RCTs [27]. Real-world safety evidence that has external validity is important for the assessment of the possible risks of AEDs in pregnant and breastfeeding women.

The diagnosis of neurodevelopmental delay related to *in utero* exposure is made before adolescence, and

57

58

59

hence, we will limit inclusion to children up to 12 years of age. AEDs that are approved for chronic use in Canada will be included. Drugs that are only used acutely or those that are not currently approved for use in Canada will be excluded, as the focus of this review is on the Canadian setting [28-32]. However, most of the medications we will examine are available in other countries as well. The relevant 16 medications and their synonyms are listed in Additional file 1, and the excluded drugs are listed in Additional file 2. Studies of all combinations and doses of these medications are eligible for inclusion. Since we are only interested in exposures that occur in *utero* or during breastfeeding, studies examining AEDs administered directly to infants or children will be excluded. All indications for AEDs will be included such as epilepsy, migraine, pain, and psychiatric disorders.

In order to be included, studies must compare an antiepileptic medication against another included anti-epileptic medication, placebo, a 'no intervention' control group, or combinations of two or more anti-epileptic medications. Only studies providing results for our outcomes of interest will be included. Our primary outcome is major congenital malformations (overall and by specific type, such as craniofacial defects and neural tube defects). Secondary outcomes include minor congenital malformations (overall and by specific type, such as epicanthal folds and microstomia), cognition (e.g., global cognitive functioning and specific cognitive domains such as attention), psychomotor development (e.g., autism, dyspraxia), small for gestational age, preterm delivery, neonatal seizures, and fetal loss/miscarriage. No other limitations will be imposed on the eligibility criteria, including published/unpublished material, language of dissemination, duration of follow-up, or year of publication. The draft eligibility criteria can be found in Additional file 3.

### Information sources and literature search

Our main literature search will be executed in the MED-LINE database. The search terms were drafted by an experienced librarian and can be found in Additional file 4. The search was peer reviewed by another librarian using the Peer Review of Electronic Search Strategies checklist [33].

In addition to MEDLINE, we will also search the EMBASE and the Cochrane Central Register of Controlled Trials databases. We will follow the MEDLINE search strategy for these databases, and the search terms will be adjusted accordingly. The electronic database search will be supplemented by searching for unpublished literature [34]. This will be accomplished through exploring conference abstracts, clinical trial registries, and contacting manufacturers of AEDs. We will also scan the reference lists of included studies and previous reviews in the area [23,35,36].

### Study selection process

**BMJ Open** 

The eligibility criteria screening form will be pilot-tested by the team and is presented in Additional file 3. We will calculate inter-rater reliability from the pilot-test and screening will only commence after high agreement (e.g., kappa statistic  $\geq$ 60%) is observed [37]. Subsequently, two reviewers will screen each title/abstract and potentially relevant full-text articles from the literature search results, independently. Conflicts will be resolved through discussion. All screening will occur using our online screening software (synthesi.SR) [38].

### Data items and data collection process

We will abstract data on the PICOS elements [39], including patient characteristics (e.g., age of the mother and infant/child, indication for anti-epileptic treatment, co-morbidities, concomitant medications), intervention details (e.g., type of anti-epileptic treatment, dose, route of administration, duration of treatment, timing [trimester] of treatment during pregnancy), comparator details (e.g., comparator agent, dose, route of administration), outcome results (e.g., major congenital abnormality, minor congenital abnormality, cognitive function, psychomotor development) at the longest duration of follow-up, and study characteristics (e.g., study design, country of conduct, year of conduct, sample size, setting). These characteristics will be abstracted using a data abstraction form created in Excel with an accompanying "cheat sheet" that will guide the reviewers with this process. The data abstraction form and cheat sheet will be pilot-tested and data abstraction will only commence when high agreement (e.g., kappa statistic ≥60%) [37] is observed. Each included study will be abstracted by two team members, independently, who will resolve disagreements through discussion.

### Methodological quality/risk of bias appraisal

We will use various tools to assess the methodological quality/risk of bias of each of the studies that fulfill our eligibility criteria. This will be conducted by two reviewers, independently, and conflicts will be resolved through discussion. First, we will appraise the risk of bias of experimental and quasi-experimental studies using the Cochrane Effective Practice and Organization of Care Risk-of-Bias tool [40]. Second, we will assess the methodological quality of observational studies using the Newcastle-Ottawa Scale [41]. Third, the quality of reporting of harms will be appraised using the McMaster Quality Assessment Scale of Harms (McHarm) tool [42].

### Synthesis of included studies

A narrative summary of study results will be presented along with evidence summary tables. When sufficient data are available, we will conduct random effects metaanalysis to calculate pooled odds ratios for dichotomous

data and pooled mean differences for continuous data

[43,44]. Direct (pairwise) meta-analysis will be per-

formed with RCTs alone in order to examine whether

the data are consistent between direct and indirect evi-

dence. If the large majority of included studies are obser-

vational, we will also conduct additional meta-analyses

including observational studies alone. Analyses will be

stratified by treatment indication (e.g., epilepsy, pain,

etc.) to reduce clinical heterogeneity between different

study populations whenever possible; for example, epilepsy itself in pregnant women is related to an increased

baseline risk of certain neonatal adverse outcomes. Stat-

istical, clinical, and methodological heterogeneity will be

examined prior to conducting the meta-analysis. Funnel

plots will be drawn for outcomes including at least 10

studies to explore asymmetry that might be explained by

clinical, statistical, and methodological heterogeneity.

The proportion of statistical heterogeneity will be exam-

ined using the  $I^2$  measure [45] and the magnitude of

statistical heterogeneity will be calculated using the re-

stricted maximum likelihood [46]. Meta-regression will

be conducted for clinically relevant subgroups or when

extensive statistical heterogeneity is observed (e.g.,  $I^2 \ge$ 

75%) [47]. This will allow the examination of the impact

of important factors on our results, such as maternal

age, dose, duration and timing (e.g., trimester) of anti-

epileptic treatment, co-morbidities, concomitant medi-

cations, risk of bias results, and sample size (due to Type

II statistical power errors with rare adverse events). To

ensure the meta-regression analysis is intuitive, the num-

i) transitivity (i.e., comparable distribution of effect modifiers across comparisons), which will be examined using boxplots or percentages to visually inspect potential effect modifiers of treatment effect [54]; ii) consistency between direct and indirect data, which will be examined locally (i.e., in certain paths of the network) using the loop-specific method [55,56] and the node-splitting method [57], and globally (i.e., evaluating the network as a whole), using the design-by-treatment interaction model [58]; and iii) we will quantify the amount of variability attributed to heterogeneity and inconsistency rather than sampling error, by calculating the  $I^2$  [59]. We will estimate the amount of heterogeneity using the restricted maximum likelihood method and assuming common within-network heterogeneity. We will compare the magnitude of heterogeneity between consistency and inconsistency models, as well as between meta-regression and network meta-analysis models to determine how much heterogeneity will be explained by inconsistency or the explanatory variable, respectively. We will first use the design-by-treatment model for the evaluation of inconsistency in a network as a whole and then, if inconsistency is detected, we will employ the loop-specific and node-splitting methods to identify which piece of evidence is responsible for inconsistency. As mentioned above, analyses will be stratified by treatment indication when clinically appropriate. Important heterogeneity and inconsistency will be explored using network metaregression using the same methods as described above,

Prior to conducting the network meta-analysis, we will hold a team meeting to finalize which treatment nodes will be included in the analysis since we are unclear about the indications, dosages, patient populations, and outcomes reported in all of the studies. We will discuss issues, including conducting a class versus independent drug analysis, inclusion of drug routes of administration and dosages, as well as timing of drug administration. These decisions will be examined through a sensitivity analysis in which we will classify treatment nodes using a different classification to see how stable our results are. The network meta-analysis results will be presented as summary treatment effects for each pair of treatments. Network meta-analysis will be conducted in Stata with the *mymeta* routine [60].

A sequential approach will be used for the network meta-analysis. We will first restrict our analysis to RCTs, which will be the primary analysis of interest. We will then include data from quasi-experimental studies, and finally, data from observational studies. This will provide an understanding of the contribution of each type of study design to our summary estimates, providing us with information on how these agents work above and beyond clinical trials.

ber of covariates examined will be less than 10% of the number of studies included in the meta-analysis for the particular outcome. We anticipate that many of these outcomes will be rare. To deal with studies reporting zero events in one treatment arm, 0.5 will be added to the numerator and 1 will be added to the denominator. We will exclude studies reporting zero events in all treatment arms for a particular outcome [48,49]. We also anticipate that we will encounter missing data in the included studies. We will contact the study authors for this data and if we are unable to receive the data, we will impute missing data (e.g., measures of variance) using established methods [50]. To ensure that our imputations do not bias our results, we will conduct a sensitivity analysis [51]. The meta-analysis and meta-regression will be analyzed in R using the *metafor* command [52]. A random-effects network meta-analysis will be con-

A random-effects network meta-analysis will be conducted to make inferences regarding the comparative safety of the various AEDs [15], as well as rank their safety using rankograms and the surface under the cumulative ranking curve [53]. We will ensure the following factors are present prior to conducting network meta-analysis: as necessary.

5

6

7

8

9

10

11

12

13 14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

### Discussion

Epilepsy is the most common chronic neurological condition, affecting 0.6 to 1% of the population [1,2]. Given that approximately a third of patients receiving AEDs are of reproductive age and almost half of pregnancies are unplanned [61], the fetus may be exposed to these in the first trimester of pregnancy, including during the critical stage of embryogenesis [62].

The comparative safety of these agents is currently unknown and our results will be important for policymakers, healthcare providers, and women of childbearing age. To ensure our results have wide dissemination and uptake, we will publish our results in open access journals, present our findings at scientific conferences, conduct dissemination meetings with key stakeholders (including policy-makers and healthcare providers), and produce policy briefs for Health Canada, the organization that posed this query.

### Additional files

Additional file 1: List of relevant medications. Additional file 2: Excluded drugs. Additional file 3: Draft eligibility criteria. Additional file 4: MEDLINE literature search.

### Abbreviations

AEDs: Anti-epileptic drugs; RCTs: Randomized clinical trials.

#### Competing interests

The authors declare that they have no competing interests.

### Authors' contributions

ACT conceived and designed the study, helped obtain funding for the study, and helped write the draft protocol. EC registered the protocol with the PROSPERO database and edited the draft protocol. AV helped write the draft protocol. CS edited the draft protocol. BH, BRH, DM, and YF provided input into the design, helped obtain funding for the study, and edited the draft protocol. SES conceived the study, designed the study, obtained the funding, and helped write the draft protocol. All authors read and approved the final protocol.

#### Acknowledgements

This systematic review was funded by the Canadian Institutes of Health Research/Drug Safety and Effectiveness Network (CIHR/DSEN). ACT and BH are funded by a CIHR/DSEN New Investigator Award in Knowledge Synthesis. BRH receives funding from the Alberta Heritage Foundation for Medical Research. DM is funded by a University of Ottawa Research Chair. SES is funded by a Tier 1 Canada Research Chair in Knowledge Translation. We thank Laure Perrier for conducting the literature searches and Becky Skidmore for peer reviewing the MEDLINE search strategy. We also thank Dr. Joseph Beyene for providing feedback on our original proposal and Wing Hui and Judy Tran for formatting the paper.

### Author details

<sup>1</sup>Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, East Building, Toronto, Ontario M5B 1 T8, Canada. <sup>2</sup>Institute of Health Policy Management and Evaluation, University of Toronto, Health Sciences Building, 155 College Street, Suite 425, Toronto, Ontario M5T 3 M6, Canada. <sup>3</sup>Clinical Epidemiology Program, Centre for Practice-Changing Research, Ottawa Hospital Research Institute, The Ottawa Hospital – General Campus and University of Ottawa, 501 Smyth Road, Box 711, Ottawa, Ontario K1H 8 L6, Canada. <sup>4</sup>Departments of Medicine and Community Health Sciences, University of Calgary, TRW Building, 3rd Floor, 3280 Hospital Drive NW, Calgary, Alberta T2N 4Z6, Canada. <sup>5</sup>The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada. <sup>6</sup>Department of Pediatrics, University of Toronto, 172 St. George Street, Toronto, Ontario M5R 0A3, Canada. <sup>7</sup>Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Room 4207, Toronto, Ontario M5S 1A8, Canada. <sup>8</sup>Department of Geriatric Medicine, University of Toronto, 172 St. George Street, Toronto, Ontario M5R 0A3, Canada.

### Received: 9 April 2014 Accepted: 17 June 2014 Published: 25 June 2014

#### References

- Hauser WA, Hesdorffer D: Epilepsy, Frequency, Causes and Consequences. New York: Demos Publications; 1990.
- Wiebe S, Bellhouse DR, Fallahay C, Eliasziw M: Burden of epilepsy: the Ontario Health Survey. Can J Neurol Sci 1999, 26(4):263–270.
- Sperling MR: The consequences of uncontrolled epilepsy. CNS Spectr 2004, 9(2):98–101. 106–109.
- 4. Jones MW: Consequences of epilepsy: why do we treat seizures? Can J Neurol Sci 1998, 25(4):S24–S26.
- Dickenson AH, Ghandehari J: Anti-convulsants and anti-depressants. Handb Exp Pharmacol 2007, 177:145–177.
- Stefani A, Spadoni F, Bernardi G: Voltage-activated calcium channels: targets of antiepileptic drug therapy? Epilepsia 1997, 38(9):959–965.
- Snutch TP, Reiner PB: Ca<sup>2+</sup> channels: diversity of form and function. Curr Opin Neurobiol 1992, 2(3):247–253.
- Spina E, Perugi G: Antiepileptic drugs: indications other than epilepsy. Epileptic Disord 2004, 6(2):57–75.
- 9. Harden CL, Pennell PB, Koppel BS, Hovinga CA, Gidal B, Meador KJ, Hopp J, Ting TY, Hauser WA, Thurman D, Kaplan PW, Robinson JN, French JA, Wiebe S, Wilner AN, Vazquez B, Holmes L, Krumholz A, Finnell R, Shafer PO, Le Guen CL, American Academy of Neurology; American Epilepsy Society: Management issues for women with epilepsy–focus on pregnancy (an evidence-based review): III. Vitamin K, folic acid, blood levels, and breast-feeding: report of the quality standards subcommittee and therapeutics and technology assessment subcommittee of the American Academy of Neurology and the American Epilepsy Society. *Epilepsia* 2009, 50(5):1247–1255.
- Harden CL, Meador KJ, Pennell PB, Hauser WA, Gronseth GS, French JA, Wiebe S, Thurman D, Koppel BS, Kaplan PW, Robinson JN, Hopp J, Ting TY, Gidal B, Hovinga CA, Wilner AN, Vazquez B, Holmes L, Krumholz A, Finnell R, Hirtz D, Le Guen C, American Academy of Neurology; American Epilepsy Society: Management issues for women with epilepsy-Focus on pregnancy (an evidence-based review): II. Teratogenesis and perinatal outcomes: Report of the Quality Standards Subcommittee and Therapeutics and Technology Subcommittee of the American Academy of Neurology and the American Epilepsy Society. *Epilepsia* 2009, 50(5):1237–1246.
- Samren EB, van Duijn CM, Koch S, Hiilesmaa VK, Klepel H, Bardy AH, Mannagetta GB, Deichl AW, Gaily E, Granstrom ML, Meinardi H, Grobbee DE, Hofman A, Janz D, Lindhout D: Maternal use of antiepileptic drugs and the risk of major congenital malformations: a joint European prospective study of human teratogenesis associated with maternal epilepsy. *Epilepsia* 1997, 38(9):981–990.
- Meador K, Reynolds MW, Crean S, Fahrbach K, Probst C: Pregnancy outcomes in women with epilepsy: a systematic review and meta-analysis of published pregnancy registries and cohorts. *Epilepsy Res* 2008, 81(1):1–13.
- Adab N, Jacoby A, Smith D, Chadwick D: Additional educational needs in children born to mothers with epilepsy. J Neurol Neurosurg Psychiatry 2001, 70(1):15–21.
- Adab N, Kini U, Vinten J, Ayres J, Baker G, Clayton-Smith J, Coyle H, Fryer A, Gorry J, Gregg J, Mawer G, Nicolaides P, Pickering L, Tunnicliffe L, Chadwick DW: The longer term outcome of children born to mothers with epilepsy. J Neurol Neurosurg Psychiatry 2004, 75(11):1575–1583.
- Gaily E, Kantola-Sorsa E, Hiilesmaa V, Isoaho M, Matila R, Kotila M, Nylund T, Bardy A, Kaaja E, Granstrom ML: Normal intelligence in children with prenatal exposure to carbamazepine. *Neurology* 2004, 62(1):28–32.
- Meador KJ, Baker GA, Browning N, Clayton-Smith J, Combs-Cantrell DT, Cohen M, Kalayjian LA, Kanner A, Liporace JD, Pennell PB, Privitera M, Loring DW, for the NEAD Study Group: Cognitive function at 3 years of age after fetal exposure to antiepileptic drugs. N Engl J Med 2009, 360(16):1597–1605.

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

- Holmes LB, Wyszynski DF, Lieberman E: The AED (antiepileptic drug) pregnancy registry: a 6-year experience. Arch Neurol 2004, 61(5):673–678.
- Reinisch JM, Sanders SA, Mortensen EL, Rubin DB: In utero exposure to phenobarbital and intelligence deficits in adult men. JAMA 1995, 274(19):1518–1525.
- Morrow J, Russell A, Guthrie E, Parsons L, Robertson I, Waddell R, Irwin B, McGivern RC, Morrison PJ, Craig J: Malformation risks of antiepileptic drugs in pregnancy: a prospective study from the UK Epilepsy and Pregnancy Register. J Neurol Neurosurg Psychiatry 2006, 77(2):193–198.
- Meador KJ, Baker GA, Finnell RH, Kalayjian LA, Liporace JD, Loring DW, Mawer G, Pennell PB, Smith JC, Wolff MC, NEAD Study Group: In utero antiepileptic drug exposure: fetal death and malformations. *Neurology* 2006, 67(3):407–412.
- Vajda FJ, Hitchcock A, Graham J, Solinas C, O'Brien TJ, Lander CM, Eadie MJ: Foetal malformations and seizure control: 52 months data of the Australian Pregnancy Registry. *Eur J Neurol* 2006, 13(6):645–654.
- Holmes LB, Baldwin EJ, Smith CR, Habecker E, Glassman L, Wong SL, Wyszynski DF: Increased frequency of isolated cleft palate in infants exposed to lamotrigine during pregnancy. *Neurology* 2008, 70(22 Pt 2):2152–2158.
- Meador KJ, Penovich P, Baker GA, Pennell PB, Bromfield E, Pack A, Liporace JD, Sam M, Kalayjian LA, Thurman DJ, Moore E, Loring DW, NEAD Study Group: Antiepileptic drug use in women of childbearing age. *Epilepsy Behav* 2009, 15(3):339–343.
- 24. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart L: Reporting Guidelines for Systematic Review Protocols. In 19th Cochrane Colloquium: 19–22 October 2011; Madrid, Spain.
- Ross CJ, Visscher H, Sistonen J, Brunham LR, Pussegoda K, Loo TT, Rieder MJ, Koren G, Carleton BC, Hayden MR, CPNDS Consortium: The Canadian Pharmacogenomics Network for Drug Safety: a model for safety pharmacology. *Thyroid* 2010, 20(7):681–687.
- Eypasch E, Lefering R, Kum CK, Troidl H: Probability of adverse events that have not yet occurred: a statistical reminder. *BMJ* 1995, 311(7005):619–620.
- 27. Atkins D: Creating and synthesizing evidence with decision makers in mind: integrating evidence from clinical trials and other study designs. *Med Care* 2007, **45**(10 Supl 2):S16–S22.
- Health Canada: Drug Product Database. http://www.hc-sc.gc.ca/dhp-mps/ prodpharma/databasdon/index-eng.php.
- 29. United States National Library of Medicine's ChemIDPlus Lite Database. http://chem.sis.nlm.nih.gov/chemidplus/chemidlite.jsp.
- 30. Canadian Pharmacists Association: E-CPS (Compendium of Pharmaceuticals and Specialties). http://www.e-therapeutics.ca/home.whatsnew.action.
- Epilepsy Canada: Anticonvulsant Medications. http://www.epilepsy.ca/en-CA/ Diagnosis-and-Treatment/Anticonvulsant-Medications.html.
- Epilepsy Ontario: Anticonvulsant/Anti-Seizure Medication from A to Z. http://epilepsyontario.org/anticonvulsantanti-seizure-medication-from-a-to-z/.
- Sampson M, McGowan J, Cogo E, Grimshaw J, Moher D, Lefebvre C: An evidence-based practice guideline for the peer review of electronic search strategies. J Clin Epidemiol 2009, 62(9):944–952.
- Canadian Agency for Drugs and Technologies in Health: Grey Matters: A Practical Search Tool for Evidence-Based Medicine. http://www.cadth.ca/ resources/grey-matters.
- Adab N, Tudur SC, Vinten J, Williamson P, Winterbottom J: Common antiepileptic drugs in pregnancy in women with epilepsy. Cochrane Database Syst Rev 2004, 3:CD004848.
- Banach R, Boskovic R, Einarson T, Koren G: Long-term developmental outcome of children of women with epilepsy, unexposed or exposed prenatally to antiepileptic drugs: a meta-analysis of cohort studies. Drug Saf 2010, 33(1):73–79.
- 37. Landis JR, Koch GG: The measurement of observer agreement for categorical data. *Biometrics* 1977, **33**(1):159–174.
- 38. Synthesi.SR. http://knowledgetranslation.ca/sysrev/login.php.
- Stone PW: Popping the (PICO) question in research and evidence-based practice. Appl Nurs Res 2002, 15(3):197–198.
- 40. Cochrane Effective Practice and Organization of Care Group Draft Risk of Bias Tool. http://epoc.cochrane.org/epoc-author-resources.
- The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. http://www.ohri.ca/programs/clinical\_epidemiology/ oxford.asp.

- Santaguida PL, Raina P, Ismaila A: The Development of the McHarm Quality Assessment Scale for Adverse Events. Hamilton, Ontario: McMaster University; 2008.
- Raudenbush SW: Analyzing Effect Sizes: Random Effects Models. In The Handbook of Research Synthesis and Meta-analysis. 2nd edition. Edited by Cooper H, Hedges LV, Valentine JC. New York: Russell Sage Foundation; 2009:295–315.
- 44. Viechtbauer W: Bias and efficiency of meta-analytic variance estimators in the random-effects model. *J Educ Behav Stat* 2005, **30**(3):261–293.
- 45. Higgins JP, Thompson SG: Quantifying heterogeneity in a meta-analysis. *Stat Med* 2002, **21**(11):1539–1558.
- 46. Viechtbauer W: Confidence intervals for the amount of heterogeneity in meta-analysis. *Stat Med* 2007, **26**(1):37–52.
- Higgins JPT, Green S: Cochrane Handbook for Systematic Reviews of Interventions. The Cochrane Collaboration; 2009. http://www.cochrane.org/ handbook.
- Sweeting MJ, Sutton AJ, Lambert PC: What to add to nothing? Use and avoidance of continuity corrections in meta-analysis of sparse data. *Stat Med* 2004, 23(9):1351–1375.
- Bradburn MJ, Deeks JJ, Berlin JA, Russell Localio A: Much ado about nothing: a comparison of the performance of meta-analytical methods with rare events. *Stat Med* 2007, 26(1):53–77.
- 50. Littell JH, Corcoran J, Pillai V: Systematic Reviews and Meta-Analysis. New York: Oxford University Press; 2008.
- Carpenter J, Rucker G, Schwarzer G: Assessing the sensitivity of meta-analysis to selection bias: a multiple imputation approach. *Biometrics* 2011, 67(3):1066–1072.
- Conducting Meta-Analyses in R with the metafor Package. http://www.jstatsoft.org/v36/i03/.
- Salanti G, Ades AE, Ioannidis JP: Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol 2011, 64(2):163–171.
- Salanti G: Indirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: many names, many benefits, many concerns for the next generation evidence synthesis tool. *Res Synth Methods* 2012, 3(2):80–97.
- Song F, Altman DG, Glenny AM, Deeks JJ: Validity of indirect comparison for estimating efficacy of competing interventions: empirical evidence from published meta-analyses. *BMJ* 2003, 326(7387):472.
- Veroniki AA, Vasiliadis HS, Higgins JP, Salanti G: Evaluation of inconsistency in networks of interventions. Int J Epidemiol 2013, 42(1):332–345.
- 57. Dias S, Welton NJ, Caldwell DM, Ades AE: Checking consistency in mixed treatment comparison meta-analysis. *Stat Med* 2010, **29**(7–8):932–944.
- White IR, Barrett JK, Jackson D, Higgins JPT: Consistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression. *Res Synth Methods* 2012, 3(2):111–125.
- Jackson D, Barrett JK, Stephen R, White IR, Higgins JPT: A design-by-treatment interaction model for network meta-analysis with random inconsistency effects. Stat Med 2014, In press.
- 60. White IR: Multivariate random-effects meta-regression: updates to mvmeta. *Stata J* 2011, 11(2):255–270.
- Centers for Disease Control and Prevention: Unintended Pregnancy Prevention. http://www.cdc.gov/reproductivehealth/unintendedpregnancy/.
- Yerby MS: Pregnancy, teratogenesis, and epilepsy. Neurol Clin 1994, 12(4):749–771.

### doi:10.1186/2046-4053-3-68

**Cite this article as:** Tricco *et al.*: Comparative safety of anti-epileptic drugs among infants and children exposed *in utero* or during breastfeeding: protocol for a systematic review and network meta-analysis. *Systematic Reviews* 2014 **3**:68.

| 1       |  |
|---------|--|
| 2       |  |
| 3       |  |
| 1       |  |
| 4       |  |
| 5       |  |
| 6       |  |
| 7       |  |
| 8       |  |
| 9       |  |
| 10      |  |
| 10      |  |
| 11      |  |
| 12      |  |
| 13      |  |
| 14      |  |
| 15      |  |
| 16      |  |
| 17      |  |
| 10      |  |
| 10      |  |
| 19      |  |
| 20      |  |
| 21      |  |
| 22      |  |
| 22      |  |
| 23      |  |
| 24      |  |
| 25      |  |
| 26      |  |
| 27      |  |
| 20      |  |
| 20      |  |
| 29      |  |
| 30      |  |
| 31      |  |
| 32      |  |
| 22      |  |
| 33      |  |
| 34      |  |
| 35      |  |
| 36      |  |
| 37      |  |
| 38      |  |
| 20      |  |
| 39      |  |
| 40      |  |
| 41      |  |
| 42      |  |
| 43      |  |
| 11      |  |
| <br>/ [ |  |
| 45      |  |
| 46      |  |
| 47      |  |
| 48      |  |
| 49      |  |
|         |  |
| 50      |  |
| 51      |  |
| 52      |  |
| 53      |  |
| 54      |  |
| 55      |  |
| 55      |  |
| 90      |  |
| 57      |  |
| 58      |  |
| 59      |  |
| 60      |  |
| 00      |  |

| PRISMA | NMA | Checklist |
|--------|-----|-----------|
|--------|-----|-----------|

| Section/Topic             | Item<br># | Checklist Item <sup>*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reported on<br>Page # |
|---------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| TITLE                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |
| Title                     | 1         | Identify the report as a systematic review<br>incorporating a network meta-analysis (or related<br>form of meta-analysis).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                     |
| ABSTRACT                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |
| Structured<br>summary     | 2         | <ul> <li>Provide a structured summary including, as applicable:</li> <li>Background: main objectives</li> <li>Methods: data sources; study eligibility criteria, participants, and interventions; study appraisal; and synthesis methods, such as network meta-analysis.</li> <li>Results: number of studies and participants identified; summary estimates with corresponding confidence/credible intervals; treatment rankings may also be discussed.</li> <li>Authors may choose to summarize pairwise comparisons against a chosen treatment included in their analyses for brevity.</li> <li>Discussion/Conclusions: limitations; conclusions and implications of findings.</li> <li>Other: primary source of funding; systematic review registration number with registry name.</li> </ul> | 4-5                   |
| INTRODUCTION              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |
| Rationale                 | 3         | Describe the rationale for the review in the context<br>of what is already known, <i>including mention of</i><br><i>why a network meta-analysis has been conducted</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                     |
| Objectives                | 4         | Provide an explicit statement of questions being<br>addressed, with reference to participants,<br>interventions, comparisons, outcomes, and study<br>design (PICOS).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                     |
| METHODS                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |
| Protocol and registration | 5         | Indicate whether a review protocol exists and if<br>and where it can be accessed (e.g., Web address);<br>and, if available, provide registration information,<br>including registration number.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                     |

| 2  |
|----|
| 3  |
| 4  |
| 4  |
| 5  |
| 6  |
| 7  |
| 1  |
| 8  |
| 9  |
| 10 |
| 10 |
| 11 |
| 12 |
| 10 |
| 13 |
| 14 |
| 15 |
| 16 |
| 10 |
| 17 |
| 18 |
| 10 |
| 19 |
| 20 |
| 21 |
| 22 |
| 22 |
| 23 |
| 24 |
| 25 |
| 20 |
| 26 |
| 27 |
| 28 |
| 20 |
| 29 |
| 30 |
| 21 |
| 51 |
| 32 |
| 33 |
| 31 |
| 34 |
| 35 |
| 36 |
| 27 |
| 37 |
| 38 |
| 39 |
| 10 |
| 40 |
| 41 |
| 42 |
| 13 |
| 40 |
| 44 |
| 45 |
| 16 |
| 40 |
| 47 |
| 48 |
| 10 |
| 49 |
| 50 |
| 51 |
| 52 |
| 52 |
| 53 |
| 54 |
| 55 |
| 55 |
| 56 |
| 57 |
| 58 |
| 50 |
| 59 |
| 60 |

| Eligibility criteria                         | 6  | Specify study characteristics (e.g., PICOS, length<br>of follow-up) and report characteristics (e.g., years<br>considered, language, publication status) used as<br>criteria for eligibility, giving rationale. <i>Clearly</i><br><i>describe eligible treatments included in the</i><br><i>treatment network, and note whether any have</i><br><i>been clustered or merged into the same node (with</i><br><i>justification).</i> | 8                             |
|----------------------------------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Information sources                          | 7  | Describe all information sources (e.g., databases<br>with dates of coverage, contact with study authors<br>to identify additional studies) in the search and<br>date last searched.                                                                                                                                                                                                                                                | 9                             |
| Search                                       | 8  | Present full electronic search strategy for at least<br>one database, including any limits used, such that<br>it could be repeated.                                                                                                                                                                                                                                                                                                | Additional<br>File 1          |
| Study selection                              | 9  | State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).                                                                                                                                                                                                                                                                          | 9                             |
| Data collection process                      | 10 | Describe method of data extraction from reports<br>(e.g., piloted forms, independently, in duplicate)<br>and any processes for obtaining and confirming<br>data from investigators.                                                                                                                                                                                                                                                | 9                             |
| Data items                                   | 11 | List and define all variables for which data were<br>sought (e.g., PICOS, funding sources) and any<br>assumptions and simplifications made.                                                                                                                                                                                                                                                                                        | Additional<br>File 1          |
| Geometry of the<br>network                   | S1 | Describe methods used to explore the geometry of<br>the treatment network under study and potential<br>biases related to it. This should include how the<br>evidence base has been graphically summarized<br>for presentation, and what characteristics were<br>compiled and used to describe the evidence base to<br>readers.                                                                                                     | 10-12                         |
| Risk of bias<br>within individual<br>studies | 12 | Describe methods used for assessing risk of bias of<br>individual studies (including specification of<br>whether this was done at the study or outcome<br>level), and how this information is to be used in<br>any data synthesis.                                                                                                                                                                                                 | 9-10 (see also<br>Appendix A) |
| Summary<br>measures                          | 13 | State the principal summary measures (e.g., risk<br>ratio, difference in means). Also describe the use of<br>additional summary measures assessed, such as<br>treatment rankings and surface under the<br>cumulative ranking curve (SUCRA) values, as well<br>as modified approaches used to present summary<br>findings from meta-analyses.                                                                                       | 10-12                         |

| Planned methods<br>of analysis                        | 14         | <ul> <li>Describe the methods of handling data and combining results of studies for each network meta-analysis. This should include, but not be limited to:</li> <li><i>Handling of multi-arm trials;</i></li> <li><i>Selection of variance structure;</i></li> <li><i>Selection of prior distributions in Bayesian analyses; and</i></li> <li><i>Assessment of model fit.</i></li> </ul>                          | 10-12                             |
|-------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Assessment of<br>Inconsistency                        | S2         | Describe the statistical methods used to evaluate<br>the agreement of direct and indirect evidence in the<br>treatment network(s) studied. Describe efforts<br>taken to address its presence when found.                                                                                                                                                                                                           | 10-11                             |
| Risk of bias<br>across studies                        | 15         | Specify any assessment of risk of bias that may<br>affect the cumulative evidence (e.g., publication<br>bias, selective reporting within studies).                                                                                                                                                                                                                                                                 | 9-10                              |
| Additional<br>analyses<br><b>RESULTS</b> <sup>†</sup> | 16         | <ul> <li>Describe methods of additional analyses if done, indicating which were pre-specified. This may include, but not be limited to, the following: <ul> <li>Sensitivity or subgroup analyses;</li> <li>Meta-regression analyses;</li> <li>Alternative formulations of the treatment network; and</li> <li>Use of alternative prior distributions for Bayesian analyses (if applicable).</li> </ul> </li> </ul> | 11-12                             |
| Study selection                                       | 17         | Give numbers of studies screened, assessed for<br>eligibility, and included in the review, with reasons<br>for exclusions at each stage, ideally with a flow<br>diagram.                                                                                                                                                                                                                                           | 13 and Figure<br>1                |
| Presentation of<br>network<br>structure               | <b>S</b> 3 | Provide a network graph of the included studies to<br>enable visualization of the geometry of the<br>treatment network.                                                                                                                                                                                                                                                                                            | Figure 2                          |
| Summary of<br>network<br>geometry                     | S4         | Provide a brief overview of characteristics of the<br>treatment network. This may include commentary<br>on the abundance of trials and randomized patients<br>for the different interventions and pairwise<br>comparisons in the network, gaps of evidence in<br>the treatment network, and potential biases<br>reflected by the network structure.                                                                | 14-18                             |
| Study<br>characteristics                              | 18         | For each study, present characteristics for which<br>data were extracted (e.g., study size, PICOS,<br>follow-up period) and provide the citations.                                                                                                                                                                                                                                                                 | Table 1,<br>Appendices D<br>and E |
| _                                                                                                                                                                                                                                            |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 3                                                                                                                                                                                                                                            |  |
| 4                                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                                              |  |
| 5                                                                                                                                                                                                                                            |  |
| 6                                                                                                                                                                                                                                            |  |
| 7                                                                                                                                                                                                                                            |  |
| 8                                                                                                                                                                                                                                            |  |
| 9                                                                                                                                                                                                                                            |  |
| 10                                                                                                                                                                                                                                           |  |
| 11                                                                                                                                                                                                                                           |  |
| 11                                                                                                                                                                                                                                           |  |
| 12                                                                                                                                                                                                                                           |  |
| 13                                                                                                                                                                                                                                           |  |
| 14                                                                                                                                                                                                                                           |  |
| 15                                                                                                                                                                                                                                           |  |
| 16                                                                                                                                                                                                                                           |  |
| 17                                                                                                                                                                                                                                           |  |
| 10                                                                                                                                                                                                                                           |  |
| 10                                                                                                                                                                                                                                           |  |
| 19                                                                                                                                                                                                                                           |  |
| 20                                                                                                                                                                                                                                           |  |
| 21                                                                                                                                                                                                                                           |  |
| 22                                                                                                                                                                                                                                           |  |
| 23                                                                                                                                                                                                                                           |  |
| 21                                                                                                                                                                                                                                           |  |
| 24                                                                                                                                                                                                                                           |  |
| 25                                                                                                                                                                                                                                           |  |
| 26                                                                                                                                                                                                                                           |  |
| 27                                                                                                                                                                                                                                           |  |
| 28                                                                                                                                                                                                                                           |  |
| 29                                                                                                                                                                                                                                           |  |
| 30                                                                                                                                                                                                                                           |  |
| 24                                                                                                                                                                                                                                           |  |
| 31                                                                                                                                                                                                                                           |  |
| 32                                                                                                                                                                                                                                           |  |
| ~-                                                                                                                                                                                                                                           |  |
| 33                                                                                                                                                                                                                                           |  |
| 33<br>34                                                                                                                                                                                                                                     |  |
| 33<br>34<br>35                                                                                                                                                                                                                               |  |
| 33<br>34<br>35<br>36                                                                                                                                                                                                                         |  |
| 33<br>34<br>35<br>36<br>27                                                                                                                                                                                                                   |  |
| 33<br>34<br>35<br>36<br>37                                                                                                                                                                                                                   |  |
| 33<br>34<br>35<br>36<br>37<br>38                                                                                                                                                                                                             |  |
| 33<br>34<br>35<br>36<br>37<br>38<br>39                                                                                                                                                                                                       |  |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40                                                                                                                                                                                                 |  |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41                                                                                                                                                                                           |  |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42                                                                                                                                                                                     |  |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43                                                                                                                                                                               |  |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43                                                                                                                                                                               |  |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44                                                                                                                                                                         |  |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45                                                                                                                                                                   |  |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46                                                                                                                                                             |  |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47                                                                                                                                                       |  |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48                                                                                                                                                 |  |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49                                                                                                                                           |  |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50                                                                                                                                     |  |
| 33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         50                                                           |  |
| 33         34           35         36           37         38           39         40           41         42           43         44           45         46           47         48           501         501                              |  |
| 33         34           35         36           37         38           30         40           42         43           44         45           46         47           48         99           50         51                                |  |
| 33         334         35         36         37         38         39         41         42         43         44         45         46         47         48         95         51         52         53                                    |  |
| $33 \\ 35 \\ 37 \\ 38 \\ 39 \\ 41 \\ 42 \\ 43 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 95 \\ 51 \\ 52 \\ 53 \\ 54 $                                                                                                                                  |  |
| 33         334         35         36         37         38         39         41         42         43         445         46         47         48         50         52         53         55                                              |  |
| 33         35         36           334         356         37         38         39         41         42         44         45         46         7         89         50         52         54         55         56         55         56 |  |
| $33 \\ 35 \\ 37 \\ 39 \\ 41 \\ 43 \\ 44 \\ 46 \\ 47 \\ 49 \\ 51 \\ 52 \\ 54 \\ 55 \\ 55 \\ 57 \\ 55 \\ 57 \\ 57 \\ 57$                                                                                                                       |  |
| $33 \\ 35 \\ 37 \\ 39 \\ 41 \\ 42 \\ 44 \\ 45 \\ 46 \\ 47 \\ 49 \\ 51 \\ 52 \\ 54 \\ 55 \\ 57 \\ 55 \\ 57 \\ 20 \\ 57 \\ 57 \\ 57 \\ 57 \\ 57 \\ 57 \\ 57 \\ 5$                                                                              |  |
| $33 \\ 35 \\ 37 \\ 39 \\ 41 \\ 42 \\ 43 \\ 44 \\ 46 \\ 47 \\ 49 \\ 51 \\ 52 \\ 55 \\ 55 \\ 55 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 50$                                                                 |  |
| $33 \\ 35 \\ 37 \\ 39 \\ 41 \\ 42 \\ 44 \\ 45 \\ 46 \\ 47 \\ 49 \\ 51 \\ 52 \\ 53 \\ 55 \\ 57 \\ 59 \\ 59 \\ 51 \\ 51 \\ 51 \\ 51 \\ 51 \\ 51$                                                                                               |  |

| Risk of bias within studies          | 19         | Present data on risk of bias of each study and, if available, any outcome level assessment.                                                                                                                                                                                                                                                                                                                                                                                                                                | Appendix F                                                            |
|--------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Results of individual studies        | 20         | For all outcomes considered (benefits or harms),<br>present, for each study: 1) simple summary data<br>for each intervention group, and 2) effect estimates<br>and confidence intervals. <i>Modified approaches</i><br><i>may be needed to deal with information from</i><br><i>larger networks</i> .                                                                                                                                                                                                                      | N/A<br>(data can be<br>provided by<br>the<br>corresponding<br>author) |
| Synthesis of<br>results              | 21         | Present results of each meta-analysis done,<br>including confidence/credible intervals. <i>In larger</i><br><i>networks, authors may focus on comparisons</i><br><i>versus a particular comparator (e.g. placebo or</i><br><i>standard care), with full findings presented in an</i><br><i>appendix. League tables and forest plots may be</i><br><i>considered to summarize pairwise comparisons.</i> If<br>additional summary measures were explored (such<br>as treatment rankings), these should also be<br>presented. | 15-18,<br>Figure 3,<br>Appendices<br>H, I, J                          |
| Exploration for<br>inconsistency     | <b>S</b> 5 | Describe results from investigations of<br>inconsistency. This may include such information<br>as measures of model fit to compare consistency<br>and inconsistency models, <i>P</i> values from statistical<br>tests, or summary of inconsistency estimates from<br>different parts of the treatment network.                                                                                                                                                                                                             | 14 (see also<br>Appendix H)                                           |
| Risk of bias<br>across studies       | 22         | Present results of any assessment of risk of bias across studies for the evidence base being studied.                                                                                                                                                                                                                                                                                                                                                                                                                      | 14 (see also<br>Appendix G)                                           |
| Results of<br>additional<br>analyses | 23         | Give results of additional analyses, if done (e.g.,<br>sensitivity or subgroup analyses, meta-regression<br>analyses, <i>alternative network geometries studied</i> ,<br><i>alternative choice of prior distributions for</i><br><i>Bayesian analyses</i> , and so forth).                                                                                                                                                                                                                                                 | Appendix K                                                            |
| Summary of                           | 24         | Summarize the main findings, including the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19-21                                                                 |
| evidence                             |            | strength of evidence for each main outcome;<br>consider their relevance to key groups (e.g.,<br>healthcare providers, users, and policy-makers).                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |
| Limitations                          | 25         | Discuss limitations at study and outcome level<br>(e.g., risk of bias), and at review level (e.g.,<br>incomplete retrieval of identified research,<br>reporting bias). <i>Comment on the validity of the</i><br><i>assumptions, such as transitivity and consistency.</i><br><i>Comment on any concerns regarding network</i><br><i>geometry (e.g., avoidance of certain comparisons).</i>                                                                                                                                 | 21-23                                                                 |

| Conclusions | 26 | Provide a general interpretation of the results in the context of other evidence, and implications for future research.                                                                                                                                                                                                                                                                                                                                | 23    |
|-------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|             |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| FUNDING     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| Funding     | 27 | Describe sources of funding for the systematic<br>review and other support (e.g., supply of data);<br>role of funders for the systematic review. This<br>should also include information regarding whether<br>funding has been received from manufacturers of<br>treatments in the network and/or whether some of<br>the authors are content experts with professional<br>conflicts of interest that could affect use of<br>treatments in the network. | 26-27 |

**Abbreviations:** PICOS - population, intervention, comparators, outcomes, study design \* Text in italics indicates wording specific to reporting of network meta-analyses that has been added to guidance from the PRISMA statement.

<sup>†</sup> Authors may wish to plan for use of appendices to present all relevant information in full detail for items in this section.



### **Supplementary Online Content**

| Appendix A. Newcastle-Ottawa Scale scoring guide                                                                                                                                       | 2  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Appendix B. List of included studies                                                                                                                                                   | 11 |
| Appendix C. Key excluded studies                                                                                                                                                       | 14 |
| Appendix D. Table of Individual Study characteristics                                                                                                                                  | 16 |
| Appendix E. Table of Patient characteristics                                                                                                                                           | 21 |
| Appendix F. Methodological quality of observational studies – Newcastle Ottawa Scale results                                                                                           | 23 |
| Appendix G. Comparison-adjusted funnel plots <sup>*</sup>                                                                                                                              | 25 |
| Appendix H. Statistically significant network meta-analysis results along with meta-analysis results, transitivity, and inconsistency assessments                                      | 26 |
| Appendix I. Rank-heat plot of cognitive developmental delay, autism/dyspraxia, psychomotor developmental delay, language delay, and attention deficit hyperactivity disorder outcomes* | 30 |
| Appendix J. Number of studies and treatments per outcome                                                                                                                               | 32 |
| Appendix K. Sensitivity and network meta-regression analyses - Anti-epileptic drugs compared                                                                                           | d  |
| with Control                                                                                                                                                                           | 33 |



<sup>1</sup> For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

#### Appendix A. Newcastle-Ottawa Scale scoring guide

#### **COHORT Studies**

| Excel Column        | NOS* Answer Options**                                                             | NOS Coding Manual*                                                                                                                                                                                                                                                                                      |
|---------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RefID               | Enter the report's RefID.                                                         |                                                                                                                                                                                                                                                                                                         |
| DA                  | Enter your initials.                                                              |                                                                                                                                                                                                                                                                                                         |
| First author        | Enter the first author's last name.                                               |                                                                                                                                                                                                                                                                                                         |
| Year of publication | Enter the year of the publication.                                                |                                                                                                                                                                                                                                                                                                         |
| SELECTION:          | -                                                                                 |                                                                                                                                                                                                                                                                                                         |
| 1) Representative-  | a) truly representative of the                                                    | Item is assessing the representativeness of exposed individuals in the                                                                                                                                                                                                                                  |
| ness of the exposed | average pregnant woman                                                            | community, not the representativeness of the sample of women from                                                                                                                                                                                                                                       |
| cohort              | taking AEDs in the                                                                | some general population.                                                                                                                                                                                                                                                                                |
|                     | community                                                                         |                                                                                                                                                                                                                                                                                                         |
|                     | b) somewhat representative of<br>the average pregnant woman<br>taking AEDs in the | For example, subjects derived from groups likely to contain middle class,<br>better educated, health oriented women are likely to be representative of<br>postmenopausal estrogen users while they are not representative of all<br>women (a.g. members of a health maintenance organisation (HMO) will |
|                     | <ul><li>c) selected group of users e.g.,<br/>nurses, volunteers</li></ul>         | be a representative sample of estrogen users. While the HMO may have<br>an under-representation of ethnic groups, the poor, and poorly educated,                                                                                                                                                        |
|                     | d) no description of the derivation of the cohort                                 | these excluded groups are not the predominant users of estrogen).                                                                                                                                                                                                                                       |
|                     |                                                                                   | Note:                                                                                                                                                                                                                                                                                                   |
|                     |                                                                                   | Truly representative (A) is a population-based cohort at the provincial or                                                                                                                                                                                                                              |
|                     |                                                                                   | national levels (e.g., a sample from 2 cities is not enough). We need very                                                                                                                                                                                                                              |
|                     |                                                                                   | 'broad' sample of the population.                                                                                                                                                                                                                                                                       |
|                     |                                                                                   | Somewhat representative (D) includes minute clinics, how it is how it as                                                                                                                                                                                                                                |
|                     |                                                                                   | community-based.                                                                                                                                                                                                                                                                                        |
| 2) Selection of the | a) drawn from the same                                                            | Note:                                                                                                                                                                                                                                                                                                   |
| non-exposed cohort  | community as the exposed                                                          | In our review of mostly multi-arm studies, this question pertains to the                                                                                                                                                                                                                                |

| 1         |  |
|-----------|--|
| 2         |  |
| 2         |  |
| 3         |  |
| 4         |  |
| 5         |  |
| 6         |  |
| 7         |  |
| Q         |  |
| 0         |  |
| 9         |  |
| 10        |  |
| 11        |  |
| 12        |  |
| 13        |  |
| 14        |  |
| 15        |  |
| 10        |  |
| 10        |  |
| 17        |  |
| 18        |  |
| 19        |  |
| 20        |  |
| 21        |  |
| 2 I<br>22 |  |
| 22        |  |
| 23        |  |
| 24        |  |
| 25        |  |
| 26        |  |
| 27        |  |
| 28        |  |
| 20        |  |
| 29        |  |
| 30        |  |
| 31        |  |
| 32        |  |
| 33        |  |
| 31        |  |
| 25        |  |
| 30        |  |
| 36        |  |
| 37        |  |
| 38        |  |
| 39        |  |
| 40        |  |
| /1        |  |
| 41        |  |
| 42        |  |
| 43        |  |
| 44        |  |
| 45        |  |
| 46        |  |
| /7        |  |
| 41        |  |
| 48        |  |
| 10        |  |

|                                                                                         | <ul> <li>cohort</li> <li>b) drawn from a different source</li> <li>c) no description of the<br/>derivation of the non-exposed<br/>cohort</li> </ul>                                                                                                               | study's comparator group(s) – including "active" controls (for example, a less teratogenic AED). Therefore, this will often be 'A' for our studies.                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3) Ascertainment<br>of exposure                                                         | <ul> <li>a) secure record (e.g., surgical records)</li> <li>b) structured interview</li> <li>c) written self-report</li> <li>d) no description</li> </ul>                                                                                                         | Note:<br>Option 'A' includes patient hospital records, prescription drug database,<br>or hospital/clinic visits (e.g., patient is asked about "current" AED use<br>during a visit with their doctor).Option 'B' includes a hospital/clinic visit, but the patients are asked to<br>remember their AED use during pregnancy (e.g., retrospectively<br>ascertained exposure).If a study used both medical records and interviews for everyone, select<br>'A'.                          |
| 4) Demonstration<br>that outcome of<br>interest was not<br>present at start of<br>study | a) yes<br>b) no                                                                                                                                                                                                                                                   | In the case of mortality studies, outcome of interest is still the presence of a disease/incident, rather than death. That is to say that a statement of 'no history of disease or incident' earns a star (i.e. option 'A'). <u>Note:</u> Since our review is on pregnant women, this question is 'A' for all. <b>Please email us if a study involves breastfeeding women.</b>                                                                                                       |
| COMPARABILITY                                                                           | :                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1) Comparability<br>of cohorts on the<br>basis of the design<br>or analysis             | <ul> <li>a) answer is BOTH B &amp; C (i.e. study controls for age and one other important factor)</li> <li>b) study controls for age of the women</li> <li>c) study controls for any other important factor</li> <li>d) study does not control for any</li> </ul> | Either exposed and non-exposed individuals must be matched in the design and/or confounders must be adjusted for in the analysis. Statements of no differences between groups or that differences were not statistically significant are not sufficient for establishing comparability. Note: If the relative risk for the exposure of interest is adjusted for the confounders listed, then the groups will be considered to be comparable on each variable used in the adjustment. |

| important factor or it is not described | There may be multiple ratings for this item for different categories of exposure (e.g., ever vs. never, current vs. previous or never). [A maximum of 2 stars can be allotted in this category].                                                                                                                                                              |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | Note:<br>The study should have initially matched the groups or presented adjuster<br>odds ratios, AND in addition, since in our review we are analyzing each<br>AED arm separately (instead of the whole exposed cohort), the study<br>must also report the factor of interest <b>for 'each AED arm'</b> (or state that<br><b>'each AED arm'</b> is matched). |
| 09                                      | Thus, there are 2 parts to this question:                                                                                                                                                                                                                                                                                                                     |
|                                         | 1) The study should have matched/adjusted for age at whatever level of groups they were focused on (even if they aren't our abstracted AED arms); AND                                                                                                                                                                                                         |
|                                         | 2) Then the study should also have reported the age for each AED ar                                                                                                                                                                                                                                                                                           |
|                                         | If they haven't done both of these 2 things, it's a 'D' here (unless they happen to combine these by reporting adjusted ORs for each of our AEI arms).                                                                                                                                                                                                        |
|                                         | For our review, this generally pertains to <b>the comparability of the MOTHERS</b> .                                                                                                                                                                                                                                                                          |
|                                         | The exception here is in studies of cognitive/psychomotor development disorders in children - when age of the children should be comparable.                                                                                                                                                                                                                  |
|                                         | The "other important factors" here are any one of these.                                                                                                                                                                                                                                                                                                      |
|                                         | <ul> <li>history of congenital malformations (CMs), fetal losses, preterm<br/>deliveries or small babies.</li> </ul>                                                                                                                                                                                                                                          |
|                                         | • family history of genetic problems or CMs.                                                                                                                                                                                                                                                                                                                  |

|                              |                                                                                                                                         | <ul> <li>alcohol use.</li> <li>nutritional deficiencies (e.g., lack of folic acid).</li> <li><u>Example:</u> <ul> <li>Option 'B' indicates that the study initially matched groups based on the women's age (or reported adjusted ORs) AND they report the mean women's age for EACH of our arms (e.g., for Tx1, Tx2, etc.).</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OUTCOME:<br>1) Assessment of | a) independent OR blind                                                                                                                 | For some outcomes (e.g. fractured hip) reference to the medical record is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1) Assessment of<br>outcome  | <ul> <li>a) Independent OK bind<br/>assessment</li> <li>b) record linkage</li> <li>c) self-report</li> <li>d) no description</li> </ul> | <ul> <li>For some outcomes (e.g. fractured hip), reference to the medical record is sufficient to satisfy the requirement for confirmation of the fracture. This would not be adequate for vertebral fracture outcomes where reference to x-rays would be required.</li> <li>a) Independent or blind assessment stated in the paper, or confirmation of the outcome by reference to secure records (x-rays, medical records, etc.)</li> <li>b) Record linkage (e.g. identified through ICD codes on database records)</li> <li>c) Self-report (i.e. no reference to original medical records or x-rays to confirm the outcome)</li> <li>d) No description.</li> </ul> Note: Blind (A) is if they tell us that the outcome assessors were blinded to exposures; or if the outcome is objective. For our purposes, we will focus on the primary outcome of interest of our systematic review, which is <u>major malformations (an objective outcome)</u> . So most of ours will be A, unless the study is only on a secondary outcome (e.g., cognitive development) and is based on the mother's self-report of their child (e.g., not a clinical examination). |
| 2) Was follow-up             | a) yes                                                                                                                                  | An acceptable length of time should be decided before quality assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| long enough for<br>outcomes to occur | b) no                                                                                                                                                                                                                                                               | begins (e.g. 5 yrs. for exposure to breast implants)                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      |                                                                                                                                                                                                                                                                     | Note:For this component, focus only on the outcomes that are reported in the<br>results.For our purposes, we will focus on the primary outcome of interest of our<br>systematic review, which is major malformations.                                                                                                                                                                         |
|                                      | 0,00                                                                                                                                                                                                                                                                | <ul> <li>For studies focusing on 'birth' outcomes (i.e. malformations, preterm, fetal losses, born small), the answer is 'A' if they follow the groups until birth.</li> <li>For studies focusing on cognitive developmental disorders, an</li> </ul>                                                                                                                                         |
|                                      | 6                                                                                                                                                                                                                                                                   | <ul> <li>adequate follow-up period (i.e. child's age) is 4 years.</li> <li>For studies focusing on psychomotor delays, an adequate follow-up period is the earliest point of detection of the disorder.</li> <li>For studies focusing on neonatal seizures, an adequate follow-up period (i.e. infant's age) is 6 months.</li> </ul>                                                          |
| 3) Adequacy of                       | a) complete follow up - all                                                                                                                                                                                                                                         | This item assesses the follow-up of the exposed and non-exposed cohorts                                                                                                                                                                                                                                                                                                                       |
| follow up of                         | subjects accounted for                                                                                                                                                                                                                                              | to ensure that losses are not related to either the exposure or the outcome.                                                                                                                                                                                                                                                                                                                  |
| cohorts                              | <ul> <li>b) subjects lost to follow up<br/>unlikely to introduce bias -<br/>small number lost (see<br/>'Note'), or description<br/>provided of those lost</li> <li>c) follow up rate is inadequate<br/>(see 'Note') and no<br/>description of those lost</li> </ul> | <ul> <li><u>Note:</u></li> <li><u>Especially check ones that start their total sample size (or figure diagram) with only the ones who had "complete" data (or only those who they had "successfully" recruited), as these are often a 'D' (since they don't report on the ones NOT followed up).</u></li> <li>For a prospective study. &gt;90% follow-up rate per year is adequate</li> </ul> |
|                                      | d) no statement                                                                                                                                                                                                                                                     | <ul> <li>(e.g., 10% dropout or less for 1 year, 20% for 2 years of follow-up, etc.). This includes missing or incomplete data, etc.</li> <li>For a retrospective cohort study, ≥80% follow-up rate is adequate; including the ones that they could NOT recruit or who would NOT participate.</li> <li>For a survey/mail questionnaire, ≥75% response rate is adequate. (For</li> </ul>        |

|  | a survey, a dropout rate is congruent to a survey response rate). |
|--|-------------------------------------------------------------------|
|--|-------------------------------------------------------------------|

#### **CASE-CONTROL Studies**

| Excel Column                              | NOS* Answer Options**                                                                                                                             | NOS Coding Manual*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RefID                                     | Enter the report's RefID.                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DA                                        | Enter your initials.                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| First author                              | Enter the first author's last name.                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Year of publication                       | Enter the year of the publication.                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SELECTION:                                |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1) Is the case<br>definition<br>adequate? | <ul> <li>a) yes, with independent validation</li> <li>b) yes, e.g., record linkage or based on self-reports</li> <li>c) no description</li> </ul> | <ul> <li>a) Requires some independent validation (e.g. &gt;1 person/record/time/<br/>process to extract information, or reference to primary record source<br/>such as x-rays or medical/hospital records)</li> <li>b) Record linkage (e.g. ICD codes in database) or self-report with no<br/>reference to primary record</li> <li>c) No description</li> </ul> Note: This question is assessing the group of infants that have the outcome of<br>interest (a.g., CMs), i.e. the "cases" in a case control study design. |
| 2) Representative-<br>ness of the cases   | <ul> <li>a) consecutive or obviously<br/>representative series of cases</li> <li>b) potential for selection biases,<br/>or not stated</li> </ul>  | <ul> <li>a) All eligible cases with outcome of interest over a defined period of time, all cases in a defined catchment area, all cases in a defined hospital or clinic, group of hospitals, health maintenance organisation, or an appropriate sample of those cases (e.g. random sample)</li> <li>b) Not satisfying requirements in part (a), or not stated.</li> <li><u>Note:</u><br/>Option 'A' is a population-based sample.</li> </ul>                                                                             |
| 3) Selection of<br>controls               | <ul><li>a) community controls</li><li>b) hospital controls</li><li>c) no description</li></ul>                                                    | This item assesses whether the control series used in the study is derived<br>from the same population as the cases and essentially would have been<br>cases had the outcome been present.                                                                                                                                                                                                                                                                                                                               |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| 4) Definition of controls                                                                 | <ul> <li>a) no history of disease<br/>(endpoint)</li> <li>b) no description of source</li> </ul>                                                                    | <ul> <li>a) Community controls (i.e. same community as cases and would be cases if had outcome)</li> <li>b) Hospital controls, within same community as cases (i.e. not another city) but derived from a hospitalised population</li> <li>c) No description</li> <li><u>Note:</u><br/>This question is assessing the group of infants that don't have the outcome (e.g., CMs) – i.e. the "controls" in a case-control study design.</li> <li><u>Community controls (A) includes a population-based sample.</u></li> <li>a) If cases are first occurrence of outcome, then it must explicitly state that controls have no history of this outcome. If cases have new (not necessarily first) occurrence of outcome, then controls with previous occurrences of outcome of interest should not be excluded.</li> <li>b) No mention of history of outcome</li> </ul> |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                           |                                                                                                                                                                     | Note:<br>Since our review is on fetal effects, this question is 'A' for all studies.<br>Please email us if a study involves exposure during breastfeeding.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| COMPARABILITY                                                                             | :                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1) Comparability<br>of cases and<br>controls on the<br>basis of the design<br>or analysis | <ul> <li>a) answer is BOTH B &amp; C (i.e. study controls for age and one other important factor)</li> <li>b) study controls for age of the women</li> </ul>        | Either cases and controls must be matched in the design and/or<br>confounders must be adjusted for in the analysis. Statements of no<br>differences between groups or that differences were not statistically<br>significant are not sufficient for establishing comparability.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| or anary 515                                                                              | <ul> <li>c) study controls for any other<br/>important factor</li> <li>d) study does not control for any<br/>important factor or it is not<br/>described</li> </ul> | Note: If the odds ratio for the exposure of interest is adjusted for the confounders listed, then the groups will be considered to be comparable on each variable used in the adjustment.<br>There may be multiple ratings for this item for different categories of exposure (e.g. ever vs. never, current vs. previous or never). [A maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

|                              |                                                                                                                                                                        | of 2 stars can be allotted in this category].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              |                                                                                                                                                                        | <ul> <li><u>Note:</u><br/>The study should have initially matched the groups, AND in addition, since in our review we are analyzing each AED arm separately (instead of the whole cases group), the study must also report the factor of interest for 'each AED arm' (or state that 'each AED arm' is matched).</li> <li>For our review, this generally pertains to the comparability of the MOTHERS of the cases and controls.<br/>The exception here is in studies of cognitive/psychomotor development disorders in children - when age of the children should be comparable.</li> <li>The "other important factors" here are any one of these:</li> <li>history of congenital malformations (CMs), fetal losses, preterm deliveries or small babies.</li> <li>family history of genetic problems or CMs.</li> <li>alcohol use.</li> <li>nutritional deficiencies (e.g., lack of folic acid).</li> <li>For example, Option 'B' indicates that the study initially matched groups based on the women's age AND they report the mean women's age for EACH arm (e.g., for Tx1, Tx2, etc.).</li> </ul> |
| EXPOSURE:                    |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1) Assessment of<br>exposure | <ul> <li>a) secure record (e.g., surgical records)</li> <li>b) structured interview where blind to case/control status</li> <li>c) interview not blinded to</li> </ul> | Note:<br>Option 'A' includes patient hospital records, prescription drug database,<br>or hospital/clinic visits (e.g., patient is asked about "current" AED use<br>during a visit with their doctor).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              | <ul><li>case/control status</li><li>d) written self-report or medical</li></ul>                                                                                        | "Interview" here includes a hospital/clinic visit, but the patients are asked<br>to remember their AED use during pregnancy (e.g., retrospectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                              |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Page 63 of 90

**BMJ** Open

|                    | record only                  | ascertained exposure).                                                         |
|--------------------|------------------------------|--------------------------------------------------------------------------------|
|                    | e) no description            |                                                                                |
| 2) Same method of  | a) yes                       | Note:                                                                          |
| ascertainment for  | b) no                        | This question is asking whether the method of <u>ascertainment of exposure</u> |
| cases and controls |                              | was the same for 'cases' (with the outcome) and 'controls' (without the        |
|                    |                              | outcome; in this case-control study design).                                   |
| 3) Non-response    | a) same rate for both groups | Note:                                                                          |
| rate               | b) non-respondents described | For our review, this pertains to either the infants or the mothers of the      |
|                    | c) rate different and no     | case and control groups.                                                       |
|                    | designation                  |                                                                                |
|                    |                              | We're allowing 10% dropout per year for a prospective study – e.g., 10%        |
|                    |                              | for 1 year, 20% for 2 years of follow-up, etc.                                 |
|                    |                              |                                                                                |
|                    |                              | For a survey, we allow for a 75% response rate in order for it be adequate.    |
|                    |                              |                                                                                |
|                    |                              | For a survey, a dropout rate is congruent to a survey response rate.           |

\*Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, Tugwell P. The Newcastle-Ottawa Scale (NOS) for assessing the quality of non-randomised studies in meta-analyses. Available at: <u>http://www.ohri.ca/programs/clinical\_epidemiology/oxford.asp</u>

\*\*In the **"NOS Coding Manual" column**, the first section for each item is copied straight from the NOS documentation while the lower portions in each item are our "Notes" tailored for the AED review.

#### Appendix B. List of included studies

A total of 29 cohort studies  $^{1-29}$  with 9 companion reports  $^{30-38}$  were included:

1. Adab N, Kini U, Vinten J, et al. The longer term outcome of children born to mothers with epilepsy. *J Neurol Neurosurg Psychiatry*. 2004;75(11):1575-83.

2. Arkilo D, Hanna J, Dickens D, et al. Pregnancy and neurodevelopmental outcomes with in-utero antiepileptic agent exposure. A pilot study. *Eur J Paediatr Neurol*. 2015;19(1):37-40.

3. Bromley R, Baxter N, Calderbank R, Mawer G, Clayton-Smith J, Baker G. A comprehensive review of the language abilities of children exposed to valproate or carbamazepine in utero. American Epilepsy Society; Texas2010.

4. Bromley RL, Mawer GE, Briggs M, et al. The prevalence of neurodevelopmental disorders in children prenatally exposed to antiepileptic drugs. *J Neurol Neurosurg Psychiatry*. 2013;84(6):637-43.

5. Bromley RL, Calderbank R, Cheyne CP, et al. Cognition in school-age children exposed to levetiracetam, topiramate, or sodium valproate. *Neurology*. 2016;87(18):1943-53.

6. Christensen J, Gronborg TK, Sorensen MJ, et al. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. *JAMA*. 2013;309(16):1696-703.

7. Cohen MJ, Meador KJ, Browning N, et al. Fetal antiepileptic drug exposure: Adaptive and emotional/behavioral functioning at age 6years. *Epilepsy Behav.* 2013;29(2):308-15.

8. Cummings C, Stewart M, Stevenson M, Morrow J, Nelson J. Neurodevelopment of children exposed in utero to lamotrigine, sodium valproate and carbamazepine. *Arch Dis Child*. 2011;96(7):643-7.

9. Dean JCS, Hailey H, Moore SJ, Lloyd DJ, Turnpenny PD, Little J. Long term health and neurodevelopment in children exposed to antiepileptic drugs before birth. *J Med Genet*. 2002;39(4):251-9.

10. D'Souza SW, Robertson IG, Donnai D, Mawer G. Fetal phenytoin exposure, hypoplastic nails, and jitteriness. *Arch Dis Child*. 1991;66(3):320-4.

11. Eriksson K, Viinikainen K, Mönkkönen A, et al. Children exposed to valproate in utero—Population based evaluation of risks and confounding factors for long-term neurocognitive development. *Epilepsy Res.* 2005;65(3):189-200.

12. Gaily E. Development and growth in children of epileptic mothers: a prospective controlled study. Helsinki, Finland: University of Helsinki; 1990.

13. Gogatishvili N, Ediberidze T, Lomidze G, Tatishvili N, Kasradze S. PO-0834 Long-term Developmental Outcome Of Children Prenatally Exposed To Antiepileptic Drugs. *Arch Dis Child*. 2014;99(Suppl 2):A526.

14. Gogatishvili N, Ediberidze T, Lomidze G, Tatishvili N, Kasradze S. Cognitive outcomes of children with fetal antiepileptic drug exposure at the age of 3-6 years-preliminary data. 1st Congress of the European Academy of Neurology; Berlin: European Journal of Neurology; 2015. p. 329.

15. Hurault-Delarue C, Damase-Michel C, Finotto L, et al. Psychomotor developmental effects of prenatal exposure to psychotropic drugs: a study in EFEMERIS database. *Fundam Clin Pharmacol*. 2016;30(5):476-82.

16. Jones KL, Lacro RV, Johnson KA, Adams J. Pattern of malformations in the children of women treated with carbamazepine during pregnancy. *N Engl J Med.* 1989;320(25):1661-6.

17. Katz JM, Pacia SV, Devinsky O. Current Management of Epilepsy and Pregnancy: Fetal Outcome, Congenital Malformations, and Developmental Delay. Epilepsy Behav. 2001;2(2):119-23.

18. Koch S, Jager-Roman E, Losche G, Nau H, Rating D, Helge H. Antiepileptic drug treatment in pregnancy: drug side effects in the neonate and neurological outcome. Acta Paediatr. 1996:85(6):739-46.

Mawer G, Clayton-Smith J, Coyle H, Kini U. Outcome of pregnancy in women attending 19. an outpatient epilepsy clinic: adverse features associated with higher doses of sodium valproate. Seizure. 2002;11(8):512-8.

Miskov S, Juraski RG, Fucic A, et al. Croatian Pregnant Women with Epilepsy and 20. Effects of Antiepileptic Drugs Exposure in their Offspring - seven years of prospective surveillance. American Epilepsy Society; Texas2010.

Miskov S, Juraski RG, Mikula I, et al. The Croatian model of integrative prospective 21. management of epilepsy and pregnancy. Acta Clin Croat. 2016;55(4):535-48.

Nadebaum C, Anderson VA, Vajda F, Reutens DC, Barton S, Wood AG. Language skills 22. of school-aged children prenatally exposed to antiepileptic drugs. *Neurology*. 2011;76(8):719-26.

23. Rihtman T, Parush S, Ornoy A. Developmental outcomes at preschool age after fetal exposure to valproic acid and lamotrigine: cognitive, motor, sensory and behavioral function. Reprod Toxicol. 2013;41:115-25.

24. Scolnik D, Nulman I, Rovet J, et al. Neurodevelopment of children exposed in utero to phenytoin and carbamazepine monotherapy. JAMA. 1994;271(10):767-70.

Shankaran S, Woldt E, Nelson J, Bedard M, Delaney-Black V. Antenatal phenobarbital 25. therapy and neonatal outcome. II: Neurodevelopmental outcome at 36 months. *Pediatrics*. 1996;97(5):649-52.

van der Pol MC, Hadders-Algra M, Huisjes HJ, Touwen BC. Antiepileptic medication in 26. pregnancy: late effects on the children's central nervous system development. Am J Obstet Gynecol. 1991;164(1 Pt 1):121-8.

Veiby G, Engelsen BA, Gilhus NE. Early child development and exposure to 27. antiepileptic drugs prenatally and through breastfeeding: a prospective cohort study on children of women with epilepsy. JAMA Neurol. 2013;70(11):1367-74.

Veiby G, Daltveit AK, Schjolberg S, et al. Exposure to antiepileptic drugs in utero and 28. child development: a prospective population-based study. *Epilepsia*. 2013;54(8):1462-72.

Wood AG, Nadebaum C, Anderson V, et al. Prospective assessment of autism traits in 29. children exposed to antiepileptic drugs during pregnancy. *Epilepsia*. 2015;56(7):1047-55.

Bromley RL, Mawer G, Clayton-Smith J, Baker GA. Autism spectrum disorders 30. following in utero exposure to antiepileptic drugs. Neurology. 2008;71(23):1923-4.

Gaily EK, Granstrom ML, Hillesmaa VK, Bardy AH. Head circumference in children of 31. epileptic mothers: contributions of drug exposure and genetic background. *Epilepsy Res.* 1990;5(3):217-22.

Hillesmaa V. A prospective study on maternal and fetal outcome in 139 women with 32. epilepsy. Helsinki: University of Helsinki; 1982.

Hiilesmaa VK, Bardy A, Teramo K. Obstetric outcome in women with epilepsy. Am J 33. Obstet Gynecol. 1985;152(5):499-504.

Rasalam AD, Hailey H, Williams JH, et al. Characteristics of fetal anticonvulsant 34. syndrome associated autistic disorder. Dev Med Child Neurol. 2005;47(8):551-5.

35. Tomson T, Battino D, Bonizzoni E, et al. Antiepileptic drugs and intrauterine death: A prospective observational study from EURAP. *Neurology*. 2015;85(7):580-8.

36. Viinikainen K, Eriksson K, Monkkonen A, et al. The effects of valproate exposure in utero on behavior and the need for educational support in school-aged children. *Epilepsy Behav*. 2006;9(4):636-40.

37. Vinten J, Adab N, Kini U, Gorry J, Gregg J, Baker GA. Neuropsychological effects of exposure to anticonvulsant medication in utero. *Neurology*. 2005;64(6):949-54.

38. Vinten J, Bromley RL, Taylor J, Adab N, Kini U, Baker GA. The behavioral consequences of exposure to antiepileptic drugs in utero. Epilepsy Behav. 2009;14(1):197-201. 

### Appendix C. Key excluded studies

| Author,<br>Year                   | Research Group                                                                                            | Title                                                                                                                   | Reason for Exclusion                              |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Meador,<br>2009 <sup>39</sup>     | Neurodevelopmental<br>Effects of Antiepileptic<br>Drug (NEAD) Study<br>Group                              | Cognitive Function at 3 Years of Age after Fetal Exposure to<br>Antiepileptic Drugs                                     | Outcomes only reported<br>as continuous variables |
| Meador,<br>2010 <sup>40</sup>     | Neurodevelopmental<br>Effects of Antiepileptic<br>Drug (NEAD) Study<br>Group                              | Effects of breastfeeding in children of women taking antiepileptic drugs                                                | Outcomes only reported as continuous variables    |
| Meador,<br>2011 <sup>41</sup>     | Neurodevelopmental<br>Effects of Antiepileptic<br>Drug (NEAD) Study<br>Group                              | Foetal antiepileptic drug exposure and verbal versus non-verbal abilities at three years of age                         | Outcomes only reported<br>as continuous variables |
| Meador,<br>2012 <sup>42</sup>     | Neurodevelopmental<br>Effects of Antiepileptic<br>Drug (NEAD) Study<br>Group                              | Effects of fetal antiepileptic drug exposure: Outcomes at age 4.5 years                                                 | Outcomes only reported<br>as continuous variables |
| Meador,<br>2013 <sup>43</sup>     | Neurodevelopmental<br>Effects of Antiepileptic<br>Drug (NEAD) Study<br>Group                              | Fetal antiepileptic drug exposure and cognitive outcomes at age 6 years (NEAD study): a prospective observational study | Outcomes only reported<br>as continuous variables |
| Shallcross,<br>2011 <sup>44</sup> | Liverpool and<br>Manchester<br>Neurodevelopment<br>Group and The UK<br>Epilepsy and Pregnancy<br>Register | Child development following in utero exposure:<br>Levetiracetam vs. sodium valproate                                    | Outcomes only reported<br>as continuous variables |
| Shallcross, 2014 <sup>45</sup>    | Liverpool and<br>Manchester                                                                               | In utero exposure to levetiracetam vs. valproate:<br>Development and language at 3 years of age                         | Outcomes only reported as continuous variables    |

| Neurodevelopment       |  |
|------------------------|--|
| Group and The UK       |  |
| Epilepsy and Pregnancy |  |
| Register               |  |

#### References

39. Meador KJ, Baker GA, Browning N, et al. Cognitive function at 3 years of age after fetal exposure to antiepileptic drugs. *N Engl J Med.* 2009;360(16):1597-605.

40. Meador KJ, Baker GA, Browning N, et al. Effects of breastfeeding in children of women taking antiepileptic drugs. *Neurology*. 2010;75(22):1954-60.

41. Meador KJ, Baker GA, Browning N, et al. Foetal antiepileptic drug exposure and verbal versus non-verbal abilities at three years of age. *Brain*. 2011;134(Pt 2):396-404.

42. Meador KJ, Baker GA, Browning N, et al. Effects of fetal antiepileptic drug exposure: outcomes at age 4.5 years. *Neurology*. 2012;78(16):1207-14.

43. Meador KJ, Baker GA, Browning N, et al. Fetal antiepileptic drug exposure and cognitive outcomes at age 6 years (NEAD study): a prospective observational study. *Lancet Neurol*. 2013;12(3):244-52.

44. Shallcross R, Bromley RL, Irwin B, Bonnett LJ, Morrow J, Baker GA. Child development following in utero exposure: levetiracetam vs sodium valproate. *Neurology*. 2011;76(4):383-9.

45. Shallcross R, Bromley RL, Cheyne CP, et al. In utero exposure to levetiracetam vs valproate: development and language at 3 years of age. *Neurology*. 2014;82(3):213-21.

| Author, Year                                                                                  | Country of conduct | Registry or Setting                                                                                                                                      | Study<br>period | Interventions                           | Outcomes                                                                      | Funding                      |
|-----------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------|-------------------------------------------------------------------------------|------------------------------|
| Adab, 2004 <sup>*1</sup><br>[CR: Vinten<br>2005 <sup>37</sup> Vinten,<br>2009 <sup>38</sup> ] | UK                 | Mersey Regional<br>Epilepsy Clinic;<br>Epilepsy Clinic at the<br>Manchester Royal<br>Infirmary; Antenatal<br>clinic at St Mary's<br>Hospital, Manchester | 2000-<br>2001   | Carbam, Control, Valpro                 | Cognitive<br>Developmental<br>Delay,<br>Psychomotor<br>Developmental<br>Delay | NR                           |
| Arkilo, 2015 <sup>2</sup>                                                                     | USA                | Minnesota Epilepsy<br>Group                                                                                                                              | 2006-<br>2011   | Carbam, Lamot, Levet,<br>Pheny, Valpro  | Autism/Dyspraxia,<br>Psychomotor<br>Developmental<br>Delay                    | NR                           |
| Bromley, 2010 <sup>3</sup>                                                                    | UK                 | Liverpool and<br>Manchester<br>Neurodevelopment<br>Group                                                                                                 | NR              | Carbam, Valpro                          | Language Delay                                                                | NR                           |
| Bromley, 2013 <sup>4</sup><br>[CR: Bromley,<br>2008 <sup>30</sup> ]                           | UK                 | Liverpool and<br>Manchester<br>Neurodevelopment group                                                                                                    | 2000-<br>2004   | Carbam, Control, Lamot,<br>Valpro       | Autism/Dyspraxia,<br>ADHD                                                     | mixed<br>public &<br>private |
| Bromley,<br>2016 <sup>5</sup> †                                                               | UK                 | UK Epilepsy and<br>Pregnancy Register                                                                                                                    | 2004-<br>2007   | Control, Gabap, Levet,<br>Topir, Valpro | Cognitive<br>Developmental<br>Delay                                           | public                       |
| Christensen,<br>2013 <sup>6</sup> †                                                           | Denmark            | Danish Civil Registration<br>System; Danish<br>Prescription Register;<br>Danish Psychiatric<br>Central Register; Danish<br>Birth Register; Danish        | 1996-<br>2006   | Carbam, Clonaz, Lamot,<br>Oxcar, Valpro | Autism/Dyspraxia                                                              | public                       |

|                                                                                |                     | National Hospital<br>Register                                                                           |               |                                                                                                                                           |                                                                            |        |
|--------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------|
| Cohen, 2013 <sup>7</sup>                                                       | USA;UK              | Neurodevelopmental<br>Effects of Antiepileptic<br>Drugs Study Group                                     | 1999-<br>2004 | Carbam, Lamot, Pheny,<br>Valpro,                                                                                                          | ADHD                                                                       | public |
| Cummings,<br>2011 <sup>8</sup> † [CR:<br>Tomson,<br>2015 <sup>35</sup> ]       | Northern<br>Ireland | UK Epilepsy and<br>Pregnancy Register<br>(Northern Ireland);<br>Northern Ireland Child<br>Health System | 1996-<br>2005 | Carbam, Lamot, Valpro,                                                                                                                    | Cognitive<br>Developmental<br>Delay                                        | public |
| Dean, 2002 <sup>9</sup><br>[CR: Rasalam,<br>2005 <sup>34</sup> ]               | Scotland            | Aberdeen Maternity<br>Hospital                                                                          | 1976-<br>2000 | Carbam, Carbam+Pheno,<br>Carbam+Pheny,<br>Carbam+Valpro, Control,<br>Ethos, Pheno, Pheno+Pheny,<br>Pheno+Valpro, Pheny,<br>Primid, Valpro | Psychomotor<br>Developmental<br>Delay,<br>ADHD                             | NR     |
| D'Souza,<br>1991 <sup>10</sup>                                                 | United<br>Kingdom   | St Mary's Hospital                                                                                      | 1980-<br>1982 | Carbam, Control, Pheno,<br>Pheny, Valpro                                                                                                  | Cognitive<br>Developmental<br>Delay                                        | public |
| Eriksson,<br>2005 <sup>11</sup> † [CR:<br>Viinikainen,<br>2006 <sup>36</sup> ] | Finland             | Kuopio University<br>Hospital                                                                           | 1989-<br>2000 | Carbam, Control, Valpro                                                                                                                   | Cognitive<br>Developmental<br>Delay, Psychomotor<br>Developmental<br>Delay | public |

| Page | 71 | of | 90 |  |
|------|----|----|----|--|
|------|----|----|----|--|

| Gaily, 1990 <sup>12</sup><br>[CR: Gaily,<br>1990 <sup>31</sup> ;<br>Hiilesmaa,<br>1982 <sup>32</sup> ;<br>Hiilesmaa,<br>1985 <sup>33</sup> ] | Finland | Helsinki University<br>Central Hospital                                                                                                                               | 1975-<br>1979 | Carbam,<br>Carbam+Pheno+Pheny,<br>Carbam+Pheny,<br>Carbam+Valpro, Control,<br>Ethos+Pheny, Pheno+Pheny,<br>Pheny, Pheny+Primid,<br>Pheny+Valpro | Cognitive<br>Developmental<br>Delay ,<br>Psychomotor<br>Developmental<br>Delay | mixe<br>publ<br>priva |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------|
| Gogatishvili,<br>2014 <sup>13</sup>                                                                                                          | Georgia | Georgian National AED-<br>Pregnancy Registry                                                                                                                          | NR            | Carbam, Lamot, Valpro                                                                                                                           | Cognitive<br>Developmental<br>Delay                                            | publ                  |
| Gogatishvili,<br>2015 <sup>14</sup>                                                                                                          | Georgia | Georgian National AED-<br>Pregnancy Registry                                                                                                                          | NR            | Carbam, Carbam+Levet,<br>Lamot, Pheno, Valpro                                                                                                   | Language Delay                                                                 | publi                 |
| Hurault-<br>Delarue, 2012 <sup>15</sup>                                                                                                      | France  | EFEMERIS database -<br>Caisse Primaire<br>d'Assurance Maladie of<br>Haute-Garonne and<br>Maternal and Infant<br>Protection Service;<br>Antenatal Diagnostic<br>Centre | 2004-<br>2008 | Carbam, Clobaz, Clonaz,<br>Gabap, Lamot, Pheno, Topir,<br>Valpro                                                                                | Psychomotor<br>Developmental<br>Delay                                          | NR                    |
| Jones, 1989 <sup>16</sup> †                                                                                                                  | US      | California Teratogen<br>Registry                                                                                                                                      | 1979-<br>1988 | Carbam, Carbam+Pheno,<br>Carbam+Pheno+Valpro,<br>Carbam+Primid                                                                                  | Cognitive<br>Developmental<br>Delay ,<br>Psychomotor<br>Developmental<br>Delay | publi                 |
| Katz, 2001 <sup>17</sup>                                                                                                                     | USA     | Mount Sinai<br>Comprehensive Epilepsy<br>Center                                                                                                                       | 1990-<br>2000 | Carbam, Control, Lamot,<br>Pheno, Pheny, Primid,<br>Valpro                                                                                      | Cognitive<br>Developmental<br>Delay                                            | NR                    |

| Koch, 1996 <sup>18</sup>           | Germany   | NR                                                                                                                                       | 1976-<br>1983 | Pheno, Pheny, Primid,<br>Valpro                                                                                                                           | Cognitive<br>Developmental<br>Delay                         | public                       |
|------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------|
| Mawer, 2002 <sup>19</sup>          | England   | Manchester Royal<br>Infirmary                                                                                                            | 1990-<br>1999 | Carbam, Lamot, Pheny,<br>Valpro                                                                                                                           | Cognitive<br>Developmental<br>Delay                         | NR                           |
| Miskov, 2010 <sup>20</sup>         | Croatia   | NR                                                                                                                                       | 2003-<br>2010 | Carbam, Control, Gabap,<br>Lamot, Valpro                                                                                                                  | Psychomotor<br>Developmental<br>Delay, Neonatal<br>Seizures | NR                           |
| Miskov, 2016 <sup>21</sup>         | Croatia   | Sestre milosrdnice<br>University Hospital<br>Center                                                                                      | 2003-<br>2013 | Carbam, Carbam+Lamot,<br>Carbam+Pheno,<br>Carbam+Pheny+Topir,<br>Control, Clonaz+Valpro,<br>Gabap, Lamot, Oxcar,<br>Pheno, Pheny,<br>Topir+Valpro, Valpro | Attention Deficit<br>Hyperactivity<br>Disorder              | NR                           |
| Nadebaum,<br>2011 <sup>22</sup> ;† | Australia | Australian Registry of<br>Antiepileptic Drug Use in<br>Pregnancy                                                                         | 2007-<br>2009 | Carbam, Lamot, Valpro                                                                                                                                     | Language Delay                                              | mixed<br>public &<br>private |
| Rihtman,<br>2013 <sup>23</sup>     | Israel    | Israeli Teratogen<br>Information Service                                                                                                 | NR            | Lamot, Valpro                                                                                                                                             | Neonatal Seizure                                            | mixed<br>public &<br>private |
| Scolnik, 1994 <sup>24</sup>        | Canada    | Hospital for Sick<br>Children - Motherisk<br>Program;<br>North York General<br>Hospital; Toronto<br>Hospital;<br>Oshawa General Hospital | 1987-<br>1992 | Carbam, Pheny                                                                                                                                             | Cognitive<br>Developmental<br>Delay                         | public                       |

| Page | 73 | of | 90 |
|------|----|----|----|
| 1    |    |    |    |

| Shankaran,<br>1996 <sup>25</sup>   | USA         | Children's Hospital of<br>Michigan                                        | NR            | Control, Pheno                                                                   | Psychomotor<br>Developmental<br>Delay, Language<br>Delay                               | public |
|------------------------------------|-------------|---------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------|
| Van der Pol,<br>1991 <sup>26</sup> | Netherlands | Groningen University<br>Hospital                                          | 1973-<br>1981 | Carbam, Carbam+Pheno,<br>Control, Pheno                                          | Psychomotor<br>Developmental<br>Delay                                                  | public |
| Veiby,<br>2013a <sup>27</sup> †    | Norway      | Norwegian Institute of<br>Public Health- Mother<br>and Child Cohort Study | 1999-<br>2009 | Carbam, Control, Lamot,<br>Valpro                                                | Social Impairment                                                                      | public |
| Veiby,<br>2013b <sup>28</sup> †    | Norway      | Medical Birth Registry of<br>Norway                                       | 1999-<br>2008 | Carbam, Control, Lamot,<br>Valpro                                                | Psychomotor<br>Developmental<br>Delay,<br>Autism/Dyspraxia,<br>Language Delay,<br>ADHD | public |
| Wood, 2015 <sup>29</sup> †         | Australia   | Australian Registry of<br>Antiepileptic Drug Use in<br>Pregnancy          | 2007-<br>2010 | Carbam, Carbam+Clonaz,<br>Carbam+Lamot,<br>Carbam+Pheny,<br>Lamot+Valpro, Valpro | Autism/Dyspraxia                                                                       | public |

Carbam = Carbamazepine; Clobaz = Clobazam; Clonaz = Clonazepam; Ethos = Ethosuximide; Gabap = Gabapentin; Lamot = Lamotrigine; Levet = Levetiracetam; Oxcar = Oxcarbazepine; Pheno = Phenobarbital; Pheny = Phenytoin; Primid = Primidone; Topir = Topiramate; Valpro = Valproate; Vigab = Viagabatrin

\*Single publication reporting on two separate cohorts †Registry Studies

| Author, Year                                                                                   | Indication | Sample<br>Size* | Mean Age<br>(Women) | Mean Age<br>(Children)/<br>Follow-up<br>period† | AED<br>Exposure<br>Timing | Maternal<br>Alcohol Use<br>n/N‡ | Maternal<br>Tobacco Use<br>n/N‡ |
|------------------------------------------------------------------------------------------------|------------|-----------------|---------------------|-------------------------------------------------|---------------------------|---------------------------------|---------------------------------|
| Adab, 2004a <sup>1</sup> §<br>[CR: Vinten 2005 <sup>37</sup> ;<br>Vinten, 2009 <sup>38</sup> ] | Epilepsy   | 177             | 26.1                | 9-10.5                                          | NR                        | 24/279‡                         | 68/249‡                         |
| Adab, 2004b <sup>1</sup> §<br>[CR: Vinten 2005 <sup>37</sup> ;<br>Vinten, 2009 <sup>38</sup> ] | Epilepsy   | 81              | 26.1                | 3-3.33                                          | NR                        | 24/279‡                         | 68/249‡                         |
| Arkilo, $2015^2$                                                                               | Epilepsy   | 59              | NR                  | NA                                              | First trimester           | NR                              | NR                              |
| Bromley, 2010 <sup>3</sup>                                                                     | NR         | 60              | NR                  | 6-7                                             | Whole<br>pregnancy        | NR                              | NR                              |
| Bromley, 2013 <sup>4</sup><br>[CR: Bromley, 2008 <sup>30</sup> ]                               | Epilepsy   | 156             | 28                  | 6                                               | NR                        | 28/156                          | 42/156                          |
| Bromley, 2016 <sup>5</sup>                                                                     | Epilepsy   | 185             | NR                  | NR                                              | NR                        | 31/185                          | 35/185                          |
| Christensen, 2013 <sup>6</sup>                                                                 | NR         | 2011            | NR                  | NR                                              | Whole<br>pregnancy        | NR                              | NR                              |
| Cohen, 2013 <sup>7</sup>                                                                       | Epilepsy   | 108             | 30                  | 6                                               | NR                        | 12/192‡                         | NR                              |
| Cummings, 2011 <sup>8</sup><br>[CR: Tomson, 2015 <sup>35</sup> ]                               | Epilepsy   | 142             | NR                  | 2-3                                             | Whole pregnancy           | 32/108‡                         | 19/108‡                         |
| Dean, 2002 <sup>9</sup><br>[CR: Rasalam, 2005 <sup>34</sup> ]                                  | Epilepsy   | 287             | 27                  | 3.75-15.5                                       | First trimester           | NR                              | NR                              |
| D'Souza, 1991 <sup>10</sup>                                                                    | Epilepsy   | 42              | 26.5                | 2.5-3.5                                         | Whole pregnancy           | NR                              | NR                              |
| Eriksson, 2005 <sup>11</sup><br>[CR: Viinikainen, 2006 <sup>36</sup> ]                         | Epilepsy   | 39              | 28.2                | NR                                              | NR                        | NR                              | NR                              |

| Gaily, 1990 <sup>12</sup>                                           |          |     |      |        |                    |    |         |
|---------------------------------------------------------------------|----------|-----|------|--------|--------------------|----|---------|
| [CR: Gaily, 1990 <sup>31</sup> ;<br>Hiilesmaa, 1982 <sup>32</sup> ; | Epilepsy | 134 | 27.8 | 5.5    | First trimester    | NR | NR      |
| Hiilesmaa, 1985 <sup>33</sup>                                       |          |     |      |        |                    |    |         |
| Gogatishvili, 2014 <sup>13</sup>                                    | NR       | 39  | NR   | 2 to 4 | NR                 | NR | NR      |
| Gogatishvili, 2015 <sup>14</sup>                                    | NR       | 23  | NR   | 3 to 6 | NR                 | NR | NR      |
| Hurault-Delarue, 2012 <sup>15</sup>                                 | NR       | 109 | NR   | 0.75   | NR                 | NR | NR      |
| Jones, 1989 <sup>16</sup>                                           | Epilepsy | 63  | NR   | NR     | Whole<br>pregnancy | NR | NR      |
| Katz, 2001 <sup>17</sup>                                            | Epilepsy | 51  | 31   | NR     | NR                 | NR | NR      |
| Koch, 1996 <sup>18</sup>                                            | Epilepsy | 40  | NR   | 6      | First trimester    | NR | NR      |
| Mawer, 2002 <sup>19</sup>                                           | Epilepsy | 52  | NR   | NR     | NR                 | NR | NR      |
| Miskov, 2010 <sup>20</sup>                                          | Epilepsy | 55  | NR   | NR     | NR                 | NR | NR      |
| Miskov, 2016 <sup>21</sup>                                          | Epilepsy | 74  | 34   | NR     | NR                 | NR | 6/74    |
| Nadebaum, 2011 <sup>22</sup>                                        | Epilepsy | 66  | 31.6 | 7.4    | First trimester    | NR | 5/66    |
| Rihtman, 2013 <sup>23</sup>                                         | Epilepsy | 72  | NR C | NR     | Whole<br>pregnancy | NR | NR      |
| Scolnik, 1994 <sup>24</sup>                                         | Epilepsy | 75  | NR   | 1.5-3  | 1st trimester      | NR | NR      |
| Shankaran, 1996 <sup>25</sup>                                       | NR       | 96  | NR   | NR     | NR                 | NR | NR      |
| Van der Pol, 1991 <sup>26</sup>                                     | Epilepsy | 57  | NR   | 6-13   | NR                 | NR | NR      |
| Veiby, 2013a <sup>27</sup>                                          | Epilepsy | 422 | NR   | 0.5    | NR                 | NR | NR      |
| Veiby, 2013b <sup>28</sup>                                          | Epilepsy | 248 | 28.9 | 3      | NR                 | NR | 68/726‡ |
| Wood, 2015 <sup>29</sup>                                            | Epilepsy | 77  | NR   | 6-8    | NR                 | NR | NR      |

\* Sample size used for analysis; ineligible treatment arms (i.e. treatment arms with excluded drugs or unspecified polytherapy) are not included in the count

<sup>†</sup> The mean age for children/follow-up period data were only collected for outcomes related to cognitive and/or psychomotor development

‡ Total sample size is based on the number of women enrolled in the study; may differ from the sample size used for analysis

§ Single publication reporting on two separate cohorts

Appendix F. Methodological quality of observational studies – Newcastle Ottawa Scale results

| First Author,<br>Year               | Representativen<br>ess of the<br>exposed cohort | Selection<br>of the<br>non-<br>exposed<br>cohort | Ascertainme<br>nt of<br>exposure | Demonstratio<br>n that<br>outcome of<br>interest was<br>not present<br>at start of<br>study | Comparabili<br>ty of cohorts<br>on the basis<br>of the design<br>or analysis | Assessmen<br>t of<br>outcome | Was<br>follow-up<br>long<br>enough<br>for<br>outcomes<br>to occur | Adequac<br>y of<br>follow up<br>of<br>cohorts |
|-------------------------------------|-------------------------------------------------|--------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------|-----------------------------------------------|
| Adab, 2004 <sup>1</sup>             | В                                               | А                                                | А                                | А                                                                                           | С                                                                            | А                            | А                                                                 | С                                             |
| Arkilo, 2015 <sup>2</sup>           | В                                               | A                                                | В                                | А                                                                                           | D                                                                            | А                            | А                                                                 | С                                             |
| Bromley, $2010^3$                   | D                                               | А                                                | D                                | А                                                                                           | D                                                                            | D                            | В                                                                 | D                                             |
| Bromley,<br>2013 <sup>4</sup>       | А                                               | А                                                | A                                | А                                                                                           | А                                                                            | А                            | А                                                                 | С                                             |
| Bromley, 2016 <sup>5</sup>          | А                                               | А                                                | A                                | А                                                                                           | А                                                                            | А                            | А                                                                 | С                                             |
| Christensen, 2013 <sup>6</sup>      | А                                               | А                                                | А                                | А                                                                                           | А                                                                            | В                            | А                                                                 | В                                             |
| Cohen, 2013 <sup>7</sup>            | А                                               | А                                                | D                                | A                                                                                           | А                                                                            | А                            | А                                                                 | С                                             |
| Cummings, 2011 <sup>8</sup>         | А                                               | А                                                | А                                | А                                                                                           | А                                                                            | А                            | А                                                                 | С                                             |
| Dean, 2002 <sup>9</sup>             | В                                               | А                                                | А                                | А                                                                                           | D                                                                            | Α                            | А                                                                 | С                                             |
| D'Souza,<br>1991 <sup>10</sup>      | В                                               | А                                                | А                                | А                                                                                           | D                                                                            | А                            | А                                                                 | А                                             |
| Eriksson,<br>2005 <sup>11</sup>     | В                                               | А                                                | А                                | А                                                                                           | В                                                                            | А                            | А                                                                 | D                                             |
| Gaily, 1990 <sup>12</sup>           | В                                               | А                                                | А                                | А                                                                                           | D                                                                            | А                            | А                                                                 | А                                             |
| Gogatishvili,<br>2014 <sup>13</sup> | А                                               | А                                                | D                                | А                                                                                           | D                                                                            | А                            | А                                                                 | D                                             |
| Gogatishvili,<br>2015 <sup>14</sup> | А                                               | А                                                | D                                | А                                                                                           | D                                                                            | А                            | А                                                                 | D                                             |

| Page | 77 | of | 90 |  |
|------|----|----|----|--|
|------|----|----|----|--|

| Hurault-                           |   |   |   |   |   |   |   |  |
|------------------------------------|---|---|---|---|---|---|---|--|
| Delarue,<br>2012 <sup>15</sup>     | А | А | А | А | А | А | А |  |
| Jones, 1989 <sup>16</sup>          | А | А | В | А | D | А | А |  |
| Katz, 2001 <sup>17</sup>           | В | А | А | А | D | А | А |  |
| Koch, 1996 <sup>18</sup>           | В | А | В | А | D | А | А |  |
| Mawer,<br>2002 <sup>19</sup>       | В | А | А | А | D | А | А |  |
| Miskov,<br>2010 <sup>20</sup>      | D | А | D | А | D | D | А |  |
| Miskov,<br>2016 <sup>21</sup>      | С | A | А | А | D | А | А |  |
| Nadebaum,<br>2011 <sup>22</sup>    | А | А | A | А | А | А | А |  |
| Rihtman, 2013 <sup>23</sup>        | А | В | А | А | А | А | А |  |
| Scolnik,<br>1994 <sup>24</sup>     | В | А | А | А | D | А | А |  |
| Shankaran,<br>1996 <sup>25</sup>   | В | А | А | A | D | А | А |  |
| Van der Pol,<br>1991 <sup>26</sup> | В | А | D | А | А | А | А |  |
| Veiby,<br>2013a <sup>27</sup>      | А | А | А | А | A | Α | А |  |
| Veiby,<br>2013b <sup>28</sup>      | А | А | А | А | А | А | А |  |
| Wood. 2015 <sup>29</sup>           | А | А | А | А | D | A | А |  |

BMJ Open



Log-odds ratio centered at comparison-specific pooled effect

\* Funnel plots have been produced only for outcomes with  $\geq 10$  studies. For multi-arm studies we plot data points from each study-specific basic parameter (treatment comparisons with a study-specific common comparator)

BMJ Open

# Appendix H. Statistically significant network meta-analysis results along with meta-analysis results, transitivity, and inconsistency assessments

| Treatment<br>Comparison | Number of<br>Studies<br>(Mean Baseline<br>Risk) | Number of<br>patients<br>(Mean Age) | Treatment<br>Indication | Timing           | Comparability<br>of cohorts            | Adequacy<br>of follow up<br>of cohorts | MA<br>Odds Ratio<br>(95% CrI)      | NMA<br>Odds Ratio<br>(95% CrI)<br>(95% PrI) |
|-------------------------|-------------------------------------------------|-------------------------------------|-------------------------|------------------|----------------------------------------|----------------------------------------|------------------------------------|---------------------------------------------|
|                         | Cogn                                            | itive Develop                       | mental Dela             | y (10 studi      | ies, 748 patients                      | s, 14 treatme                          | nts)                               |                                             |
| Lamot vs Valpro         | 4 (NA)                                          | 140<br>(31.00)                      | Epilepsy                | NR               | Н                                      | Н                                      | 0.17<br>(0.02-0.87)                | 0.13<br>(0.01-0.57)<br>(0.01-0.75)          |
| Valpro vs Control       | 4 (0.06)                                        | 267<br>(28.80)                      | Epilepsy                | 1st<br>trimester | Н                                      | Н                                      | 8.15<br>(3.19-22.33)               | 7.40<br>(3.00-18.46)<br>(1.81-27.63)        |
| Valpro vs Carbam        | 6 (NA)                                          | 310<br>(27.80)                      | Epilepsy                | NR               | Н                                      | L                                      | 3.32<br>(1.56-7.04)                | 3.54<br>(1.69-7.26)<br>(0.95-12.32)         |
| Valpro vs Pheno         | 3 (NA)                                          | 36<br>(27.80)                       | Epilepsy                | 1st<br>trimester | Н                                      | L                                      | 4.25<br>(0.82-34.07)               | 5.59<br>(1.21-35.07)<br>(0.93-45.99)        |
| Valpro vs Pheny         | 3 (NA)                                          | 58<br>(31.00)                       | Epilepsy                | 1st<br>trimester | Н                                      | L                                      | 3.12<br>(0.75-14.12)               | 2.88<br>(1.04-8.49)<br>(0.69-12.62)         |
| Common between-st       | udy variance acro                               | ess treatment co                    | omparisons              |                  |                                        | -7/                                    | 0.13                               | 0.12<br>(0.00-1.15)                         |
| Residual deviance: 4    | 4.72 Data p                                     | points: 47                          | DIC: 78.7               |                  |                                        |                                        | (0.00 0.97)                        | (NA)                                        |
| Evaluation of consist   | tency using the de                              | sign-by-treatm                      | ent interaction         | n model          | Chi-square test: 1<br>Degrees of Freed | 4.15<br>om: 17                         | P- value: 0.66<br>Heterogeneity: 0 |                                             |

| 1          |  |
|------------|--|
| 2          |  |
| 2          |  |
| 3          |  |
| 4          |  |
| 5          |  |
| 6          |  |
| 7          |  |
| 8          |  |
| 0          |  |
| 9          |  |
| 10         |  |
| 11         |  |
| 12         |  |
| 13         |  |
| 14         |  |
| 15         |  |
| 10         |  |
| 16         |  |
| 17         |  |
| 18         |  |
| 19         |  |
| 20         |  |
| 21         |  |
| 21         |  |
| 22         |  |
| 23         |  |
| 24         |  |
| 25         |  |
| 26         |  |
| 27         |  |
| 20         |  |
| 20         |  |
| 29         |  |
| 30         |  |
| 31         |  |
| 32         |  |
| 33         |  |
| 24         |  |
| 25         |  |
| 35         |  |
| 36         |  |
| 37         |  |
| 38         |  |
| 39         |  |
| 40         |  |
| 10         |  |
| 41         |  |
| 42         |  |
| 43         |  |
| 44         |  |
| 45         |  |
| 46         |  |
| -10<br>//7 |  |
| 47         |  |
| 48         |  |
| 10         |  |

| Treatment<br>Comparison                    | Number of<br>Studies<br>(Mean Baseline<br>Risk) | Number of<br>patients<br>(Mean Age) | Treatment<br>Indication | Timing                   | Comparability<br>of cohorts | Adequacy<br>of follow up<br>of cohorts | MA<br>Odds Ratio<br>(95% CrI)      | NMA<br>Odds Ratio<br>(95% CrI)<br>(95% PrI)                                                 |
|--------------------------------------------|-------------------------------------------------|-------------------------------------|-------------------------|--------------------------|-----------------------------|----------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------|
|                                            |                                                 | Autism Dys                          | praxia (5 st            | udies, 2551              | l patients, 12 tr           | eatments)                              |                                    |                                                                                             |
| Lamot vs Control                           | 2 (0.00)                                        | 254 (27.75)                         | Epilepsy                | 1st<br>trimester         | Н                           | Н                                      | 13.77<br>(2.06-188.00)             | 8.88<br>(1.29-112.00)<br>(0.94-146.80)                                                      |
| Lamot+Valpro vs<br>Carbam                  | 1 (NA)                                          | 40 (NR)                             | Epilepsy                | NR                       | L                           | L                                      | 15.02<br>(2.04-171.90)             | 22.89<br>(2.58-219.00)<br>(1.90-282.20)                                                     |
| Lamot+Valpro vs<br>Clonaz                  | NA                                              | NR                                  | NR                      | NR                       | NR                          | NR                                     | NA                                 | 20.21<br>(1.48-351.30)<br>(1.15-455.00)                                                     |
| Lamot+Valpro vs<br>Control                 | NA                                              | NR                                  | NR                      | NR                       | NR                          | NR                                     | NA                                 | $ \begin{array}{r} 132.70 \\ (7.41-3.9 \times 10^3) \\ (5.82-4.6 \times 10^3) \end{array} $ |
| Lamot+Valpro vs<br>Lamot                   | NA                                              | NR                                  | NR                      | NR                       | NR                          | NR                                     | NA                                 | 14.61<br>(1.51-149.10)<br>(1.14-196.80)                                                     |
| Oxcar vs Control                           | NA                                              | NR                                  | NR                      | NR                       | NR                          | NR                                     | NA                                 | $ \begin{array}{r}     13.51 \\     (1.28-221.40) \\     (0.86-267.40) \end{array} $        |
| Valpro vs Carbam                           | 5 (NA)                                          | 1003 (27.83)                        | Epilepsy                | 1st<br>trimester         | L                           | L                                      | 3.20<br>(1.20-8.68)                | 3.02<br>(1.09-8.40)<br>(0.57-14.31)                                                         |
| Valpro vs Control                          | 2 (0.00)                                        | 249 (27.75)                         | Epilepsy                | 1st<br>trimester         | Н                           | Н                                      | 9.19<br>(1.14-132.10)              | 17.29<br>(2.40-217.60)<br>(1.61-274.90)                                                     |
| Common between-stud                        | ly variance acro                                | oss treatment co                    | omparisons              |                          |                             |                                        | 0.12                               | 0.16                                                                                        |
| Residual deviance: 24                      | Data points                                     | s: 24 DIC: 4                        | 44                      |                          |                             |                                        | (0.00-1.37)                        | (0.00-1.95)<br>(NA)                                                                         |
| Evaluation of consistent interaction model | ncy using the de                                | esign-by-treatm                     | ent                     | Chi-square<br>Degrees of | test: 3.79<br>Freedom: 5    |                                        | P- value: 0.57<br>Heterogeneity: 0 |                                                                                             |

| Page | 81 | of | 90 |
|------|----|----|----|
|------|----|----|----|

| Treatment<br>Comparison                   | Number of<br>Studies<br>(Mean Baseline<br>Risk) | Number of<br>patients<br>(Mean Age) | Treatment<br>Indication | Timing                   | Comparability<br>of cohorts | Adequacy<br>of follow up<br>of cohorts | MA<br>Odds Ratio<br>(95% CrI)      | NMA<br>Odds Ratio<br>(95% CrI)<br>(95% PrI) |
|-------------------------------------------|-------------------------------------------------|-------------------------------------|-------------------------|--------------------------|-----------------------------|----------------------------------------|------------------------------------|---------------------------------------------|
|                                           | Psycho                                          | omotor Devel                        | opmental De             | lay (11 stu              | idies, 1145 patie           | nts, 18 treatm                         | ents)                              |                                             |
| Carbam+Pheno+Valpr<br>vs Control          | <sup>o</sup> NA                                 | NR                                  | NR                      | NR                       | NR                          | NR                                     | NA                                 | 19.12<br>(1.49-337.50)<br>(1.34-370.40)     |
| Carbam+Pheno+Valpr<br>vs Pheno            | <sup>o</sup> NA                                 | NR                                  | NR                      | NR                       | NR                          | NR                                     | NA                                 | 19.86<br>(1.38-393.60)<br>(1.26-423.30      |
| Levet vs<br>Carbam+Pheno+Valpr            | o NA                                            | NR                                  | NR                      | NR                       | NR                          | NR                                     | NA                                 | 0.01<br>(0.00-0.58)<br>(0.00-0.62)          |
| Valpro vs Carbam                          | 7<br>(NA)                                       | 331 (27.80)                         | Epilepsy                | 1st<br>trimester         | Н                           | Н                                      | 2.72<br>(1.39-5.67)                | 2.45<br>(1.27-4.88)<br>(0.95-6.77)          |
| Valpro vs Control                         | 5<br>(0.07)                                     | 331 (28.38)                         | Epilepsy                | 1st<br>trimester         | Н                           | Н                                      | 3.53<br>(1.60-8.64)                | 4.16<br>(2.04-8.75)<br>(1.52-12.05)         |
| Valpro vs Pheno                           | 2<br>(NA)                                       | 141 (NR)                            | Epilepsy                | 1st<br>trimester         | Н                           | Н                                      | 3.68<br>(1.17-12.30)               | 4.32<br>(1.72-11.20)<br>(1.34-14.51)        |
| Common between-stud                       | y variance act                                  | ross treatment o                    | comparisons             |                          |                             | J                                      | 0.05                               | 0.06                                        |
| Residual deviance: 45                     | Data poin                                       | ts: 51 DIC:                         | : 78                    |                          |                             |                                        | (0.00-0.49)                        | (0.00-0.63)<br>(NA)                         |
| Evaluation of consister interaction model | ncy using the d                                 | design-by-treatr                    | nent                    | Chi-square<br>Degrees of | test: 13.46<br>Freedom: 21  |                                        | P- value: 0.89<br>Heterogeneity: 0 |                                             |

| Treatment<br>Comparison                                                                                         | Number of<br>Studies<br>(Mean Baseline<br>Risk)                                  | Number of<br>patients<br>(Mean Age)                                         | Treatment<br>Indication                                                  | Timing                                                        | Comparability<br>of cohorts                                                               | Adequacy<br>of follow up<br>of cohorts                                         | MA<br>Odds Ratio<br>(95% CrI)                                                         | NMA<br>Odds Ratio<br>(95% CrI)<br>(95% PrI) |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------|
|                                                                                                                 |                                                                                  | Languag                                                                     | e Delay (5 st                                                            | udies, 509                                                    | patients, 5 trea                                                                          | tments)                                                                        |                                                                                       |                                             |
| Valpro vs Control                                                                                               | 1<br>(0.03)                                                                      | 173<br>(28.90) Ep                                                           | pilepsy                                                                  | NR                                                            | L                                                                                         | Н                                                                              | 6.96<br>(1.14-37.03)                                                                  | 7.95<br>(1.50-49.13)<br>(0.96-74.52)        |
| Common between-stu                                                                                              | dy variance acro                                                                 | oss treatment c                                                             | omparisons                                                               |                                                               |                                                                                           |                                                                                |                                                                                       | 0.16                                        |
| Residual deviance: 12                                                                                           | 2 Data points                                                                    | s: 14 DIC:                                                                  | 23                                                                       |                                                               |                                                                                           |                                                                                | 0.15<br>(0.00-1.85)                                                                   | (0.00-2.15)<br>(NA)                         |
| Evaluation of consist<br>interaction model                                                                      | ency using the de                                                                | esign-by-treatm                                                             | nent                                                                     | Chi-square<br>Degrees of                                      | test: 2.33<br>Freedom: 3                                                                  |                                                                                | P- value: 0.50<br>Heterogeneity: 0                                                    |                                             |
|                                                                                                                 |                                                                                  | ADI                                                                         | HD (4 studies                                                            | s, 750 pati                                                   | ents, 6 treatmen                                                                          | its)                                                                           |                                                                                       |                                             |
|                                                                                                                 |                                                                                  |                                                                             | No statisti                                                              | cally signif                                                  | ficant results                                                                            |                                                                                |                                                                                       |                                             |
| Residual deviance: 12                                                                                           | 2 Data points                                                                    | s: 17 DIC:                                                                  | 22                                                                       |                                                               |                                                                                           |                                                                                |                                                                                       |                                             |
| Abbreviations: ADHD<br>risk of bias; MA - Meta<br>Carbam = Carbamazepi<br>Levetiracetam; Oxcar =<br>Viagabatrin | - Attention Defic<br>-analysis; NA - No<br>ne; Clobaz = Clob<br>Oxcarbazepine; F | it Hyperactivity<br>ot applicable; NI<br>pazam; Clonaz =<br>Pheno = Phenoba | Disorder; CrI - 0<br>MA - Network M<br>Clonazepam; E<br>rrbital; Pheny = | Credible Inte<br>Meta-analysi<br>thos = Ethos<br>Phenytoin; I | erval; DIC - Devianc<br>s; NR- Not Reported<br>suximide; Gabap = C<br>Pridmid = Primidone | ce Information C<br>l; PrI - Predictive<br>Gabapentin; Lam<br>; Topir = Topira | riterion; H- high risk<br>e Interval<br>ot = Lamotrigine; Lev<br>mate; Valpro = Valpr | of bias; L - low<br>vet =<br>roate; Vigab = |
|                                                                                                                 |                                                                                  |                                                                             |                                                                          |                                                               |                                                                                           |                                                                                |                                                                                       |                                             |
|                                                                                                                 |                                                                                  |                                                                             |                                                                          |                                                               |                                                                                           |                                                                                |                                                                                       |                                             |
|                                                                                                                 |                                                                                  |                                                                             |                                                                          |                                                               |                                                                                           |                                                                                |                                                                                       |                                             |
|                                                                                                                 |                                                                                  |                                                                             |                                                                          |                                                               |                                                                                           |                                                                                |                                                                                       |                                             |
|                                                                                                                 |                                                                                  |                                                                             |                                                                          | 29                                                            |                                                                                           |                                                                                |                                                                                       |                                             |
|                                                                                                                 | For                                                                              | peer review o                                                               | nly - http://bm                                                          | njopen.bm                                                     | j.com/site/about/g                                                                        | guidelines.xht                                                                 | ml                                                                                    |                                             |

## Appendix I. Rank-heat plot of cognitive developmental delay, autism/dyspraxia, psychomotor developmental delay, language delay, and attention deficit hyperactivity disorder outcomes\*



For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Abbreviations: carbam - carbamazepine, clobaz - clobazam, clonaz - clonazepam, ethos - ethosuximide, gabap - gabapentin, lamot - lamotrigine, levet - levetiracetam, oxcar - oxcarbazepine, pheno - phenobarbital, pheny - phenytoin, primid - primidone, topir - topiramate, valpro - valproate, vigab - vigabatrin

\*Rank-heat plot of cognitive developmental delay, autism/dyspraxia, psychomotor developmental delay, language delay, and attention deficit hyperactivity disorder outcomes (5 circles) and 25 treatments (25 radii). Each sector is coloured according to the surface under the cumulative ranking curve value of the corresponding treatment and outcome using the transformation of three colours red (0%), yellow (50%), and green (100%).

| Total studies        | Range<br>of study<br>arms | # of<br>treatments | # of<br>patients | # of direct<br>treatment<br>comparisons | # of NMA<br>treatment<br>comparisons | Statistically<br>significant<br>NMA<br>treatment<br>effects | # of<br>studies<br>with zero<br>events in<br>all arms | # of studies<br>with<br>ineligible<br>outcome<br>definition* |
|----------------------|---------------------------|--------------------|------------------|-----------------------------------------|--------------------------------------|-------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------|
| <b>Cognitive Dev</b> | elopmental                | l Delay            | -                | -                                       | -                                    |                                                             |                                                       |                                                              |
| 11                   | (2,8)                     | 18                 | 933              | 62                                      | 153                                  | 5                                                           | 1                                                     | 5                                                            |
| Autism/Dyspr         | axia                      |                    |                  |                                         |                                      |                                                             |                                                       |                                                              |
| 5                    | (4,6)                     | 12                 | 2551             | 34                                      | 66                                   | 8                                                           | 0                                                     | 4                                                            |
| Neonatal Seize       | ıre                       |                    |                  |                                         |                                      |                                                             |                                                       |                                                              |
| 1                    | (2,2)                     | 2                  | 69               | 1                                       | 0                                    | 0                                                           | 1                                                     | 1                                                            |
| Psychomotor 3        | Developme                 | ental Delay        |                  |                                         |                                      |                                                             |                                                       |                                                              |
| 11                   | (2,8)                     | 18                 | 1145             | 74                                      | 153                                  | 6                                                           | 0                                                     | 5                                                            |
| Language Del         | ay                        |                    |                  |                                         |                                      |                                                             |                                                       |                                                              |
| 5                    | (2,4)                     | 5                  | 509              | 7                                       | 10                                   | 1                                                           | 0                                                     | 3                                                            |
| ADHD                 |                           |                    |                  |                                         |                                      |                                                             |                                                       |                                                              |
| 5                    | (4,6)                     | 7                  | 816              | 20                                      | 21                                   | 0                                                           | 0                                                     | 0                                                            |
| Social Impair        | ment                      |                    |                  |                                         |                                      |                                                             |                                                       |                                                              |
| 1                    | (4,4)                     | 4                  | 422              | 1                                       | 0                                    | 0                                                           | 0                                                     | 0                                                            |
| Abbreviations        | : ADHD - A                | Attention Defic    | it Hyperact      | ivity Disorder; N                       | MA - Network M                       | Meta-analysis                                               |                                                       |                                                              |
|                      |                           |                    |                  |                                         |                                      |                                                             |                                                       |                                                              |

| Treatment Comparison                                     | NMA Odds Ratio           | 95% CrI                                          | 95% PrI                              |
|----------------------------------------------------------|--------------------------|--------------------------------------------------|--------------------------------------|
| Cognitive Developmental Delay – Sensitivity              | Analysis - Epilepsy o    | nly (10 studies, 910 patien                      | ts, 17 treatments)                   |
| Carbamazepine vs Control                                 | 2.08                     | (0.79 - 5.82)                                    | (0.47 - 9.34)                        |
| Carbamazepine+Phenobarbital vs Control                   | 0.62                     | (0.00 - 15.31)                                   | (0.00 - 19.29)                       |
| Carbamazepine+Phenobarbital+Phenytoin vs Control         | 4.75                     | (0.01 - 164.80)                                  | (0.01 - 192.50)                      |
| Carbamazepine+Phenobarbital+Valproate vs Control         | 15.00                    | (1.00 - 367.10)                                  | (0.82 - 426.90)                      |
| Carbamazepine+Phenytoin vs Control                       | 9.84                     | (0.60 - 136.30)                                  | (0.49 - 164.50)                      |
| Ethosuximide+Phenytoin vs Control                        | 6.53                     | (0.02 - 216.00)                                  | (0.02 - 251.30)                      |
| Gabapentin vs Control                                    | 1.43                     | (0.05 - 14.28)                                   | (0.04 - 18.20)                       |
| Lamotrigine vs Control                                   | 0.79                     | (0.05 - 5.12)                                    | (0.05 - 6.66)                        |
| Levetiracetam vs Control                                 | 3.46                     | (0.65 - 17.14)                                   | (0.47 - 23.57)                       |
| Phenobarbital vs Control                                 | 0.55                     | (0.01 - 5.38)                                    | (0.01 - 6.85)                        |
| Phenobarbital+Phenytoin vs Control                       | 1.28                     | (0.00 - 36.18)                                   | (0.00 - 44.03)                       |
| Phenytoin vs Control                                     | 2.47                     | (0.65 - 8.25)                                    | (0.41 - 12.47)                       |
| Phenytoin+Valproate vs Control                           | 3.68                     | (0.01 - 121.00)                                  | (0.01 - 135.00)                      |
| Primidone vs Control                                     | 1.97                     | (0.25 - 12.16)                                   | (0.19 - 16.25)                       |
| Topiramate vs Control                                    | 3.06                     | (0.42 - 17.51)                                   | (0.32 - 23.57)                       |
| Valproate vs Control                                     | 7.48                     | (2.99 - 19.04)                                   | (1.67 - 31.21)                       |
| Common within-network between-study variance             | 0.16                     | (0.00 - 1.36)                                    |                                      |
| Evaluation of inconsistency using the design-by-treatmen | t interaction model      | Chi-square test: 12.98<br>Degrees of Freedom: 14 | P-value: 0.53<br>Heterogeneity: 0.00 |
| Cognitive Developmental Delay - Sensitivity Analys       | sis - First generation A | AEDs only (6 studies, 480                        | patients, 13 treatments)             |
| Carbamazepine vs Control                                 | 1.68                     | (0.37 - 7.82)                                    | (0.19 - 14.98)                       |
| Carbamazepine+Phenytoin vs Control                       | 8.98                     | (0.36 - 169.90)                                  | (0.26 - 243.60)                      |
| Carbamazepine+Phenobarbital vs Control                   | 0.46                     | (0.00 - 21.02)                                   | (0.00 - 28.01)                       |
| Carbamazepine+Phenobarbital+Phenytoin vs Control         | 4.12                     | (0.01 - 180.10)                                  | (0.00 - 236.30)                      |
| Carbamazepine+Phenobarbital+Valproate vs Control         | 12.84                    | (0.50 - 435.70)                                  | (0.35 - 604.30)                      |
| Ethosuximide+Phenytoin vs Control                        | 5.65                     | (0.01 - 219.00)                                  | (0.01 - 291.50)                      |

#### Appendix K. Sensitivity and network meta-regression analyses - Anti-epileptic drugs compared with Control

 BMJ Open

| <b>Treatment Comparison</b>                                                                                                             | NMA Odds Ratio                      | 95% CrI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 95% PrI                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Phenobarbital vs Control                                                                                                                | 0.64                                | (0.00 - 26.02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.00 - 35.36)                                                                                                                                                            |
| Phenobarbital+Phenytoin vs Control                                                                                                      | 1.06                                | (0.00 - 37.64)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.00 - 50.85)                                                                                                                                                            |
| Phenytoin vs Control                                                                                                                    | 2.08                                | (0.26 - 12.50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.13 - 22.02)                                                                                                                                                            |
| Phenytoin+Valproate vs Control                                                                                                          | 3.14                                | (0.00 - 135.80)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.00 - 178.90)                                                                                                                                                           |
| Primidone vs Control                                                                                                                    | 3.30                                | (0.18 - 43.76)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.12 - 68.72)                                                                                                                                                            |
| Valproate vs Control                                                                                                                    | 13.22                               | (3.20 - 64.06)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (1.50 - 128.40)                                                                                                                                                           |
| Common within-network between-study variance                                                                                            | 0.27                                | (0.00 - 2.97)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                           |
| Evaluation of inconsistency using the design-by-treatme                                                                                 | nt interaction model                | Chi-square test: 3.31<br>Degrees of Freedom: 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P-value: 0.35<br>Heterogeneity: 0.00                                                                                                                                      |
| Cognitive Developmental Delay - Sensitivity Analysis                                                                                    | s - Maternal Alcohol or             | r Tobacco use (3 studies, a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 504 patients, 7 treatme                                                                                                                                                   |
| Carbamazepine vs Control                                                                                                                | 1.97                                | (0.40 - 10.01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.19 - 21.27)                                                                                                                                                            |
| Gabapentin vs Control                                                                                                                   | 1.47                                | (0.04 - 19.01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.02 - 27.11)                                                                                                                                                            |
| Lamotrigine vs Control                                                                                                                  | 0.41                                | (0.00 - 10.09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.00 - 13.61)                                                                                                                                                            |
| Levetiracetam vs Control                                                                                                                | 3.55                                | (0.43 - 24.13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.23 - 42.39)                                                                                                                                                            |
| Topiramate vs Control                                                                                                                   | 3.17                                | (0.30 - 24.07)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.18 - 44.87)                                                                                                                                                            |
| Valproate vs Control                                                                                                                    | 7.79                                | (1.84 - 29.60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.84 - 62.77)                                                                                                                                                            |
| Common within-network between-study variance                                                                                            | 0.27                                | (0.00 - 3.29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                           |
| Evaluation of inconsistency using the design-by-treatme                                                                                 | nt interaction model                | Chi-square test: 2.69<br>Degrees of Freedom: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P-value: 0.26<br>Heterogeneity: NA                                                                                                                                        |
| Cognitive Developmental Delay - Sensi                                                                                                   | tivity Analysis - Low <b>R</b>      | Risk of Bias: "Adequacy of the second s | of follow-up''                                                                                                                                                            |
| (4 studie                                                                                                                               | s, 283 patients, 12 trea            | tments)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                         |
| Carbamazepine vs Control                                                                                                                | 2.68                                | $(0.05 - 2.9 \times 10^3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $(0.03 - 4.3 \times 10^{3})$                                                                                                                                              |
| Carbamazepine+Phenobarbital vs Control                                                                                                  | 0.67                                | $(0.00 - 2.2 \times 10^3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $(0.00 - 2.9 \times 10^3)$                                                                                                                                                |
| Carbamazepine+Phenobarbital+Phenytoin vs Control                                                                                        | 5.23                                | $(0.01 - 7.2 \times 10^3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $(0.00 - 1.1 \times 10^4)$                                                                                                                                                |
| Carbamazepine+Phenobarbital+Valproate vs Control                                                                                        | 22.18                               | $(0.10 - 4.8 \times 10^4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $(0.06 - 7.7 \times 10^4)$                                                                                                                                                |
|                                                                                                                                         |                                     | $(0.12 \ 1.2 \ 1.0^{4})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $(0.07 \ 1.9 \ 1.0^4)$                                                                                                                                                    |
| Carbamazepine+Phenytoin vs Control                                                                                                      | 11.45                               | $(0.13 - 1.2 \times 10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $(0.07 - 1.8 \times 10)$                                                                                                                                                  |
| Carbamazepine+Phenytoin vs Control         Ethosuximide+Phenytoin vs Control                                                            | <u> </u>                            | $\frac{(0.13 - 1.2 \times 10^{3})}{(0.01 - 8.3 \times 10^{3})}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{(0.07 - 1.8 \times 10^{4})}{(0.00 - 1.4 \times 10^{4})}$                                                                                                           |
| Carbamazepine+Phenytoin vs Control<br>Ethosuximide+Phenytoin vs Control<br>Lamotrigine vs Control                                       | <u>11.45</u><br><u>6.45</u><br>0.52 | $\begin{array}{r} (0.13 - 1.2 \times 10^{-3}) \\ \hline (0.01 - 8.3 \times 10^{3}) \\ \hline (0.00 - 1.2 \times 10^{3}) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{(0.07 - 1.8 \times 10^{7})}{(0.00 - 1.4 \times 10^{4})}$<br>(0.00 - 1.9 x 10 <sup>3</sup> )                                                                        |
| Carbamazepine+Phenytoin vs Control<br>Ethosuximide+Phenytoin vs Control<br>Lamotrigine vs Control<br>Phenobarbital+Phenytoin vs Control | 11.45<br>6.45<br>0.52<br>1.33       | $(0.13 - 1.2 \times 10^{3})$ $(0.01 - 8.3 \times 10^{3})$ $(0.00 - 1.2 \times 10^{3})$ $(0.00 - 1.8 \times 10^{3})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $   \begin{array}{r}     (0.07 - 1.8 \times 10^{7}) \\     (0.00 - 1.4 \times 10^{4}) \\     (0.00 - 1.9 \times 10^{3}) \\     (0.00 - 2.7 \times 10^{3})   \end{array} $ |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
| 1  |  |
|----|--|
| 2  |  |
| 3  |  |
| 4  |  |
| 5  |  |
| 6  |  |
| 7  |  |
| 0  |  |
| 0  |  |
| 9  |  |
| 10 |  |
| 11 |  |
| 12 |  |
| 13 |  |
| 14 |  |
| 15 |  |
| 16 |  |
| 17 |  |
| 18 |  |
| 19 |  |
| 20 |  |
| 21 |  |
| 22 |  |
| 23 |  |
| 24 |  |
| 25 |  |
| 26 |  |
| 27 |  |
| 28 |  |
| 29 |  |
| 30 |  |
| 31 |  |
| 32 |  |
| 33 |  |
| 34 |  |
| 35 |  |
| 36 |  |
| 37 |  |
| 38 |  |
| 39 |  |
| 40 |  |
| 41 |  |
| 42 |  |
| 43 |  |
| 44 |  |
| 45 |  |
| 46 |  |
| 47 |  |
| 48 |  |

| Treatment Comparison                                      | NMA Odds Ratio           | 95% CrI                                        | 95% PrI                              |
|-----------------------------------------------------------|--------------------------|------------------------------------------------|--------------------------------------|
| Phenytoin+Valproate vs Control                            | 3.94                     | $(0.00 - 6.7 \times 10^3)$                     | $(0.00 - 8.8 \times 10^3)$           |
| Valproate vs Control                                      | 5.9                      | $(0.06 - 9.7 \times 10^3)$                     | $(0.03 - 1.5 \times 10^4)$           |
| Common within-network between-study variance              | 1.01                     | (0.01 - 5.85)                                  |                                      |
| Evaluation of inconsistency using the design-by-treatment | nt interaction model     | Chi-square test: 5.07<br>Degrees of Freedom: 2 | P-value: 0.08<br>Heterogeneity: 0.00 |
| Cognitive Developmental Delay - Sensitive                 | vity Analysis - Low Ri   | isk of Bias: ''Comparabili                     | ty of cohorts''                      |
| (3 studie                                                 | s, 366 patients, 7 treat | tments)                                        |                                      |
| Carbamazepine vs Control                                  | 1.46                     | (0.11 - 19.59)                                 | (0.06 - 38.10)                       |
| Gabapentin vs Control                                     | 1.19                     | (0.03 - 22.80)                                 | (0.02 - 39.35)                       |
| Lamotrigine vs Control                                    | 0.27                     | (0.00 - 11.80)                                 | (0.00 - 19.37)                       |
| Levetiracetam vs Control                                  | 2.90                     | (0.30 - 32.81)                                 | (0.15 - 62.97)                       |
| Topiramate vs Control                                     | 2.55                     | (0.22 - 29.21)                                 | (0.11 - 64.23)                       |
| Valproate vs Control                                      | 5.79                     | (1.05 - 47.35)                                 | (0.47 - 102.90)                      |
| Common within-network between-study variance              | 0.38                     | (0.00 - 4.14)                                  |                                      |
| Evaluation of inconsistency using the design-by-treatment | nt interaction model     | Chi-square test: 1.47<br>Degrees of Freedom: 2 | P-value: 0.48<br>Heterogeneity: NA   |
| Cognitive Developmenta                                    | l Delay – Network M      | eta-regression Analysis                        |                                      |
| (11 studie                                                | s, 933 patients, 18 trea | atments)                                       |                                      |
| Carbamazepine vs Control                                  | 1.99                     | (0.64 - 6.18)                                  | (0.40 - 9.77)                        |
| Carbamazepine+Levetiracetam vs Control                    | 0.54                     | (0.00 - 16.36)                                 | (0.00 - 19.87)                       |
| Carbamazepine+Phenobarbital vs Control                    | 0.50                     | (0.00 - 16.10)                                 | (0.00 - 19.36)                       |
| Carbamazepine+Phenobarbital+Phenytoin vs Control          | 4.36                     | (0.01 - 171.20)                                | (0.01 - 194.60)                      |
| Carbamazepine+Phenobarbital+Valproate vs Control          | 14.58                    | (0.90 - 413.20)                                | (0.74 - 488.90)                      |
| Carbamazepine+Phenytoin vs Control                        | 9.44                     | (0.50 - 130.50)                                | (0.39 - 162.40)                      |
| Ethosuximide+Phenytoin vs Control                         | 5.77                     | (0.01 - 234.70)                                | (0.01 - 268.10)                      |
| Gabapentin vs Control                                     | 1.37                     | (0.04 - 15.51)                                 | (0.03 - 19.10)                       |
| Lamotrigine vs Control                                    | 0.87                     | (0.07 - 5.14)                                  | (0.06 - 6.76)                        |
| Levetiracetam vs Control                                  | 3.43                     | (0.57 - 18.78)                                 | (0.42 - 24.85)                       |
| Phenobarbital vs Control                                  | 1.16                     | (0.13 - 8.59)                                  | (0.10 - 11.43)                       |
| Phenobarbital+Phenytoin vs Control                        | 1.34                     | (0.00 - 39.21)                                 | (0.00 - 49.39)                       |

 **BMJ Open** 

| Treatment Comparison                                   | NMA Odds Ratio             | 95% CrI                                          | 95% PrI                              |
|--------------------------------------------------------|----------------------------|--------------------------------------------------|--------------------------------------|
| Phenytoin vs Control                                   | 2.43                       | (0.55 - 9.14)                                    | (0.36 - 13.45                        |
| Phenytoin+Valproate vs Control                         | 3.58                       | (0.01 - 134.20)                                  | (0.01 - 161.7                        |
| Primidone vs Control                                   | 2.03                       | (0.21 - 16.49)                                   | (0.16 - 21.39                        |
| Topiramate vs Control                                  | 2.93                       | (0.41 - 16.34)                                   | (0.31 - 22.9                         |
| Valproate vs Control                                   | 7.03                       | (2.26 - 20.02)                                   | (1.41 - 30.92                        |
| Common within-network between-study variance           | 0.16                       | (0.00 - 1.27)                                    |                                      |
| Regression Coefficient                                 | 1.01                       | (0.76 - 1.56)                                    |                                      |
| Evaluation of inconsistency using the design-by-treatm | ent interaction model      | Chi-square test: 14.15<br>Degrees of Freedom: 17 | P-value: 0.6<br>Heterogeneity:       |
| Autism/Dyspraxia - Sensitivity Analysis - La           | rge cohort (>300 patient   | ts) - (1 study, 2,551 patien                     | ts, 5 treatments)**                  |
| Clonazepam vs Carbamazepine                            | 1.08                       | (0.24 - 4.85)                                    | _                                    |
| Lamotrigine vs Carbamazepine                           | 1.20                       | (0.36 - 4.00)                                    | -                                    |
| Oxcarbazepine vs Carbamazepine                         | 2.13                       | (0.62 - 7.35)                                    | -                                    |
| Valproate vs Carbamazepine                             | 3.05                       | (0.97 - 9.52)                                    | -                                    |
| Common within-network between-study variance           | NA                         | NA                                               |                                      |
| Evaluation of inconsistency using the design-by-treatm | ent interaction model      | NA                                               | NA                                   |
| Autism/Dyspraxia - Sensitivity Ana                     | lysis - Epilepsy only (4 s | tudies, 540 patients, 10 tro                     | eatments)                            |
| Carbamazepine vs Control                               | 5.20                       | (0.54 - 90.53)                                   | (0.33 - 133.0                        |
| Carbamazepine+Clonazepam vs Control                    | 7.90                       | (0.01 - 653.30)                                  | (0.01 - 881.0                        |
| Carbamazepine+Lamotrigine vs Control                   | 4.25                       | (0.01 - 333.60)                                  | (0.01 - 446.9                        |
| Carbamazepine+Phenytoin vs Control                     | 9.03                       | (0.01 - 666.30)                                  | (0.01 - 893.0                        |
| Lamotrigine vs Control                                 | 10.24                      | (1.25 - 171.40)                                  | (0.67 - 248.5                        |
| Lamotrigine+Valproate vs Control                       | 120.20                     | $(5.25 - 4.5 \times 10^3)$                       | (3.51 - 6.0 x 1                      |
| Levetiracetam vs Control                               | 3.52                       | (0.00 - 272.20)                                  | (0.00 - 364.3                        |
| Phenytoin vs Control                                   | 8.10                       | (0.01 - 577.50)                                  | (0.01 - 754.6                        |
| Valproate vs Control                                   | 14.41                      | (1.66 - 252.10)                                  | (0.88 - 378.0                        |
| Common within-network between-study variance           | 0.31                       | (0.00 - 3.04)                                    |                                      |
| Evaluation of inconsistency using the design-by-treatm | ent interaction model      | Chi-square test: 2.9<br>Degrees of Freedom: 3    | P-value: 0.41<br>Heterogeneity: 0.06 |

| 2              |  |
|----------------|--|
| 3              |  |
| 1              |  |
| 4              |  |
| 5              |  |
| 6              |  |
| 7              |  |
| 8              |  |
| 0              |  |
| 9              |  |
| 10             |  |
| 11             |  |
| 12             |  |
| 13             |  |
| 10             |  |
| 14             |  |
| 15             |  |
| 16             |  |
| 17             |  |
| 18             |  |
| 10             |  |
| 19             |  |
| 20             |  |
| 21             |  |
| 22             |  |
| 23             |  |
| 24             |  |
| 24             |  |
| 25             |  |
| 26             |  |
| 27             |  |
| 28             |  |
| 20             |  |
| 29             |  |
| 30             |  |
| 31             |  |
| 32             |  |
| 33             |  |
| 3/             |  |
| 0 <del>4</del> |  |
| 35             |  |
| 36             |  |
| 37             |  |
| 38             |  |
| 30             |  |
| 40             |  |
| 40             |  |
| 41             |  |
| 42             |  |
| 43             |  |
| 11             |  |
| 44             |  |
| 45             |  |
| 46             |  |
| 47             |  |
| 48             |  |
|                |  |

| Treatment Comparison                                    | NMA Odds Ratio            | 95% CrI                                        | 95% PrI                              |
|---------------------------------------------------------|---------------------------|------------------------------------------------|--------------------------------------|
| Autism/Dyspraxia - Sensitivity Analysis                 | - Maternal Tobacco Us     | se (4 studies, 540 patients,                   | 10 treatments)                       |
| Carbamazepine vs Control                                | 2.51                      | (0.05 - 154.30)                                | (0.04 - 254.50)                      |
| Lamotrigine vs Control                                  | 24.84                     | $(2.14 - 1.2 \times 10^3)$                     | $(1.23 - 2.2 \times 10^3)$           |
| Valproate vs Control                                    | 33.40                     | $(2.60 - 1.7 \times 10^3)$                     | $(1.45 - 2.9 \times 10^3)$           |
| Common within-network between-study variance            | 0.39                      | (0.00 - 4.47)                                  |                                      |
| Evaluation of inconsistency using the design-by-treatme | ent interaction model     | NA - all closed loops are fo                   | rmed from a multi-arm study          |
| Autism/Dyspraxia - Sensitivity Analysi                  | s - Maternal Alcohol U    | se (1 study, 156 patients, 4                   | 4 treatments)                        |
|                                                         | Excluded due to           | _                                              | _                                    |
| Carbamazepine vs Control                                | zero events               |                                                |                                      |
| Lamotrigine vs Control                                  | 4.65                      | (0.21 - 100.00)                                | -                                    |
| Valproate vs Control                                    | 7.75                      | (0.42 - 142.86)                                | -                                    |
| Common within-network between-study variance            | 1.91                      | (0.36 - 10.13)                                 |                                      |
| Evaluation of inconsistency using the design-by-treatme | ent interaction model     | NA                                             | NA                                   |
| Autism/Dyspraxia - Sensitivity                          | Analysis - Low Risk of    | Bias: "Adequacy of Follow                      | w-up''                               |
| (3 studie                                               | s, 2,244 patients, 10 tre | atments)                                       | 3                                    |
| Carbamazepine vs Control                                | 3.97                      | $(0.17 - 2.4 \times 10^3)$                     | $(0.11 - 3.0 \times 10^3)$           |
| Carbamazepine+Clonazepam vs Control                     | 7.48                      | $(0.01 - 7.8 \times 10^3)$                     | $(0.01 - 9.0 \times 10^3)$           |
| Carbamazepine+Lamotrigine vs Control                    | 4.47                      | $(0.00 - 5.0 \times 10^3)$                     | $(0.00 - 5.7 \times 10^3)$           |
| Carbamazepine+Phenytoin vs Control                      | 7.23                      | $(0.01 - 6.6 \times 10^3)$                     | $(0.01 - 8.2 \times 10^3)$           |
| Clonazepam vs Control                                   | 4.88                      | $(0.12 - 3.2 \times 10^3)$                     | $(0.09 - 3.8 \times 10^3)$           |
| Lamotrigine vs Control                                  | 6.55                      | $(0.30 - 4.4 \times 10^3)$                     | $(0.21 - 4.7 \times 10^3)$           |
| Lamotrigine+Valproate vs Control                        | 113.50                    | $(2.33 - 7.8 \times 10^4)$                     | $(1.62 - 8.9 \times 10^4)$           |
| Oxcarbazepine vs Control                                | 10.23                     | $(0.36 - 6.8 \times 10^3)$                     | $(0.26 - 7.5 \times 10^3)$           |
| Valproate vs Control                                    | 13.97                     | $(0.68 - 8.4 \times 10^3)$                     | $(0.47 - 1.0 \times 10^4)$           |
| Common within-network between-study variance            | 0.23                      | (0.00 - 2.88)                                  |                                      |
| Evaluation of inconsistency using the design-by-treatme | ent interaction model     | Chi-square test: 2.17<br>Degrees of Freedom: 3 | P-value: 0.54<br>Heterogeneity: 0.00 |
| Autism/Dyspraxia - Sensitivity A                        | nalysis - Low Risk of B   | ias: "Comparability of Co                      | ohorts''                             |
| (4 studie                                               | s, 2,395 patients, 12 tre | atments)                                       |                                      |
| Carbamazepine vs Control                                | 9.55                      | (0.90 - 246.20)                                | (0.61 - 329.40)                      |
|                                                         |                           |                                                |                                      |

### **BMJ Open**

| Treatment Comparison                                      | NMA Odds Ratio       | 95% CrI                                        | 95% PrI                              |
|-----------------------------------------------------------|----------------------|------------------------------------------------|--------------------------------------|
| Carbamazepine+Clonazepam vs Control                       | 13.58                | $(0.01 - 1.3 \times 10^3)$                     | (0.01 - 1.6 x 10                     |
| Carbamazepine+Lamotrigine vs Control                      | 7.11                 | (0.01 - 614.20)                                | (0.01 - 717.60)                      |
| Carbamazepine+Phenytoin vs Control                        | 10.97                | $(0.01 - 1.1 \times 10^3)$                     | (0.01 - 1.4 x 10                     |
| Clonazepam vs Control                                     | 8.33                 | (0.45 - 263.10)                                | (0.33 - 353.70)                      |
| Lamotrigine vs Control                                    | 10.98                | (1.07 - 283.50)                                | (0.71 - 358.20)                      |
| Lamotrigine+Valproate vs Control                          | 194.10               | $(8.06 - 8.4 \times 10^3)$                     | (6.28 - 1.0 x 10 <sup>°</sup>        |
| Levetiracetam vs Control                                  | 4.25                 | (0.00 - 390.90)                                | (0.00 - 485.30)                      |
| Oxcarbazepine vs Control                                  | 17.60                | (1.22 - 552.20)                                | (0.86 - 727.40)                      |
| Phenytoin vs Control                                      | 9.76                 | (0.01 - 861.60)                                | (0.01 - 1.0 x 10                     |
| Valproate vs Control                                      | 21.06                | (1.86 - 525.40)                                | (1.25 - 681.90)                      |
| Common within-network between-study variance              | 0.19                 | (0.00 - 2.43)                                  |                                      |
| Evaluation of inconsistency using the design-by-treatment | t interaction model  | Chi-square test: 3.36<br>Degrees of Freedom: 5 | P-value: 0.64<br>Heterogeneity: 0.00 |
| Autism/Dyspraxia - Sensitivity Analy                      | sis - Maternal IQ (1 | study, 77 patients, 6 treat                    | ments)**                             |
| Carbamazepine+Clonazepam vs Carbamazepine                 | 1.86                 | (0.07 - 47.62)                                 | -                                    |
| Carbamazepine+Lamotrigine vs Carbamazepine                | 1.18                 | (0.05 - 27.78)                                 | -                                    |
| Carbamazepine+Phenytoin vs Carbamazepine                  | 1.86                 | (0.07 - 47.62)                                 | -                                    |
| Lamotrigine+Valproate vs Carbamazepine                    | 15.87                | (1.87 - 142.86)                                | -                                    |
| Valproate vs Carbamazepine                                | 1.33                 | (0.18 - 10.20)                                 | -                                    |
| Common within-network between-study variance              | NA                   | NA                                             |                                      |
| Evaluation of inconsistency using the design-by-treatment | t interaction model  | NA                                             | NA                                   |

Abbreviations: NMA – Network Meta-analysis; OR – odds ratio; CrI – Credible Interval; PrI – Predictive Interval

\*\* Network did not include a control arm, comparison with Carbamazepine is reported instead

# **BMJ Open**

### Comparative safety of anti-epileptic drugs for neurological development in children exposed during pregnancy and breastfeeding: a systematic review and network metaanalysis

| Journal:                             | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                        | bmjopen-2017-017248.R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Article Type:                        | Research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Date Submitted by the Author:        | 01-Jun-2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Complete List of Authors:            | Veroniki, Areti Angeliki; Li Ka Shing Knowledge Institute, St. Michael's<br>Hospital<br>Rios, Patricia; Li Ka Shing Knowledge Institute, St. Michael's Hospital<br>Cogo, Elise; Li Ka Shing Knowledge Institute, St. Michael's Hospital<br>Straus, Sharon; Li Ka Shing Knowledge Institute, St. Michael's Hospital;<br>University of Toronto, Department of Medicine<br>Finkelstein, Yaron; The Hospital for Sick Children; University of Toronto,<br>Department of Paediatrics<br>Kealey, M.; Li Ka Shing Knowledge Institute, St. Michael's Hospital<br>Reynen, Emily; Li Ka Shing Knowledge Institute, St. Michael's Hospital<br>Soobiah, Charlene; Li Ka Shing Knowledge Institute, St. Michael's Hospital;<br>University of Toronto, Institute for Health Policy Management & Evaluation<br>Thavorn, Kednapa; University of Ottawa, School of Epidemiology, Public<br>Health and Preventive Medicine, Faculty of Medicine; The Ottawa Hospital<br>Research Institute, Clinical Epidemiology Program<br>Hutton, Brian; University of Ottawa, School of Epidemiology, Public Health<br>and Preventive Medicine, Faculty of Medicine; Ottawa Hospital Research<br>Institute, Center for Practice Changing Research<br>Hemmelgarn, BR; University of Calgary, Departments of Medicine and<br>Community Health Sciences<br>Yazdi, Fatemeh; Li Ka Shing Knowledge Institute, St. Michael's Hospital<br>D'Souza, Jennifer; Li Ka Shing Knowledge Institute, St. Michael's Hospital<br>MacDonald, Heather; Li Ka Shing Knowledge Institute, St. Michael's Hospital<br>Tricco, Andrea; Li Ka Shing Knowledge Institute, St. Michael's Hospital<br>University of Toronto, Epidemiology Division, Dalla Lana School of Public<br>Health |
| <b>Primary Subject<br/>Heading</b> : | Neurology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Secondary Subject Heading:           | Obstetrics and gynaecology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Keywords:                            | multiple treatment meta-analysis, knowledge synthesis, Epilepsy < NEUROLOGY, pregnancy, infants, developmental delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



| 2        |
|----------|
| 2        |
| 3        |
| 4        |
| 5        |
| 6        |
| 7        |
| 0        |
| 8        |
| 9        |
| 10       |
| 11       |
| 40       |
| 12       |
| 13       |
| 14       |
| 15       |
| 16       |
| 10       |
| 17       |
| 18       |
| 19       |
| 20       |
| 20       |
| 21       |
| 22       |
| 23       |
| 2/       |
| 24<br>05 |
| 25       |
| 26       |
| 27       |
| 28       |
| 20       |
| 29       |
| 30       |
| 31       |
| 32       |
| 02       |
| 33       |
| 34       |
| 35       |
| 36       |
| 07       |
| 37       |
| 38       |
| 39       |
| 40       |
| 11       |
| 41       |
| 42       |
| 43       |
| 44       |
| 15       |
| 40       |
| 46       |
| 47       |
| 48       |
| 10       |
| 73       |
| 50       |
| 51       |
| 52       |
| 52       |
| 55       |
| 54       |
| 55       |
| 56       |
| 57       |
| 50       |
| 20       |
| 59       |
| 60       |

1

2

3

# Comparative safety of anti-epileptic drugs for neurological development in children exposed during pregnancy and breastfeeding: a systematic review and network meta-analysis Areti Angeliki Veroniki, PhD, MSc<sup>1</sup> Email: VeronikiA@smh.ca

| 4  | Areti Angeliki Veroniki, PhD, MSc <sup>1</sup> | Email: <u>VeronikiA@smh.ca</u>              |
|----|------------------------------------------------|---------------------------------------------|
| 5  | Patricia Rios, MSc <sup>1</sup>                | Email: <u>RiosP@smh.ca</u>                  |
| 6  | Elise Cogo, ND, MLIS <sup>1</sup>              | Email: <u>CogoE@smh.ca</u>                  |
| 7  | Sharon E. Straus, MD, MSc <sup>1,2</sup>       | Email: <u>Sharon.straus@utoronto.ca</u>     |
| 8  | Yaron Finkelstein, MD <sup>3,4,5</sup>         | Email: <u>Yaron.Finkelstein@sickkids.ca</u> |
| 9  | Ryan Kealey, PhD <sup>1</sup>                  | Email: <u>ryan.kealey@utoronto.ca</u>       |
| 10 | Emily Reynen, MD, CM, PharmD <sup>1</sup>      | Email: <u>ereynen@gmail.com</u>             |
| 11 | Charlene Soobiah, PhD (Cand.) <sup>1,6</sup>   | Email: <u>SoobiahC@smh.ca</u>               |
| 12 | Kednapa Thavorn, PhD <sup>7,8,9</sup>          | Email: <u>kthavorn@ohri.ca</u>              |
| 13 | Brian Hutton, PhD, MSc <sup>7,10</sup>         | Email: <u>bhutton@ohri.ca</u>               |
| 14 | Brenda R. Hemmelgarn, MD, PhD <sup>11</sup>    | Email: <u>Bhemmelg@ucalgary.ca</u>          |
| 15 | Fatemeh Yazdi, MSc <sup>1</sup>                | Email: <u>SabaghYazdiF@smh.ca</u>           |
| 16 | Jennifer D'Souza, HBSc <sup>1</sup>            | Email: jennifer.dsouza@mail.utoronto.ca     |
| 17 | Heather MacDonald, MSc <sup>1</sup>            | Email: <u>hrmacdonald@gmail.com</u>         |
| 18 | Andrea C. Tricco, PhD, MSc <sup>1,12,*</sup>   | Email: <u>TriccoA@smh.ca</u>                |
| 19 | AUTHOR DETAILS                                 |                                             |

- 20 <sup>1</sup> Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, East Building,
- 21 Toronto, Ontario, M5B 1W8, Canada

### BMJ Open

| 2              |    |                                                                                                         |
|----------------|----|---------------------------------------------------------------------------------------------------------|
| 3<br>4         | 22 | <sup>2</sup> Department of Medicine, University of Toronto, 27 King's College Circle, Toronto, Ontario  |
| 5<br>6<br>7    | 23 | M5S 1A1, Canada                                                                                         |
| 7<br>8<br>9    | 24 | <sup>3</sup> The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canad    |
| 10<br>11       | 25 | <sup>4</sup> Department of Paediatrics, University of Toronto, 172 St. George Street, Toronto, Ontario, |
| 12<br>13<br>14 | 26 | M5R 0A3, Canada                                                                                         |
| 15<br>16       | 27 | <sup>5</sup> Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences         |
| 17<br>18<br>10 | 28 | Building, Room 4207, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada                         |
| 20<br>21       | 29 | <sup>6</sup> Institute for Health Policy Management & Evaluation, University of Toronto, 4th Floor,     |
| 22<br>23       | 30 | 155 College Street, Toronto, Ontario, M5T 3M6, Canada                                                   |
| 24<br>25<br>26 | 31 | <sup>7</sup> School of Epidemiology, Public Health and Preventive Medicine, Faculty of Medicine,        |
| 27<br>28       | 32 | University of Ottawa, Roger-Guindon Building, 451 Smyth Road, Ottawa, Ontario, K1H 8M5                  |
| 29<br>30<br>21 | 33 | Canada                                                                                                  |
| 32<br>33       | 34 | <sup>8</sup> Clinical Epidemiology Program, Ottawa Hospital Research Institute, The Ottawa Hospital,    |
| 34<br>35       | 35 | 501 Smyth Road, Ottawa, Ontario, K1H 8L6, Canada                                                        |
| 36<br>37<br>38 | 36 | <sup>9</sup> Institute of Clinical and Evaluative Sciences (ICES uOttawa), 1053 Carling Avenue, Ottawa  |
| 39<br>40       | 37 | Ontario, K1Y 4E9, Canada                                                                                |
| 41<br>42<br>43 | 38 | <sup>10</sup> Ottawa Hospital Research Institute, Center for Practice Changing Research, The Ottawa     |
| 43<br>44<br>45 | 39 | Hospital–General Campus, 501 Smyth Road, PO Box 201B, Ottawa, Ontario, K1H 8L6,                         |
| 46<br>47       | 40 | Canada.                                                                                                 |
| 48<br>49<br>50 | 41 | <sup>11</sup> Departments of Medicine and Community Health Sciences, University of Calgary, TRW         |
| 51<br>52       | 42 | Building, 3rd Floor, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada                          |
| 53<br>54<br>55 | 43 | <sup>12</sup> Epidemiology Division, Dalla Lana School of Public Health, University of Toronto, 6th     |
| 56<br>57       | 44 | Floor, 155 College Street, Toronto, Ontario, M5T 3M7, Canada                                            |
| 58<br>59       |    |                                                                                                         |
| 60             |    |                                                                                                         |

# **\*Corresponding author**

- 46 Prof. Andrea C. Tricco, PhD
- 47 Scientist, Knowledge Translation Program,
- 48 Li Ka Shing Knowledge Institute, St. Michael's Hospital,
- 49 209 Victoria Street, East Building, Toronto, Ontario, M5B 1W8, Canada
  - 50 Phone: 416-864-6060, Fax: 416-864-5805, Email: <u>TriccoA@smh.ca</u>

- **Keywords:** multiple treatment meta-analysis, knowledge synthesis, epilepsy, pregnancy,
- 53 infants, developmental delay.
- **Word count**: abstract (300 words); main text (4,000 words); 2 tables; 3 figures; 3
- 55 additional files; 51 references

Page 5 of 90

**BMJ Open** 

| 1              |    |                                                                                                       |
|----------------|----|-------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4    | 56 | ABSTRACT                                                                                              |
| 5<br>6<br>7    | 57 | Objectives: Compare the safety of anti-epileptic drugs (AEDs) on neurodevelopment of                  |
| 8<br>9         | 58 | infants/children exposed in-utero or during breastfeeding.                                            |
| 10<br>11<br>12 | 59 | Design and Setting: Systematic review and Bayesian random-effects network meta-                       |
| 13<br>14       | 60 | analysis (NMA). Medline, EMBASE, and the Cochrane Central Register of Controlled Trials               |
| 15<br>16<br>17 | 61 | were searched until April 27 <sup>th</sup> , 2017. Screening, data abstraction, and quality appraisal |
| 18<br>19       | 62 | were completed in duplicate by independent reviewers.                                                 |
| 20<br>21<br>22 | 63 | <b>Participants</b> : 29 cohort studies including 5,100 infants/children.                             |
| 22<br>23<br>24 | 64 | Interventions: Mono- and poly-therapy AEDs including first-generation (carbamazepine,                 |
| 25<br>26       | 65 | clobazam, clonazepam, ethosuximide, phenobarbital, phenytoin, primidone, valproate) and               |
| 27<br>28<br>29 | 66 | newer-generation (gabapentin, lamotrigine, levetiracetam, oxcarbazepine, topiramate,                  |
| 30<br>31       | 67 | vigabatrin) AEDs. Epileptic women who did not receive AEDs during pregnancy or                        |
| 32<br>33<br>34 | 68 | breastfeeding served as the control group.                                                            |
| 35<br>36       | 69 | Primary and secondary Outcome measures: Cognitive developmental delay and                             |
| 37<br>38<br>20 | 70 | autism/dyspraxia were primary outcomes. Attention deficit hyperactivity disorder,                     |
| 39<br>40<br>41 | 71 | language delay, neonatal seizures, psychomotor developmental delay, and social                        |
| 42<br>43       | 72 | impairment were secondary outcomes.                                                                   |
| 44<br>45<br>46 | 73 | Results: The NMA on cognitive developmental delay (11 cohort studies, 933 children, 18                |
| 47<br>48       | 74 | treatments) suggested among all AEDs only valproate was statistically significantly                   |
| 49<br>50       | 75 | associated with more children experiencing cognitive developmental delay when compared                |
| 52<br>53       | 76 | with control (odds ratio (OR)=7.40, 95% credible interval (CrI): 3.00-18.46). The NMA on              |
| 54<br>55       | 77 | autism (5 cohort studies, 2,551 children, 12 treatments), suggested that oxcarbazepine                |
| 56<br>57<br>58 | 78 | (OR=13.51, CrI: 1.28-221.40), valproate (N=485, OR=17.29, 95% CrI: 2.40-217.60),                      |
| 59<br>60       |    | 4                                                                                                     |

| lamotrigine (OR=8.88, CrI: 1.28-112.00), and lamotrigine+valproate (OR=132.70, CrI:   |
|---------------------------------------------------------------------------------------|
| 7.41-3,851.00) were associated with significantly greater odds of developing autism   |
| compared with control. The NMA on Psychomotor developmental delay (11 cohort studies, |
| 1,145 children, 18 treatments) found that valproate (OR=4.16, CrI: 2.04-8.75) and     |
| carbamazepine+phenobarbital+valproate (OR=19.12, CrI: 1.49-337.50) were associated    |
| with significantly greater odds of psychomotor delay compared with control.           |
| Conclusions: Valproate alone or combined with another AED is associated with the      |
| greatest odds of adverse neurodevelopmental outcomes compared with control.           |
| Oxcarbazepine and lamotrigine were associated with increased occurrence of autism.    |
| Counselling is advised for women considering pregnancy to tailor the safest regimen.  |
|                                                                                       |
| Registration: PROSPERO database (CRD42014008925).                                     |
| Keywords: multiple treatment meta-analysis, knowledge synthesis, epilepsy, pregnancy, |
| infants, developmental delay.                                                         |
|                                                                                       |
| ARTICLE SUMMARY                                                                       |
| Strengths and limitations of this study                                               |
| Strengths and minutions of this study                                                 |
| • 29 cohort studies involving 5,100 children of women who took AEDs were included     |
| in this systematic review. More evidence from long-term follow-up studies is          |
| required.                                                                             |
| • This study was the first that compared and ranked the safety of AEDs, including     |
| comparative safety of treatments that have not been directly compared.                |

| 1<br>2                                                                                                                                                                                  |     |   |                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|------------------------------------------------------------------------------------|
| 2<br>3<br>4                                                                                                                                                                             | 100 | ٠ | Across all neurological outcomes and treatments compared with control, valproate   |
| 5<br>6<br>7                                                                                                                                                                             | 101 |   | alone or combined with another AED is associated with the greatest odds of adverse |
| 7<br>8<br>9                                                                                                                                                                             | 102 |   | development.                                                                       |
| 10<br>11                                                                                                                                                                                | 103 | • | Oxcarbazepine and lamotrigine were associated with increased occurrence of         |
| $\begin{array}{c} 12\\ 13\\ 14\\ 56\\ 17\\ 89\\ 02\\ 12\\ 23\\ 45\\ 26\\ 7\\ 89\\ 03\\ 33\\ 33\\ 33\\ 33\\ 33\\ 30\\ 41\\ 23\\ 44\\ 56\\ 7\\ 89\\ 01\\ 22\\ 35\\ 55\\ 56\\ \end{array}$ | 104 |   | autism.                                                                            |

**INTRODUCTION** 

Anti-epileptic drugs (AEDs) are used by pregnant women for various conditions, such as epilepsy, pain syndromes, psychiatric disorders, and chronic migraine.<sup>1</sup> AED use during pregnancy is associated with risks to the fetus, as these drugs can cross the placenta or may be transferred to the infant through breastfeeding and may be associated with adverse neurodevelopment outcomes.<sup>2-4</sup> Two systematic reviews examined the association between AED exposure and neurodevelopment *in utero*, and reported that exposure to valproate was linked to significantly lower IQ scores and poorer overall neurodevelopmental outcomes in the children of women who used these medications.<sup>56</sup> No significant associations were found between neurodevelopment and exposure to other AEDs such as carbamazepine, lamotrigine, or phenytoin.<sup>5-8</sup> However, there is a lack of sufficiently powered studies to assess the impact of AEDs on neurodevelopment in children of women exposed to these agents, especially for newer generation drugs, thus highlighting the need for a systematic review.910 The aim of this study was to compare the safety of AEDs and assess their impact on neurodevelopment in infants and children exposed *in-utero* or during breastfeeding, employing a systematic review and network meta-analysis (NMA). 

# METHODS The methods are briefly described here; details can be found in the published protocol (Additional File 1).<sup>11</sup> This study was registered with PROSPERO (CRD42014008925). We followed the ISPOR<sup>12</sup> guidelines for our NMA, and reported our findings using the PRISMA extension for NMA (Additional File 2).<sup>13</sup> Eligibility criteria All randomized clinical trials (RCTs), quasi-RCTs, and observational studies were eligible.

Included studies assessed infants or children  $\leq 12$  years of age whose mothers consumed AEDs during pregnancy and/or while breastfeeding. Both mono- and poly-therapy AEDs were eligible, including first-generation (i.e., carbamazepine, clobazam, clonazepam, ethosuximide, phenobarbital, phenytoin, primidone, valproate) and newer-generation (i.e., marketed >1990: gabapentin, lamotrigine, levetiracetam, oxcarbazepine, topiramate, vigabatrin), with no restrictions on AED dosage. Placebo, no AED, other AEDs alone or in combination, were considered as comparators. Duplicate studies that used the same registry or population sample (i.e., companion studies) were used for supplementary information only. No language or other restrictions were imposed. The primary neurological outcomes were cognitive developmental delay and autism/dyspraxia, and the secondary outcomes included attention deficit hyperactivity disorder (ADHD), language delay, neonatal seizures, psychomotor developmental delay, and social impairment. Table 1 shows the outcome measures and diagnostic scales used. We initially intended to evaluate all safety outcomes in infants/ children exposed to AEDs *in-utero* or during breastfeeding in one publication, but given the breadth of evidence we

| 1<br>2         |     |                                                                                                                       |   |
|----------------|-----|-----------------------------------------------------------------------------------------------------------------------|---|
| 2<br>3<br>4    | 144 | identified, we report results related to risk of major congenital malformations, birth, and                           |   |
| 5<br>6<br>7    | 145 | prenatal outcomes in a companion paper. <sup>14</sup>                                                                 |   |
| 7<br>8<br>9    | 146 | Information sources                                                                                                   |   |
| 10<br>11       | 147 | An experienced librarian executed search strategies for MEDLINE, EMBASE, and the                                      |   |
| 12<br>13<br>14 | 148 | Cochrane Central Register of Controlled Trials up to March 18, 2014, and then updated the                             | ì |
| 15<br>16       | 149 | search in April 27 <sup>th</sup> 2017. The search strategy for MEDLINE was peer-reviewed by another                   | ſ |
| 17<br>18<br>19 | 150 | librarian using the PRESS checklist, <sup>15</sup> and is available in the protocol. <sup>11</sup> Additional studies |   |
| 20<br>21       | 151 | were identified by scanning references and contacting authors. Unpublished studies were                               |   |
| 22<br>23<br>24 | 152 | sought by searching clinical trial registries and conference abstracts.                                               |   |
| 24<br>25<br>26 | 153 | Study selection and data collection                                                                                   |   |
| 27<br>28       | 154 | After a calibration exercise, titles/abstracts (level 1) and full-text papers (level 2) were                          |   |
| 29<br>30<br>31 | 155 | screened by two reviewers independently. Upon completion of level 1, 6% of citations wer                              | e |
| 32<br>33       | 156 | discrepant between reviewer pairs, whereas at the conclusion of level 2, 16% of articles                              |   |
| 34<br>35<br>36 | 157 | were discrepant. Conflicts were resolved through discussion or by a third reviewer. The                               |   |
| 37<br>38       | 158 | same approach was used for data abstraction and appraisal of methodological quality.                                  |   |
| 39<br>40       | 159 | Three rounds of pilot testing were conducted prior to data abstraction to train reviewers                             |   |
| 41<br>42<br>43 | 160 | and refine the data abstraction form. For studies published in the last 10 years, authors                             |   |
| 44<br>45       | 161 | were contacted to request clarification or additional data.                                                           |   |
| 46<br>47<br>48 | 162 | Appraisal of methodological quality                                                                                   |   |
| 49<br>50       | 163 | Only observational studies were identified and included for analysis, and their                                       |   |
| 51<br>52<br>53 | 164 | methodological quality was appraised with the Newcastle-Ottawa Scale (NOS) (Additional                                |   |
| 54<br>55       | 165 | File 3: Appendix A). <sup>16</sup> For each outcome with $\geq$ 10 studies, the comparison-adjusted funnel            |   |
| 56<br>57       | 166 | plot was used to assess small-study effects, <sup>17</sup> where the overall treatment effect for each                |   |
| 50<br>59<br>60 |     |                                                                                                                       | 9 |

| 1<br>2                           |     |                                                                                                       |
|----------------------------------|-----|-------------------------------------------------------------------------------------------------------|
| 3<br>4                           | 167 | comparison was estimated under the fixed-effect meta-analysis model. All eligible                     |
| 5<br>6<br>7                      | 168 | medications were ordered from oldest to newest using their international market approval              |
| 8<br>9                           | 169 | dates. Hence, the comparison-adjusted funnel plot additionally assesses the hypothesis that           |
| 10<br>11                         | 170 | newer AEDs are favoured over older ones. To overcome some of the correlations induced                 |
| 12<br>13<br>14                   | 171 | by multi-arm studies, which may cause overestimation and mask funnel plot asymmetry,                  |
| 15<br>16                         | 172 | we plotted data points corresponding to the study-specific basic parameters (treatment                |
| 17<br>18<br>10                   | 173 | comparisons with common comparator). In each study, we used the control group as the                  |
| 20<br>21                         | 174 | common comparator or if this was missing, we used the oldest treatment comparator                     |
| 22<br>23                         | 175 | against the remaining AEDs.                                                                           |
| 24<br>25<br>26<br>27<br>28<br>29 | 176 | Synthesis of included studies                                                                         |
|                                  | 177 | We used the odds ratio (OR) for each dichotomous outcome, and outcome data were                       |
| 29<br>30<br>31                   | 178 | pooled using hierarchical meta-analysis and NMA models and the Markov Chain Monte                     |
| 32<br>33                         | 179 | Carlo sampling method in a Bayesian framework. To account for anticipated                             |
| 34<br>35<br>26                   | 180 | methodological and clinical heterogeneity across studies, and to achieve the highest                  |
| 36<br>37<br>38                   | 181 | generalizability in the meta-analytical treatment effects, we applied a random-effects                |
| 39<br>40                         | 182 | model. <sup>18</sup>                                                                                  |
| 41<br>42<br>43                   | 183 | A NMA was applied for connected evidence networks and pre-specified treatment nodes. <sup>19</sup>    |
| 44<br>45                         | 184 | We assessed the transitivity assumption for each outcome <i>a priori</i> using the effect             |
| 46<br>47<br>48                   | 185 | modifiers: age, baseline risk, treatment indication, timing, and methodological quality. The          |
| 49<br>50                         | 186 | mean of each continuous effect modifier and the mode of each categorical effect modifier              |
| 51<br>52                         | 187 | for each pairwise comparison were presented in tables for each outcome. <sup>20</sup> The consistency |
| 53<br>54<br>55                   | 188 | assumption was evaluated for the entire network of each outcome using the random-                     |
| 56<br>57                         | 189 | effects design-by-treatment interaction model when multiple studies were available in                 |
| ວຽ<br>59<br>60                   |     | 10                                                                                                    |

| 1  |
|----|
| 2  |
| 3  |
| 4  |
| 5  |
| 5  |
| 6  |
| 7  |
| 8  |
| à  |
| 10 |
| 10 |
| 11 |
| 12 |
| 13 |
| 14 |
| 14 |
| 15 |
| 16 |
| 17 |
| 18 |
| 10 |
| 19 |
| 20 |
| 21 |
| 22 |
| 23 |
| 23 |
| 24 |
| 25 |
| 26 |
| 27 |
| 21 |
| 28 |
| 29 |
| 30 |
| 31 |
| 20 |
| 32 |
| 33 |
| 34 |
| 35 |
| 26 |
| 30 |
| 37 |
| 38 |
| 39 |
| 40 |
| 40 |
| 41 |
| 42 |
| 43 |
| 44 |
|    |
| 45 |
| 46 |
| 47 |
| 48 |
| 40 |
| 49 |
| 50 |
| 51 |
| 52 |
| 52 |
| 55 |
| 54 |
| 55 |
| 56 |
| 57 |
| 57 |
| 58 |
| 59 |
| 60 |

1

190 each network design or the fixed-effect design-by-treatment interaction model when a 191 single study informed each network design.<sup>21</sup> If inconsistency was identified, further 192 examination for local inconsistency in parts of the network was completed using the loopspecific method.<sup>22 23</sup> Common within-network between-study variance ( $\tau^2$ ) across 193 194 treatment comparisons was assumed in the meta-analysis, NMA, and design-by-treatment 195 interaction model, so that treatment comparisons including a single study can borrow 196 strength from the remaining network. This assumption was clinically reasonable, as the 197 treatments included were of the same nature. In the loop-specific approach, common 198 within-loop  $\tau^2$  was assumed. 199 For cognitive developmental delay and autism/dyspraxia outcomes, network meta-200 regression analyses for maternal age and baseline risk (i.e., using the control group) were 201 conducted, when  $\geq 10$  studies provided relevant information, assuming a common fixed 202 coefficient across treatment comparisons for AEDs vs. control. Sensitivity analyses for 203 cognitive developmental delay and autism/dyspraxia outcomes were performed for 204 treatment indication of epilepsy, large study size (i.e., >300), maternal alcohol intake, 205 maternal tobacco use, only first-generation AEDs, and methodological quality. The 206 sensitivity analysis for methodological quality was restricted to studies with low risk of 207 bias for the two items on the NOS where the greatest proportion of studies received a low-208 quality score: adequacy of follow-up of cohorts and comparability of cohorts. For 209 autism/dyspraxia, a sensitivity analysis on maternal IQ/psychiatric history was 210 additionally conducted. We measured the goodness of fit using the posterior mean of the 211 residual deviance, the degree of  $\tau^2$ , and the deviance information criterion (DIC). In a well-212 fitting model the posterior mean residual deviance should be close to the number of data

Page 13 of 90

1

 $\begin{array}{r} 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 55\\ 56\\ 57\\ 58\\ 59\\ \end{array}$ 

60

### **BMJ Open**

| 2                                                        |     |                                                                                                           |
|----------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------|
| 3<br>4<br>5<br>6<br>7                                    | 213 | points. <sup>24 25</sup> A difference of 3 units in the DIC between a NMA and a network meta-             |
|                                                          | 214 | regression model was considered important and the lowest value of the DIC corresponded                    |
| 8<br>9                                                   | 215 | to the model with the best fit. <sup>24 25</sup>                                                          |
| 10<br>11                                                 | 216 | All analyses were conducted in OpenBUGS <sup>26</sup> assuming non-informative priors for all model       |
| 12<br>13<br>14                                           | 217 | parameters, and $\tau \sim N(0,1)$ , $\tau > 0$ . The first 10,000 iterations were discarded and then     |
| 15<br>16                                                 | 218 | 100,000 simulations were run with thinning of 10 values. Convergence was checked by                       |
| 17<br>18<br>10                                           | 219 | visual inspection of the evaluation of the mixing of two chains. The median and 95% CrI                   |
| 20<br>21                                                 | 220 | were calculated for each parameter value. The <i>network</i> command <sup>27</sup> was used to apply the  |
| 22<br>23                                                 | 221 | design-by-treatment interaction model.                                                                    |
| 24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33 | 222 | For NMA estimates, a 95% predictive interval (PrI) is also reported to capture the                        |
|                                                          | 223 | magnitude of $	au^2$ and present the interval within which the treatment effect of a future               |
|                                                          | 224 | study is expected to lie. <sup>28 29</sup> The estimated safety of the included AEDs was ranked using the |
|                                                          | 225 | surface under the cumulative ranking (SUCRA) curve. <sup>30</sup> The larger the SUCRA for a              |
| 34<br>35                                                 | 226 | treatment, the higher its safety rank among all the available treatment options. SUCRA                    |
| 36<br>37<br>38                                           | 227 | values are presented along with 95% CrIs to capture the uncertainty in the parameter                      |
| 39<br>40                                                 | 228 | values. <sup>31</sup>                                                                                     |
| 41<br>42                                                 |     |                                                                                                           |
| 43<br>44                                                 |     |                                                                                                           |

### RESULTS

### Literature search and included studies

Our literature search identified 5,707 titles and abstracts, which after the screening process yielded 681 articles potentially relevant for inclusion (Figure 1). After full-text review, 95 studies fulfilled eligibility criteria along with 17 studies identified through supplemental methods. Of the 112 total eligible studies in the complete review,<sup>14</sup> 29 articles with seven companion reports and two potentially overlapping registry studies included one or more relevant neurological outcomes (Additional File 3: Appendix B). Four of the studies included in this analysis were conference abstracts with usable data.<sup>32-35</sup> and four studies,<sup>36-39</sup> not captured in the original literature search, were identified through reference scanning. A table with the key excluded studies and a rationale for their exclusion is presented in Additional File 3: Appendix C. Study and patient characteristics We included 29 cohort studies (5,100 patients) published between 1989 and 2016 (Table 2; Additional File 3: Appendix D, E). The number of patients included in each study ranged from 23 to 2,011 (median 74.5). Most studies (76%) were published after 2000, 62% of the studies included fewer than 100 patients, and the 52% of the studies included a control group of pregnant/breastfeeding women with epilepsy who did not receive AEDs. The mean maternal age ranged from 24 to 34 years. About half of the studies (52%) were funded through government/public research funding. 

Methodological quality results 

Twenty-nine observational studies were appraised using the NOS (Additional File 3:

Appendix F). Overall, the studies were of good methodological quality and were rated as

### **BMJ Open**

| 3<br>4         | 252 | high quality across most items: 28 studies (97%) selected the non-exposed cohort from                          | the |
|----------------|-----|----------------------------------------------------------------------------------------------------------------|-----|
| 5<br>6<br>7    | 253 | same community as the exposed cohort, 26 (90%) included a representative or somewhat                           | at  |
| 7<br>8<br>9    | 254 | representative sample, 27 (93%) assessed outcomes independently, with blinding, or via                         | a   |
| 10<br>11       | 255 | record linkage (e.g., identified through database records), and 23 (79%) ascertained                           |     |
| 12<br>13<br>14 | 256 | exposure via secured records (e.g., database records) or structured interviews. The                            |     |
| 15<br>16       | 257 | comparability of cohorts and adequacy of follow-up were the lowest scoring items acros                         | S   |
| 17<br>18       | 258 | the studies with only 12 (41%) and 10 (34%) studies rated as high quality on these item                        | s.  |
| 19<br>20<br>21 | 259 | No evidence for small-study effects was identified by the visual inspection of the                             |     |
| 22<br>23       | 260 | comparison-adjusted funnel plots (Additional File 3: Appendix G).                                              |     |
| 24<br>25<br>26 | 261 | Statistical analysis results                                                                                   |     |
| 20<br>27<br>28 | 262 | No important concerns were raised regarding the violation of the transitivity assumption                       | n   |
| 29<br>30       | 263 | when maternal age, baseline risk, treatment indication, and timing were assessed                               |     |
| 31<br>32<br>33 | 264 | (Additional File 3: Appendix H). However, the average methodological quality appraisal                         |     |
| 34<br>35       | 265 | across treatment comparisons varied across treatment comparisons. The evaluation of the                        | he  |
| 36<br>37<br>38 | 266 | consistency assumption using the design-by-treatment interaction model suggested that                          | -   |
| 39<br>40       | 267 | there was no evidence of significant inconsistency across all outcomes (Additional File 3                      | :   |
| 41<br>42<br>42 | 268 | Appendix H).                                                                                                   |     |
| 43<br>44<br>45 | 269 | In the following sections, we present the significant NMA results by outcome for AEDs                          |     |
| 46<br>47       | 270 | compared with control (i.e., no exposure to AEDs), while the SUCRA values from all                             |     |
| 48<br>49<br>50 | 271 | outcomes are presented in Figure 2 and depicted in a rank-heat plot ( <u>http://rh.ktss.ca/</u> ) <sup>4</sup> | 40  |
| 50<br>51<br>52 | 272 | in Additional File 3: Appendix I.                                                                              |     |
| 53<br>54       | 273 | Cognitive developmental delay                                                                                  |     |
| 55<br>56<br>57 |     |                                                                                                                |     |
| 58<br>59       |     |                                                                                                                | 1 / |
| 60             |     |                                                                                                                | 14  |

| 2        |   |
|----------|---|
| 3        |   |
| 4        | 1 |
| 5        |   |
| 6        | 4 |
| 7        |   |
| 8        | 2 |
| 9<br>10  |   |
| 10       |   |
| 12       |   |
| 12       |   |
| 14       | 4 |
| 15       |   |
| 16       | 4 |
| 17       |   |
| 18       | 2 |
| 19       |   |
| 20       |   |
| 21       | 4 |
| 22       |   |
| 23       | 4 |
| 24       |   |
| 25       | 2 |
| 26       |   |
| 27       | ; |
| 28       | - |
| 29       |   |
| 30<br>31 | 4 |
| 32       |   |
| 33       | 4 |
| 34       |   |
| 35       | 2 |
| 36       |   |
| 37       |   |
| 38       | • |
| 39       |   |
| 40       | 4 |
| 41       |   |
| 42       | 2 |
| 43       |   |
| 44<br>45 | 2 |
| 45<br>46 |   |
| 40<br>17 |   |
| 47<br>78 | 4 |
| 40<br>40 |   |
| 50       | 4 |
| 51       |   |
| 52       | 2 |
| 53       |   |
| 54       | : |
| 55       | • |
| 56       |   |
| 57       |   |
| 58       |   |
| 59       |   |
| 60       |   |

1

| 274 | The NMA for cognitive developmental delay (definitions in Table 1) included 11 cohort                    |
|-----|----------------------------------------------------------------------------------------------------------|
| 275 | studies, 933 children, and examined 18 treatments (Figure 3a; Additional File 3: Appendix                |
| 276 | J; $\tau^2$ =0.12, 95% CrI: 0.00-1.15). One study included children exposed to AEDs both <i>in-utero</i> |
| 277 | and through breastfeeding, and ten included children exposed to AEDs in-utero. Across all                |
| 278 | AEDs, only valproate was associated with significantly increased odds of cognitive                       |
| 279 | developmental delay when compared with control (odds ratio (OR)=7.40, 95% credible                       |
| 280 | interval (CrI): 3.00-18.46; Figure 2a; Additional File 3: Appendix H).                                   |
| 281 | The same results were observed in a network meta-regression of baseline risk for offspring               |
| 282 | of women with epilepsy who were not exposed to AEDs (estimated regression coefficient                    |
| 283 | on OR scale: 1.01, 95% CrI: 0.76-1.56; τ²=0.16, 95% CrI: 0.00-1.24; residual deviance=                   |
| 284 | 45.27, data points= 47, DIC= 80.17). Similarly, the sensitivity analyses restricted to: a)               |
| 285 | studies that only included women receiving AEDs to treat epilepsy (10 studies, 910                       |
| 286 | children, 17 treatments; $\tau^2$ =0.16, 95% CrI: 0.00-1.36), b) studies comparing only first-           |
| 287 | generation AEDs (6 studies, 480 children, 13 treatments; $\tau^2$ =0.28, 95% CrI: 0.00-2.97), c)         |
| 288 | studies that reported maternal alcohol or tobacco use (3 studies, 504 children, 7                        |
| 289 | treatments; $\tau^2$ =0.27, 95% CrI: 0.00-3.29), and d) studies with high methodological quality         |
| 290 | on NOS item 'comparability of cohorts' (3 studies, 366 children, 7 treatments; $\tau^2$ =0.38, 95%       |
| 291 | CrI: 0.00-4.14), were consistent with the NMA results (Additional File 3: Appendix K). The               |
| 292 | sensitivity analysis with studies of high methodological quality on the NOS item 'adequacy               |
| 293 | of follow-up' found no statistically significant results (4 studies, 283 patients, 12                    |
| 294 | treatments; $\tau^2$ =1.01, 95% CrI: 0.01-5.85; Additional File 3: Appendix K).                          |
| 295 | Autism/dyspraxia                                                                                         |
|     |                                                                                                          |

Page 17 of 90

1

### **BMJ Open**

| 2        |   |
|----------|---|
| 3<br>₄   | 2 |
| 4<br>5   |   |
| 6        | 2 |
| 7<br>8   | 2 |
| 9        | 2 |
| 10<br>11 | 2 |
| 12       |   |
| 13<br>14 | 3 |
| 15       | 2 |
| 16<br>17 | 5 |
| 18       | 3 |
| 19       |   |
| 20<br>21 | 3 |
| 22       | 3 |
| 23<br>24 | 0 |
| 25       | 3 |
| 26<br>27 | 2 |
| 28       | 3 |
| 29<br>30 | 3 |
| 31       |   |
| 32<br>33 | 3 |
| 34       | 2 |
| 35<br>36 | З |
| 37       | 3 |
| 38<br>39 |   |
| 40       | 3 |
| 41<br>42 | 3 |
| 43       | 0 |
| 44<br>45 | 3 |
| 46       | 0 |
| 47<br>48 | 3 |
| 49       | 3 |
| 50<br>51 | - |
| 52       | 3 |
| 53<br>54 | n |
| 55       | 3 |
| 56       |   |
| ว/<br>58 |   |
| 59       |   |
| 60       |   |

| 296 | The NMA on autism/dyspraxia (definitions in Table 1) included five cohort studies, 2,551            |
|-----|-----------------------------------------------------------------------------------------------------|
| 297 | children exposed <i>in utero</i> , and examined 12 treatments ( $\tau^2$ =0.16, 95% CrI: 0.00-1.95; |
| 298 | Figure 3b; Additional File 3: Appendix H). Compared with control, only valproate                    |
| 299 | (OR=17.29, 95% CrI: 2.40-217.60), oxcarbazepine (OR= 13.51, 95% CrI: 1.28-221.40),                  |
| 300 | lamotrigine (OR= 8.88, 95% CrI: 1.28-112.00), and lamotrigine+valproate (OR=132.70,                 |
| 301 | 95% CrI: 7.41-3851.00) were significantly associated with increased occurrence of                   |
| 302 | autism/dyspraxia (Figure 2b).                                                                       |
| 303 | Restricting the NMA to studies including only women with epilepsy as their treatment                |
| 304 | indication produced results that were generally in agreement with the NMA results, except           |
| 305 | that oxcarbazepine was no longer in the network (4 cohort studies, 540 children, 10                 |
| 306 | treatments; $\tau^2$ =0.31, 95% CrI: 0.00-304). Two cohort studies of 404 offspring of women        |
| 307 | with a history of tobacco use compared 4 treatments and found similar results except that           |
| 308 | oxcarbazepine and lamotrigine+valproate were no longer in the network ( $	au^2$ =0.39, 95%          |
| 309 | CrI: 0.00-4.47). The results were in agreement in sensitivity analyses including only higher        |
| 310 | methodological quality studies in the 'comparability of cohorts' item on the NOS (4 studies,        |
| 311 | 2,395 children, 12 treatments; $\tau^2$ =0.19, 95% CrI: 0.00-2.43) and the 'adequacy of follow-up   |
| 312 | of cohorts' (3 studies, 2244 children, 10 treatments; $\tau^2$ =0.23, 95% CrI: 0.00-2.88), except   |
| 313 | that lamotrigine was no longer statistically significant than control for the latter                |
| 314 | (Additional File 3: Appendix K).                                                                    |
| 315 | Neonatal Seizure                                                                                    |
| 316 | One cohort study included 72 children who were exposed to AEDs in-utero as well as                  |
| 317 | through breastfeeding reported on the incidence of neonatal seizures. The study compared            |
|     |                                                                                                     |

| 2              |     |                                                                                                         |
|----------------|-----|---------------------------------------------------------------------------------------------------------|
| 3<br>4         | 318 | valproate against lamotrigine and found no significant difference in neonatal seizures                  |
| 5<br>6<br>7    | 319 | between the two drugs (OR=0.18, 95% CI: 0.01-3.70).                                                     |
| 7<br>8<br>9    | 320 | Psychomotor developmental delay                                                                         |
| 10<br>11       | 321 | The NMA on psychomotor developmental delay (definitions in Table 1) included 11 cohort                  |
| 12<br>13<br>14 | 322 | studies, 1,145 children exposed <i>in utero</i> , and examined 18 treatments ( $\tau^2$ =0.06, 95% CrI: |
| 15<br>16       | 323 | 0.00-0.63; Figure 3c; Additional File 3: Appendices H, J). Valproate (OR=4.16, 95% CrI:                 |
| 17<br>18<br>10 | 324 | 2.04-8.75) and carbamazepine+phenobarbital+valproate (OR=19.12, 95% CrI: 1.49-                          |
| 20<br>21       | 325 | 337.50) were significantly more harmful than control (Figure 2c).                                       |
| 22<br>23       | 326 | Language delay                                                                                          |
| 24<br>25<br>26 | 327 | The NMA on language delay (definitions in Table 1) included five cohort studies, 509                    |
| 20<br>27<br>28 | 328 | children, and examined five treatments ( $\tau^2$ =0.16, 95% CrI: 0.00-2.15; Figure 3d; Additional      |
| 29<br>30       | 329 | File 3: Appendices H, J). One study included children exposed to AEDs <i>in-utero</i> and through       |
| 31<br>32<br>33 | 330 | breastfeeding, and four included children exposed to AEDs in-utero. Compared with                       |
| 34<br>35       | 331 | control, valproate was the only treatment significantly associated with increased odds of               |
| 36<br>37<br>38 | 332 | language delay (OR=7.95, 95% CrI: 1.50-49.13; Figure 2d).                                               |
| 39<br>40       | 333 | Attention deficit hyperactivity disorder                                                                |
| 41<br>42<br>43 | 334 | The NMA on ADHD (definitions in Table 1) included five cohort studies, 816 children, and                |
| 44<br>45       | 335 | examined seven treatments ( $\tau^2$ =0.11, 95% CrI: 0.00-1.29). One study included children            |
| 46<br>47       | 336 | exposed to AEDs in-utero and through breastfeeding, while four studies included children                |
| 48<br>49<br>50 | 337 | exposed to AEDs in-utero. None of the treatment comparisons reached statistical                         |
| 51<br>52       | 338 | significance (Figure 3e; Figure 2e; Additional File 3: Appendices H, J).                                |
| 53<br>54<br>55 | 339 | Social Impairment                                                                                       |
| 56<br>57<br>58 |     |                                                                                                         |
| 59<br>60       |     | 17                                                                                                      |
|                |     |                                                                                                         |

1

Page 19 of 90

### **BMJ Open**

| 2                                                                                              |     |                                                                                            |
|------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------|
| 3<br>4                                                                                         | 340 | One cohort study included 422 children exposed to AEDs in-utero as well as through         |
| 5<br>6<br>7                                                                                    | 341 | breastfeeding. The children were exposed to carbamazepine (n=48), lamotrigine (n=71),      |
| 7<br>8<br>9                                                                                    | 342 | valproate (n=27) and control (n=278). No significant differences in social impairment were |
| 10<br>11                                                                                       | 343 | identified. <sup>41</sup>                                                                  |
| $\begin{array}{c}12\\13\\14\\56\\78\\90\\12\\22\\22\\22\\22\\22\\22\\22\\22\\22\\22\\22\\22\\$ | 344 |                                                                                            |

### **DISCUSSION**

Our results suggest that AEDs generally pose a risk for infants and children exposed *in*-*utero* or during breastfeeding. Valproate was significantly associated with more children experiencing autism/dyspraxia, language, cognitive and psychomotor developmental delays versus children who were not exposed to AEDs. Oxcarbazepine, lamotrigine and lamotrigine+valproate were associated with increased occurrence of autism/dyspraxia, whereas for the cognitive developmental delay and psychomotor developmental delay outcomes, children exposed to the combination of carbamazepine, phenobarbital, and valproate were at greater odds of harm than those who were not exposed to AEDs. However, these results should be interpreted with caution, as a number of factors (e.g., anticonvulsant dosing, severity of epilepsy, duration of exposure, serum concentrations of exposure, mother's IQ/education) that may all influence outcomes were not identified in these studies. Also, our subsequent analyses may be underpowered due to missing data (e.g., 17 of the 27 studies did not report maternal age, 23 of 27 studies did not report alcohol use, 22 of 27 studies did not report tobacco use, and 14 of 27 studies did not include control group). NMA is a particularly useful tool for decision-makers because it allows the ranking of

361 NMA is a particularly useful tool for decision-makers because it allows the ranking of
362 treatments for each outcome. However, the results of our SUCRA curves should be
363 interpreted with caution, especially due to the small number of studies and children
364 included in each NMA, which is also reflected in the high uncertainty around the SUCRA
365 values (Figure 2).<sup>31</sup>

366 Our results are consistent with a longitudinal study of 311 children that found exposure to
367 lamotrigine was associated with significantly higher IQ scores and verbal function at six

Page 21 of 90

### **BMJ Open**

years of age compared to children exposed to valproate (Additional File 3: Appendix C).<sup>7</sup> As indicated in Additional File 3: Appendix C, we were unable to include this study because the outcome was reported as a continuous measure, where we focused on dichotomous outcomes to facilitate interpretation. Our results are supported by findings from a cohort study, which found that children exposed to levetiracetam were not at increased risk for delayed development compared to unexposed children (Additional File 3: Appendix C).<sup>42</sup> As indicated in Additional File 3: Appendix C, we were unable to include this study due to the same reason as above. A NMA of 195 RCTs (including 28,013 both male and female patients) showed that gabapentin and levetiracetam showed the best tolerability profile compared with other AEDs, whereas oxcarbazepine and topiramate had a higher withdrawal rate, and lamotrigine an intermediate withdrawal rate.<sup>43</sup> Across all outcomes, valproate alone or combined with another AED (even with a newer-generation agent, e.g., lamotrigine) was associated with the greatest odds. Similarly, two previous systematic reviews that did not conduct a NMA found valproate was associated with significantly lower IQ scores and poorer overall neurodevelopmental outcomes when compared to an unexposed control group.<sup>56</sup> Also consistent with our results, a 2014 Cochrane review including 28 studies (10 of these studies were included in the meta-analyses; with a maximum number of five studies per meta-analysis) concluded that AED polytherapy led to poorer developmental outcomes and IO compared to healthy controls, epileptic controls, and unspecified monotherapy.<sup>5</sup> This Cochrane review also concluded that insufficient data exist for newer AEDs. However, unlike our review, it included and analysed fewer studies, and did not differentiate between specific polytherapy regimens, and thus did not compare these regimens versus each other or specific monotherapy AEDs.

These risks must be balanced with the need to control seizure activity in pregnancy and 6 thus informed decision-making by patients and clinicians is critical. Strengths of our study include a comprehensive systematic review methodology that followed the Cochrane Handbook<sup>44</sup> and ISPOR<sup>12</sup> guidelines, and reported using the PRISMA extension for NMA.<sup>13</sup> To the best of our knowledge, our study was the first that compared and ranked the safety of AEDs. We evaluated the comparative safety of treatments that have not been directly compared head-to-head before. In addition, we calculated predictive intervals, which account for between-study variation and provide a predicted range for the treatment effect estimate, should a future study be conducted. On average, the predictive intervals suggested that our results are robust. Our systematic review has a few limitations worth noting. First, due to the complexity of the data and the studies' underreporting, differences in drug dosages could not be accounted for, and it was assumed that different dosages of the same AED were equally effective. When a study reported multiple dosages for the same treatment, we combined the data for this treatment. This is common for cohort studies, which report on a number of different types of exposures amongst patients. Second, several polytherapies had high SUCRA estimates but very wide CrIs, which is due to the small number of studies included for each drug combination with underpowered sample sizes. Evidence suggests that ranking probabilities for a treatment of being the best may be biased toward the treatments with the smallest number of studies, which may have influenced our SUCRA results.<sup>31 45</sup> As such, the effect sizes need to be taken into account when considering the SUCRA values. Third, due to the absence of evidence from RCTs, our conclusions were based on evidence from observational studies only, and inherent biases because of 

Page 23 of 90

### **BMJ Open**

confounding and shortcomings of these studies may have impacted our findings. For example, the included studies often failed to report important treatment effect modifiers,<sup>46</sup> such as family history of autism, ADHD, and maternal IQ, severity of epilepsy making it impossible for us to explore their impact through subgroup analysis and meta-regression. Recent research has explored methods to incorporate non-randomized with randomized evidence in a NMA and have highlighted the need to carefully explore the level of confidence in the non-randomized evidence.<sup>47 48</sup> The use of observational studies allows the assessment of the safety profile of AED treatments and offers the opportunity to evaluate effects in pregnancy.<sup>49</sup> Future large-scale observational studies are needed to allow the evaluation of rare adverse events that otherwise cannot be adequately evaluated in RCTs, especially during pregnancy. Fourth, although no intransitivity for most effect modifiers assessed was evident, there was an imbalance in the methodological study quality appraisal across treatment comparisons and most outcomes, which may impact our results. Unknown factors or factors that could not be assessed due to dearth of data may pose the risk of residual confounding bias, and hence risk the validity of the transitivity assumption. However, the assessment of consistency suggested no disagreement between the different sources of evidence in the network. Fifth, although the tendency towards small-study effects is greater with observational studies than with randomized trials,<sup>50</sup> the assessment of small-study effects using adjusted funnel plots suggested no evidence for their prevalence. Also, the majority of the included studies in this review compared multiple treatments inducing correlations in each funnel plot, which may mask asymmetry. Although we plotted data points corresponding to the study-specific basic parameters to reduce correlations, this issue may still exist. Sixth, we were unable to conduct subgroup

| 1<br>2         |     |                                                                                                        |
|----------------|-----|--------------------------------------------------------------------------------------------------------|
| 3<br>4         | 437 | analysis by type of exposure (breastfeeding versus <i>in utero</i> ) due to the small number of        |
| 5<br>6<br>7    | 438 | studies included in the NMA and due to the poor reporting; 22 studies did not report                   |
| 7<br>8<br>9    | 439 | whether exposure was also in breastfeeding (additional to <i>in utero</i> ). Hence, we included all    |
| 10<br>11       | 440 | studies in the analysis irrespective of the type of exposure.                                          |
| 12<br>13<br>14 | 441 | More evidence from long-term follow-up studies is required to further delineate                        |
| 15<br>16       | 442 | neurodevelopmental risks in children. Future studies should assess the genetic                         |
| 17<br>18<br>10 | 443 | contribution from the biological father, maternal seizures during pregnancy, exposure                  |
| 20<br>21       | 444 | through breastfeeding only, types of epilepsy, and maternal family history. Registries                 |
| 22<br>23       | 445 | should aim to include a suitable control group and collect information on potential                    |
| 24<br>25<br>26 | 446 | confounders, such as alcohol and tobacco use, allowing researchers to identify the safest              |
| 27<br>28       | 447 | agents for different patient-level covariates, and enhance decision-making for healthcare              |
| 29<br>30<br>31 | 448 | providers and patients. A critical evaluation of the validity of the control group is also             |
| 32<br>33       | 449 | necessary, in order to examine potential differences between the treated and the not                   |
| 34<br>35<br>26 | 450 | treated populations. An individual patient data NMA would likely provide further clarity to            |
| 36<br>37<br>38 | 451 | the field, which allows the tailoring of management to specific patient characteristics. <sup>51</sup> |
| 39<br>40       | 452 | CONCLUSION                                                                                             |
| 41<br>42<br>43 | 453 | Across all outcomes and treatments compared with control, valproate alone or combined                  |
| 44<br>45       | 454 | with another AED was associated with the greatest odds, whereas oxcarbazepine and                      |
| 46<br>47<br>48 | 455 | lamotrigine were associated with increased occurrence of autism. Counselling is advised                |
| 49<br>50       | 456 | for women considering pregnancy to tailor the safest regimen.                                          |
| 51<br>52<br>53 |     |                                                                                                        |
| 53<br>54<br>55 |     |                                                                                                        |
| 56             |     |                                                                                                        |
| 57<br>58       |     |                                                                                                        |

59

| 1<br>2<br>3<br>4           | 457 | LIST OF ABBREVIATIONS                                                                    |    |
|----------------------------|-----|------------------------------------------------------------------------------------------|----|
| 5<br>6<br>7                | 458 | AEDs: Anti-epileptic drugs; CrI: Credible interval; NMA: Network Meta-analysis; OR: Od   | ds |
| 7<br>8<br>9                | 459 | ratio; PrI: Predictive interval; SUCRA curve: Surface under the cumulative ranking curve | Э  |
| 10<br>11<br>12             | 460 | ADDITIONAL FILES                                                                         |    |
| 13<br>14                   | 461 | Additional File 1: Protocol                                                              |    |
| 15<br>16<br>17<br>18<br>19 | 462 | Additional File 2: PRISMA NMA Checklist                                                  |    |
| 20<br>21                   | 463 | Additional File 3: Supplementary Online Content (Appendices A-O)                         |    |
| 22<br>23<br>24             | 464 | Appendix A. Newcastle-Ottawa Scale scoring guide                                         |    |
| 25<br>26                   | 465 | Appendix B. List of included studies                                                     |    |
| 27<br>28<br>29             | 466 | Appendix C. Key Excluded Studies                                                         |    |
| 30<br>31                   | 467 | Appendix D. Table of Individual Study Characteristics                                    |    |
| 32<br>33<br>34             | 468 | Appendix E. Table of Patient Characteristics                                             |    |
| 35<br>36                   | 469 | Appendix F. Methodological quality of observational studies – Newcastle Ottawa Scale     |    |
| 37<br>38<br>20             | 470 | Appendix G. Comparison-adjusted funnel plots                                             |    |
| 39<br>40<br>41             | 471 | Appendix H. Statistically significant network meta-analysis results along with meta-     |    |
| 42<br>43                   | 472 | analysis results, transitivity, and inconsistency assessments                            |    |
| 44<br>45<br>46             | 473 | Appendix I. Rank-heat plot of cognitive developmental delay, autism/dyspraxia,           |    |
| 47<br>48                   | 474 | psychomotor developmental delay, language delay, and attention deficit hyperactivity     |    |
| 49<br>50<br>51             | 475 | disorder outcomes                                                                        |    |
| 52<br>53                   | 476 | Appendix J. Number of studies and treatments per outcome                                 |    |
| 54<br>55                   | 477 | Appendix K. Sensitivity and network meta-regression analyses - Anti-epileptic drugs      |    |
| 50<br>57<br>58<br>59<br>60 | 478 | compared with Control                                                                    | 2  |

| 2  |
|----|
| 3  |
| 4  |
| 5  |
| 6  |
| 7  |
| 1  |
| 8  |
| 9  |
| 10 |
| 10 |
| 11 |
| 12 |
| 13 |
| 14 |
| 15 |
| 10 |
| 16 |
| 17 |
| 18 |
| 19 |
| 20 |
| 20 |
| 21 |
| 22 |
| 23 |
| 21 |
| 24 |
| 25 |
| 26 |
| 27 |
| 28 |
| 20 |
| 29 |
| 30 |
| 31 |
| 32 |
| 33 |
| 33 |
| 34 |
| 35 |
| 36 |
| 37 |
| 20 |
| 30 |
| 39 |
| 40 |
| 41 |
| 42 |
| 10 |
| 40 |
| 44 |
| 45 |
| 46 |
| 47 |
| 10 |
| 4ð |
| 49 |
| 50 |
| 51 |
| 52 |
| 52 |
| 53 |
| 54 |
| 55 |
| 56 |
| 57 |
| 51 |
| 58 |
| 59 |
| 60 |

# 479**FIGURE LEGENDS**

### 480 **Figure 1. Study flow diagram**

481 Figure 2. Forest plots for cognitive developmental delay, autism/dyspraxia,

482 psychomotor developmental delay, language delay, and attention deficit

483 hyperactivity disorder outcome

484 Figure 3. Network diagrams for cognitive developmental delay, autism/dyspraxia,

485 **psychomotor developmental delay, language delay, and attention deficit** 

### 486 hyperactivity disorder outcomes

487 Each treatment node is weighted according to the number of patients that have received the

488 particular treatment, and each edge is weighted according to the number of studies

489 *comparing the treatments it connects.* 

490 <u>Abbreviations:</u> carbam - carbamazepine, clobaz - clobazam, clonaz - clonazepam, ethos -

491 ethosuximide, gabap - gabapentin, lamot - lamotrigine, levet - levetiracetam, oxcar -

492 oxcarbazepine, pheno - phenobarbital, pheny - phenytoin, primid - primidone, topir -

493 topiramate, valpro - valproate, vigab – vigabatrin

## **DECLARATIONS**

### **CONTRIBUTORS**

AAV analysed the data, interpreted the results, and drafted the manuscript. ACT and SES conceived and designed the study, helped obtain funding, interpreted the results, and helped write sections of the manuscript. PR and EC coordinated the review, screened citations and full-text articles, abstracted data, appraised quality, resolved discrepancies, contacted authors, and edited the manuscript. CS provided methodological support and screened citations and full-text articles and edited the manuscript. RK, ER, FY, JDS, KT, and HM screened citations and full-text articles, abstracted data, and/or appraised quality. BH, BRH and YF helped conceive the study and edited the manuscript. All authors read and approved the final manuscript.

# 30 505 ACKNOWLEDGEMENTS 31

We thank Dr. David Moher for providing his feedback on our protocol. We thank Dr. Laure Perrier for conducting the literature searches, Becky Skidmore for peer-reviewing the MEDLINE search, and Alissa Epworth for obtaining the full-text articles. We thank Alistair Scott, Wing Hui, and Geetha Sanmugalingham for screening some of the citations and/or abstracting some of the data for a few of the included studies, Misty Pratt and Mona Ghannad for helping scan reference lists, and Ana Guzman, Susan Le, and Inthuja Selvaratnam for contacting authors and formatting the manuscript. FUNDING 

516 Fellowship Program from the CIHR. SES is funded by a Tier 1 Canada Research Chair in

| 2              |     |                                                                                            |
|----------------|-----|--------------------------------------------------------------------------------------------|
| 3<br>4         | 517 | Knowledge Translation. BH is funded by a CIHR/DSEN New Investigator Award in               |
| 5<br>6<br>7    | 518 | Knowledge Synthesis. BRH receives funding from the Alberta Heritage Foundation for         |
| 7<br>8<br>9    | 519 | Medical Research. ACT is funded by a Tier 2 Canada Research Chair in Knowledge             |
| 10<br>11       | 520 | Synthesis. The funder had no role in the design and conduct of the study; collection,      |
| 12<br>13<br>14 | 521 | management, analysis, and interpretation of the data; preparation, review, or approval of  |
| 15<br>16       | 522 | the manuscript; or decision to submit the manuscript for publication.                      |
| 17<br>18<br>19 | 523 | COMPETING INTERESTS                                                                        |
| 20<br>21       | 524 | None declared.                                                                             |
| 22<br>23       | 525 | ETHICS APPROVAL                                                                            |
| 24<br>25<br>26 | 526 | Not applicable.                                                                            |
| 27<br>28       | 527 | PROVENANCE AND PEER REVIEW                                                                 |
| 29<br>30<br>31 | 528 | Not commissioned; externally peer reviewed.                                                |
| 32<br>33       | 529 | DATA SHARING STATEMENT                                                                     |
| 34<br>35       | 530 | All datasets generated and/or analysed during the current study are available from the     |
| 30<br>37<br>38 | 531 | corresponding author on reasonable request.                                                |
| 39<br>40       | 532 | OPEN ACCESS                                                                                |
| 41<br>42<br>43 | 533 | This is an Open Access article distributed in accordance with the Creative Commons         |
| 44<br>45       | 534 | Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute,     |
| 46<br>47       | 535 | remix, adapt, build upon this work non-commercially, and license their derivative works on |
| 48<br>49<br>50 | 536 | different terms, provided the original work is properly cited and the use is non-          |
| 51<br>52       | 537 | commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.                           |
| 53<br>54<br>55 |     |                                                                                            |
| 56<br>57       |     |                                                                                            |
| 58<br>59       |     | 27                                                                                         |
| bU             |     | 27                                                                                         |

### BMJ Open

### 538 REFERENCES

| 7        |            |                                                                                                      |
|----------|------------|------------------------------------------------------------------------------------------------------|
| 8        | 530        | 1 Sping F. Perugi C. Antiopilantic drugs: indications other than opilansy. <i>Epilantic Disord</i>   |
| 9        | 540        | 2004·6(2)·57-75                                                                                      |
| 10       | 541        | 2 Harden CL Pennell PR Konnel RS et al Management issues for women with enilensyfocus                |
| 11       | 542        | on pregnancy (an evidence-based review): III vitamin K folic acid blood levels and breast-feeding:   |
| 12<br>13 | 543        | report of the quality standards subcommittee and therapeutics and technology assessment              |
| 14       | 544        | subcommittee of the American Academy of Neurology and the American Enilensy Society <i>Enilensia</i> |
| 15       | 545        | 2000-50(5)-1247-55                                                                                   |
| 16       | 546        | 2 Samron FR yan Duijn CM Koch S at al Maternal use of antioniloptic drugs and the rick of            |
| 17       | 540        | s. Same in ED, van Duijn CM, Koch S, et al. Maternal use of antiephephe ut us sand the fisk of       |
| 18       | 547        | according with maternal onlongy <i>Enilongia</i> 1007.29(0).091.00                                   |
| 19       | 540        | Associated with indicidial epilepsy. Epilepsia. 1997,50(9):901-90.                                   |
| 20       | 549        | 4. Meduol K, Reynolus MW, Clean S, Fambach K, Probst C. Pregnancy outcomes in women                  |
| 21       | 550<br>EE1 | schorte, Enilenzy Des 2000-01(1):1.12                                                                |
| 22       | 221        | Conorts. Epilepsy Res. 2008;81(1):1-13.                                                              |
| 23       | 552        | 5. Bromley R, weston J, Adab N, et al. I reatment for epilepsy in pregnancy:                         |
| 24<br>25 | 555        | neurodevelopmental outcomes in the child. The Cochrane database of systematic reviews.               |
| 20<br>26 | 554        |                                                                                                      |
| 20       | 555        | 6. Banach R, Boskovic R, Einarson T, Koren G. Long-term developmental outcome of children            |
| 28       | 556        | of women with epilepsy, unexposed or exposed prenatally to antiepileptic drugs: a meta-analysis of   |
| 29       | 55/        | cohort studies. Drug Saf. 2010;33(1):73-9.                                                           |
| 30       | 558        | 7. Meador KJ, Baker GA, Browning N, et al. Fetal antiepileptic drug exposure and cognitive           |
| 31       | 559        | outcomes at age 6 years (NEAD study): a prospective observational study. <i>Lancet Neurol</i> .      |
| 32       | 560        | 2013;12(3):244-52.                                                                                   |
| 33       | 561        | 8. Christensen J, Gronborg TK, Sorensen MJ, et al. Prenatal valproate exposure and risk of           |
| 34       | 562        | autism spectrum disorders and childhood autism. <i>JAMA</i> . 2013;309(16):1696-703.                 |
| 35       | 563        | 9. Wlodarczyk BJ, Palacios AM, George TM, Finnell RH. Antiepileptic drugs and pregnancy              |
| 36       | 564        | outcomes. <i>Am J Med Genet A</i> . 2012;158a(8):2071-90.                                            |
| 37       | 565        | 10. Velez-Ruiz NJ, Meador KJ. Neurodevelopmental effects of fetal antiepileptic drug exposure.       |
| 30<br>30 | 566        | Drug Saf. 2015;38(3):271-8.                                                                          |
| 40       | 567        | 11. Tricco AC, Cogo E, Angeliki VA, et al. Comparative safety of anti-epileptic drugs among          |
| 41       | 568        | infants and children exposed in utero or during breastfeeding: protocol for a systematic review and  |
| 42       | 569        | network meta-analysis. <i>Systematic reviews</i> . 2014;3:68.                                        |
| 43       | 570        | 12. Jansen JP, Trikalinos T, Cappelleri JC, et al. Indirect treatment comparison/network meta-       |
| 44       | 571        | analysis study questionnaire to assess relevance and credibility to inform health care decision      |
| 45       | 572        | making: an ISPOR-AMCP-NPC Good Practice Task Force report. Value Health. 2014;17(2):157-73.          |
| 46       | 573        | 13. Hutton B, Salanti G, Caldwell DM, et al. The PRISMA extension statement for reporting of         |
| 47       | 574        | systematic reviews incorporating network meta-analyses of health care interventions: checklist and   |
| 48       | 575        | explanations. Ann Intern Med. 2015;162(11):777-84.                                                   |
| 49<br>50 | 576        | 14. Veroniki AA, Cogo E, Rios P, et al. Comparative safety of anti-epileptic drugs during            |
| 50<br>51 | 577        | pregnancy: a systematic review and network meta-analysis of congenital malformations and             |
| 52       | 578        | prenatal outcomes. BMC Med. 2017;15(1):95.                                                           |
| 53       | 579        | 15. McGowan J, Sampson M, Salzwedel DM, Cogo E, Foerster V, Lefebvre C. PRESS Peer Review            |
| 54       | 580        | of Electronic Search Strategies: 2015 Guideline Statement. J Clin Epidemiol. 2016;75:40-6.           |
| 55       | 581        | 16. Wells G, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the          |
| 56       | 582        | quality of nonrandomised studies in meta-analyses2000. Available from:                               |
| 57       | 583        | http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.                                        |
| 58       |            |                                                                                                      |
| 59       |            | 28                                                                                                   |
| 60       |            | 20                                                                                                   |

17. Chaimani A, Higgins JP, Mavridis D, Spyridonos P, Salanti G. Graphical tools for network meta-analysis in STATA. PLoS One. 2013;8(10):e76654. Furukawa TA, Guyatt GH, Griffith LE. Can we individualize the 'number needed to treat'? An 18. empirical study of summary effect measures in meta-analyses. *Int J Epidemiol*. 2002;31(1):72-6. Lu G, Ades AE. Combination of direct and indirect evidence in mixed treatment 19. comparisons. Stat Med. 2004;23(20):3105-24. Jansen JP, Naci H. Is network meta-analysis as valid as standard pairwise meta-analysis? It 20. all depends on the distribution of effect modifiers. BMC Med. 2013;11:159. White IR, Barrett JK, Jackson D, Higgins JP. Consistency and inconsistency in network meta-21. analysis: model estimation using multivariate meta-regression. Res Synth Methods. 2012;3(2):111-25. 22. Song F, Altman DG, Glenny AM, Deeks JJ. Validity of indirect comparison for estimating efficacy of competing interventions: empirical evidence from published meta-analyses. BMI. 2003;326(7387):472. 23. Veroniki AA, Vasiliadis HS, Higgins JP, Salanti G. Evaluation of inconsistency in networks of interventions. Int J Epidemiol. 2013;42(1):332-45. 24. Welton NJ, Sutton AJ, Cooper N, Abrams KR, Ades A. Evidence synthesis for decision making in healthcare. New York: Wiley; 2012. 25. Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A. Bayesian measures of model complexity and fit. *J R Stat Soc Ser B Stat Methodol*. 2002;64(4):583-639. Lunn D, Spiegelhalter D, Thomas A, Best N. The BUGS project: Evolution, critique and future 26. directions. Stat Med. 2009;28(25):3049-67. Palmer T, Sterne J. Meta-Analysis in Stata: An Updated Collection from the Stata Journal. 27. White I, editor. Texas: Stata Press; 2016. Riley RD, Higgins JP, Deeks JJ. Interpretation of random effects meta-analyses. BMJ. 28. 2011;342:d549. Higgins JP, Thompson SG, Spiegelhalter DJ. A re-evaluation of random-effects meta-analysis. 29. *J R Stat Soc Ser A Stat Soc.* 2009;172(1):137-59. Salanti G, Ades AE, Ioannidis JP. Graphical methods and numerical summaries for 30. presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin *Epidemiol.* 2011;64(2):163-71. Trinquart L, Attiche N, Bafeta A, Porcher R, Ravaud P. Uncertainty in Treatment Rankings: 31. Reanalysis of Network Meta-analyses of Randomized Trials. Ann Intern Med. 2016;164(10):666-73. 32. Bromley R, Baxter N, Calderbank R, Mawer G, Clayton-Smith J, Baker G. A comprehensive review of the language abilities of children exposed to valproate or carbamazepine in utero. American Epilepsy Society; Texas2010. Gogatishvili N, Ediberidze T, Lomidze G, Tatishvili N, Kasradze S. PO-0834 Long-term 33. Developmental Outcome Of Children Prenatally Exposed To Antiepileptic Drugs. Arch Dis Child. 2014;99(Suppl 2):A526. Gogatishvili N, Ediberidze T, Lomidze G, Tatishvili N, Kasradze S. Cognitive outcomes of 34. children with fetal antiepileptic drug exposure at the age of 3-6 years-preliminary data. 1st Congress of the European Academy of Neurology; Berlin: European Journal of Neurology; 2015. p. 329. 35. Miskov S, Juraski RG, Fucic A, et al. Croatian Pregnant Women with Epilepsy and Effects of Antiepileptic Drugs Exposure in their Offspring - seven years of prospective surveillance. American Epilepsy Society; Texas2010. Adab N, Kini U, Vinten J, et al. The longer term outcome of children born to mothers with 36. epilepsy. J Neurol Neurosurg Psychiatry. 2004;75(11):1575-83. 

| 1<br>2          |            |                                                                                                       |
|-----------------|------------|-------------------------------------------------------------------------------------------------------|
| 3               | 632        | 37 Dean ICS Hailey H. Moore SI Lloyd DI Turnnenny PD Little I Long term health and                    |
| 4               | 633        | neurodevelopment in children exposed to antiepileptic drugs before birth. <i>J Med Genet</i> .        |
| 5               | 634        | 2002;39(4):251-9.                                                                                     |
| 7               | 635        | 38. Gaily E. Development and growth in children of epileptic mothers: a prospective controlled        |
| 8               | 636        | study. Helsinki, Finland: University of Helsinki; 1990.                                               |
| 9               | 637        | 39. Katz JM, Pacia SV, Devinsky O. Current Management of Epilepsy and Pregnancy: Fetal                |
| 10              | 638        | Outcome, Congenital Malformations, and Developmental Delay. <i>Epilepsy Behav</i> . 2001;2(2):119-23. |
| 11              | 639        | 40. Veroniki AA, Straus SE, Fyraridis A, Tricco AC. The rank-heat plot is a novel way to present      |
| 12              | 640        | the results from a network meta-analysis including multiple outcomes. <i>J Clin Epidemiol</i> . 2016. |
| 14              | 641        | 41. Verby G, Engelsen BA, Gilhus NE. Early child development and exposure to antiepileptic            |
| 15              | 64Z        | drugs prenatally and through breastfeeding: a prospective cohort study on children of women with      |
| 16              | 043<br>644 | 42 Shalleross P. Bromley DI. Junin P. Bonnett II. Morrow I. Baker CA. Child development               |
| 17              | 645        | following in utero exposure: levetiracetam vs sodium valproate. <i>Neurology</i> 2011:76(4):383-9     |
| 18              | 646        | 43 Zaccara G Giovannelli F Giorgi FS Franco V Gasparini S Benedetto II Tolerability of new            |
| 20              | 647        | antiepileptic drugs: a network meta-analysis. <i>Eur I Clin Pharmacol.</i> 2017.                      |
| 21              | 648        | 44. Higgins IPT, Green S, editors. Cochrane Handbook for Systematic Reviews of Interventions.         |
| 22              | 649        | 5.1.0 ed: The Cochrane Collaboration; 2009.                                                           |
| 23              | 650        | 45. Kibret T, Richer D, Beyene J. Bias in identification of the best treatment in a Bayesian          |
| 24              | 651        | network meta-analysis for binary outcome: a simulation study. <i>Clin Epidemiol</i> . 2014;6:451-60.  |
| 25              | 652        | 46. Dalessio DJ. Seizure Disorders and Pregnancy. <i>N Engl J Med</i> . 1985;312(9):559-63.           |
| 27              | 653        | 47. Efthimiou O, Mavridis D, Debray TP, et al. Combining randomized and non-randomized                |
| 28              | 654        | evidence in network meta-analysis. <i>Stat Med</i> . 2017.                                            |
| 29              | 655        | 48. Schmitz S, Adams R, Walsh C. Incorporating data from various trial designs into a mixed           |
| 30              | 656        | treatment comparison model. <i>Stat Med.</i> 2013;32(17):2935-49.                                     |
| 31              | 657<br>650 | 49. Cameron C, Fireman B, Hutton B, et al. Network meta-analysis incorporating randomized             |
| 33              | 050<br>659 | effectiveness of medical treatments: challenges and opportunities. Sustematic reviews, 2015;4:147     |
| 34              | 660        | 50 Fasterbrook PI Berlin IA Conalan R Matthews DR Publication hias in clinical research               |
| 35              | 661        | Lancet, 1991:337(8746):867-72.                                                                        |
| 36              | 662        | 51. Veroniki AA, Straus SE, Soobiah C, Elliott MI, Tricco AC, A scoping review of indirect            |
| <i>31</i><br>২৪ | 663        | comparison methods and applications using individual patient data. BMC Med Res Methodol.              |
| 39              | 664        | 2016;16(1):47.                                                                                        |
| 40              | 665        |                                                                                                       |
| 41              |            |                                                                                                       |
| 42              |            |                                                                                                       |
| 43<br>11        |            |                                                                                                       |
| 44              |            |                                                                                                       |
| 46              |            |                                                                                                       |
| 47              |            |                                                                                                       |
| 48              |            |                                                                                                       |
| 49<br>50        |            |                                                                                                       |
| 50              |            |                                                                                                       |
| 52              |            |                                                                                                       |
| 53              |            |                                                                                                       |
| 54              |            |                                                                                                       |
| 55              |            |                                                                                                       |
| 50<br>57        |            |                                                                                                       |
| 58              |            |                                                                                                       |
| 59              |            |                                                                                                       |
| 60              |            | 30                                                                                                    |
# **Table 1. Outcome measures and diagnostic scales used in analysis**

| Cognitive developmental delay                     |                                                                                                                 |  |  |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|
| Bayley Scales of Infant Development               | Score $\geq$ 2 standard deviations below the mean                                                               |  |  |
| (children <u>&lt;</u> 42 mo.)                     |                                                                                                                 |  |  |
| Griffiths Scale of Infant Development             | Score >2 standard deviations below the mean                                                                     |  |  |
| (children >42 mo.)                                | Score <u>-</u> 2 standard deviations below the mean                                                             |  |  |
| McCarthy Scales of Children's Abilities           | Score >1 standard deviations below the mean                                                                     |  |  |
| (children >30 mo.)                                | Score -1 Standard deviations below the mean                                                                     |  |  |
| Stanford-Binet IV Intelligence scale for children | Intelligence quotient <u>&lt;</u> 80                                                                            |  |  |
| Touwen's Test                                     | Above average number of items rated abnormal in one or more                                                     |  |  |
| Touwen's rest                                     | domains                                                                                                         |  |  |
| Wechsler Scale of Preschool and Primary           | Intelligence quotient <90                                                                                       |  |  |
| Intelligence                                      |                                                                                                                 |  |  |
| Wechsler Intelligence Scale for Children - III    | Intelligence quotient <80; verbal intelligence quotient <69                                                     |  |  |
| Developmental Assessment                          | Confirmed diagnosis by developmental pediatrician or pediatric                                                  |  |  |
|                                                   | neurologist Notes and the second s |  |  |
| Autism/dyspraxia                                  |                                                                                                                 |  |  |
| Developmental Assessment                          | Diagnosis confirmed by developmental specialists at 2 years of age                                              |  |  |
| Medical Records                                   | Confirmed diagnosis recorded in medical history; registry records                                               |  |  |
|                                                   | (ICD-10 codes F84.0, F84.1, F84.5, F84.8, and F84.9)                                                            |  |  |
| Modified checklist for autism in toddlers         | Scored positive for $\geq 2$ out of 6 critical items OR $\geq 3$ any items of the total                         |  |  |
|                                                   | scale                                                                                                           |  |  |
| Psychomotor developmental delay                   |                                                                                                                 |  |  |
| Ages and Stages Questionnaire                     | >3 standard deviations from the test mean                                                                       |  |  |
| Bayley Scales of Infant Development – Psychomotor | >2 standard doviations below the standardized mean for the test                                                 |  |  |
| Index                                             | ~2 Standard deviations below the Standardized mean for the test                                                 |  |  |
| Touwan's Test                                     | Demonstrated dysfunctions in fine motor balance, fine motor functions,                                          |  |  |
| 100/00113 1630                                    | and coordination of extremities                                                                                 |  |  |
| Schedule of Growing Skills II                     | Scored as 'delayed' in $\geq 1$ domain of the test                                                              |  |  |
|                                                   |                                                                                                                 |  |  |

| 3<br>4<br>5<br>6<br>7<br>8       |     | Developmental Assessment                                                                                                                                                                                                        | Infant scored >2 negative items (administered by general practitioner<br>or pediatrician); diagnosis of neuromotor deficit confirmed by a trained<br>nurse practitioner; infant failing to sit by 10 months or walk by 18<br>months |
|----------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9<br>10                          |     | Health/Medical Records                                                                                                                                                                                                          | Diagnosis of psychomotor delay recorded in medical records                                                                                                                                                                          |
| 11                               |     | Language Delay                                                                                                                                                                                                                  |                                                                                                                                                                                                                                     |
| 12                               |     | Ages and Stages Questionnaire                                                                                                                                                                                                   | >3 standard deviations from the test mean                                                                                                                                                                                           |
| 13<br>14<br>15                   |     | Clinical Evaluation of Language Fundamentals – 4 <sup>th</sup><br>Edition                                                                                                                                                       | Score <70 in core language domain; score <84 overall                                                                                                                                                                                |
| 16                               |     | Learning Accomplishment Profile                                                                                                                                                                                                 | Below average performance in expressive speech (adjusted for age)                                                                                                                                                                   |
| 17<br>18<br>19<br>20<br>21<br>22 |     | Comprehensive Language Assessment<br>(Peabody Picture Vocabulary Test; Receptive<br>Expressive Emergent Language Scale; Expressive<br>One Word Picture Vocabulary Test, or Sequenced<br>Inventory of Communication Development) | Scores/assessment indicate a >6 moth delay in age appropriate language development                                                                                                                                                  |
| 23                               |     | ADHD                                                                                                                                                                                                                            |                                                                                                                                                                                                                                     |
| 24                               |     | Attention Problems and Hyperactivity Scales                                                                                                                                                                                     | Score >1 standard deviations from the test mean                                                                                                                                                                                     |
| 25<br>26                         |     | Child Behaviour Checklist                                                                                                                                                                                                       | ≥6 positive items on checklist                                                                                                                                                                                                      |
| 27                               |     | Diagnostic and Statistical Manual – IV                                                                                                                                                                                          | ≥5 positive items on checklist                                                                                                                                                                                                      |
| 28<br>29                         |     | Medical Records                                                                                                                                                                                                                 | Confirmed diagnosis in hospital/medical records made by a pediatrician or child psychiatrist                                                                                                                                        |
| 30<br>31                         |     | Neonatal Seizure                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |
| 32<br>33                         |     | Medical records                                                                                                                                                                                                                 | Record of seizures during 1 <sup>st</sup> year; confirmation of neonatal seizure by electroencephalography or diagnosis                                                                                                             |
| 34                               |     | Social Impairment                                                                                                                                                                                                               |                                                                                                                                                                                                                                     |
| 35                               |     | Developmental Assessment                                                                                                                                                                                                        | Scores dichotomized into 'normal' or 'adverse' range based on pre-                                                                                                                                                                  |
| 30<br>37<br>38                   |     | (Ages and Stages Questionnaire [6 and 18 months];<br>Child Behaviour Checklist [36 months])                                                                                                                                     | defined values used by scale, for scales without pre-defined values cut-<br>off was set at a score >2 standard deviations outside the test mean                                                                                     |
| 39                               | 667 | <b>b</b> #2                                                                                                                                                                                                                     |                                                                                                                                                                                                                                     |

| Study/Patient Characteristic            | # of Studies<br>(n=29) | % of Studies |
|-----------------------------------------|------------------------|--------------|
| Year of publication                     |                        |              |
| 1980-1989                               | 1                      | 3.45         |
| 1990-1999                               | 6                      | 20.69        |
| 2000-2009                               | 5                      | 17.24        |
| 2010-2015                               | 17                     | 58.62        |
| Continent (of country of study conduct) |                        |              |
| Europe                                  | 20                     | 68.97        |
| North America                           | 5                      | 17.24        |
| Asia                                    | 1                      | 3.45         |
| Australia                               | 2                      | 6.90         |
| Trans-Continental                       | 1                      | 3.45         |
| Study design                            |                        |              |
| Observational cohort                    | 29                     | 100.00       |
| Case-control                            | 0                      | 0.00         |
| Randomized clinical trial               | 0                      | 0.00         |
| Registry study                          | A                      |              |
| Yes                                     | 11                     | 37.93        |
| No                                      | 18                     | 62.07        |
| Sample size                             |                        |              |
| 0-99                                    | 18                     | 62.07        |
| 100-299                                 | 9                      | 31.03        |
| 300-499                                 | 1                      | 3.45         |
| 500-699                                 | 0                      | 0.00         |
| 700-999                                 | 0                      | 0.00         |
| 1000+                                   | 1                      | 3.45         |
| Number of interventions                 |                        | ~            |
| 2                                       | 4                      | 13.79        |
| 3                                       | 5                      | 17.24        |
| 4                                       | 8                      | 27.59        |
| 5-7                                     | 8                      | 27.59        |
| 8-10                                    | 2                      | 6.90         |
| 11+                                     | 2                      | 6.90         |
| Outcomes <sup>*,†</sup>                 |                        |              |
| Cognitive Developmental Delay           | 12                     | 58.62        |
| Autism/Dyspraxia                        | 5                      | 17.24        |
| Language Delay                          | 5                      | 17.24        |
| ADHD                                    | 5                      | 17.24        |
| Psychomotor Developmental Delay         | 11                     | 37.93        |
| i sychomotor Developmental Delay        | 11                     | 57.75        |

# 668Table 2. Summary characteristics of included studies

| Study/Pat                                                                                            | ient Characteristic                                                                                                                                                                                                         | # of Studies<br>(n=29)                                                              | % of Studies                                      |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------|
|                                                                                                      | Neonatal Seizures                                                                                                                                                                                                           | 2                                                                                   | 6.90                                              |
|                                                                                                      | Social Impairment                                                                                                                                                                                                           | 1                                                                                   | 3.45                                              |
| Funding                                                                                              |                                                                                                                                                                                                                             |                                                                                     |                                                   |
|                                                                                                      | Public                                                                                                                                                                                                                      | 15                                                                                  | 51.72                                             |
|                                                                                                      | Private                                                                                                                                                                                                                     | 0                                                                                   | 0.00                                              |
|                                                                                                      | Mixed public and private                                                                                                                                                                                                    | 4                                                                                   | 13.79                                             |
|                                                                                                      | NR/Unclear                                                                                                                                                                                                                  | 10                                                                                  | 34.48                                             |
| Treatment                                                                                            | indication                                                                                                                                                                                                                  |                                                                                     |                                                   |
|                                                                                                      | Epilepsy                                                                                                                                                                                                                    | 23                                                                                  | 79.31                                             |
|                                                                                                      | Mixed indications <sup>‡</sup>                                                                                                                                                                                              | 0                                                                                   | 0.00                                              |
|                                                                                                      | Not reported                                                                                                                                                                                                                | 6                                                                                   | 20.69                                             |
| Epileptic co                                                                                         | ntrol group <sup>§</sup>                                                                                                                                                                                                    |                                                                                     |                                                   |
|                                                                                                      | Yes                                                                                                                                                                                                                         | 15                                                                                  | 51.72                                             |
|                                                                                                      | No/NR/NA                                                                                                                                                                                                                    | 14                                                                                  | 48.28                                             |
| Mean mate                                                                                            | rnal age                                                                                                                                                                                                                    |                                                                                     |                                                   |
|                                                                                                      | 24-26 y                                                                                                                                                                                                                     | 2                                                                                   | 6.90                                              |
|                                                                                                      | 27-29 y                                                                                                                                                                                                                     | 5                                                                                   | 17.24                                             |
|                                                                                                      | 30+ y                                                                                                                                                                                                                       | 4                                                                                   | 13.79                                             |
|                                                                                                      | Not reported                                                                                                                                                                                                                | 18                                                                                  | 62.07                                             |
| AED exposu                                                                                           | re during pregnancy                                                                                                                                                                                                         |                                                                                     |                                                   |
| Rep                                                                                                  | ported as during 1 <sup>st</sup> trimester                                                                                                                                                                                  | 5                                                                                   | 17.24                                             |
| Reported a                                                                                           | is any time during pregnancy                                                                                                                                                                                                | 4                                                                                   | 13.79                                             |
| During                                                                                               | pregnancy and breastfeeding                                                                                                                                                                                                 | 5                                                                                   | 17.24                                             |
|                                                                                                      | Not reported                                                                                                                                                                                                                | 15                                                                                  | 51.72                                             |
| Alcohol use                                                                                          | during pregnancy                                                                                                                                                                                                            |                                                                                     |                                                   |
|                                                                                                      | Yes                                                                                                                                                                                                                         | 5                                                                                   | 17.24                                             |
|                                                                                                      | NR                                                                                                                                                                                                                          | 24                                                                                  | 82.76                                             |
| Tobacco us                                                                                           | e during pregnancy                                                                                                                                                                                                          |                                                                                     |                                                   |
|                                                                                                      | Yes                                                                                                                                                                                                                         | 7                                                                                   | 24.14                                             |
|                                                                                                      | NR                                                                                                                                                                                                                          | 22                                                                                  | 75.86                                             |
| Abbreviation<br>NA - Not appl<br>*Values in thi<br>† Percentage of<br>‡ Includes ind<br>neuropathic/ | <b>ns:</b> ADHD - Attention Deficit Hyperact<br>icable; NR - Not reported<br>s category do not match totals as som<br>of total number of included studies (n<br>ividuals taking AEDs for psychiatric d<br>neurological pain | ivity Disorder; AED - a<br>e studies report more<br>=29)<br>lisorders, migraine, ar | anti-epileptic drug(s);<br>than one outcome<br>id |

**BMJ Open** 





\*29 publications reporting 30 included studies.

TITLE: Study flow diagram

| Active Treatment vs Contro | ol*       |                       | OR (95%Crl) (95%Prl)              | SUCRA (95% Crl)  |
|----------------------------|-----------|-----------------------|-----------------------------------|------------------|
| Carbam+Levet               | •         | <del>,</del>          | 0.52 (0.00,16.53) (0.00,19.20)    | 0.88 (0.06,1.00) |
| Carbam+Pheno               | ·         | +                     | 0.52 (0.00,15.20) (0.00,17.13)    | 0.88 (0.12,1.00) |
| Lamot                      | +         | +                     | 0.93 (0.09,5.10) (0.08,6.34)      | 0.76 (0.29,1.00) |
| Pheno+Pheny                | ·•        | •                     | 1.32 (0.00,33.67) (0.00,38.91)    | 0.71 (0.06,1.00] |
| Pheno                      | + +       |                       | 1.36 (0.18,7.02) (0.14,8.95)      | 0.71 (0.24,0.94) |
| Gabap                      | <b>⊢</b>  | +                     | 1.46 (0.04,13.48) (0.04,16.87)    | 0.65 (0.12,1.00) |
| Carbam                     |           |                       | 2.07 (0.82,5.48) (0.51,8.46)      | 0.53 (0.29,0.76) |
| Primid                     | +         | +                     | 2.15 (0.31,12.26) (0.24,16.25)    | 0.53 (0.12,0.94) |
| Pheny                      | -+        | <b>♦</b> —- <b> -</b> | 2.55 (0.72,8.55) (0.47,12.15)     | 0.47 (0.18,0.76) |
| Topir                      | -         | <b>♦</b> +            | 3.14 (0.45,16.53) (0.35,20.69)    | 0.41 (0.06,0.88) |
| Levet                      | -+        | <b>◆</b>              | 3.42 (0.65,16.40) (0.46,22.73)    | 0.41 (0.06,0.82) |
| Pheny+Valpro               | · · · · · |                       | 3.99 (0.01,116.60) (0.01,136.30)  | 0.35 (0.00,1.00] |
| Carbam+Pheno+Pheny         | · · · · · | • •                   | 4.83 (0.02,158.10) (0.02,187.50)  | 0.29 (0.00,1.00) |
| Ethos+Pheny                | ,         | • •                   | 6.24 (0.02,215.80) (0.02,243.80)  | 0.24 (0.00,1.00] |
| Valpro                     | -         | • • •                 | 7.40 (3.00,18.46) (1.81,27.63)    | 0.18 (0.06,0.41) |
| Carbam+Pheny               |           | • •                   | 10.88 (0.54,137.00) (0.43,159.20) | 0.12 (0.00,0.82) |
| Carbam+Pheno+Valpro        | +         | •                     | 44.96 (0.94,359.10) (0.80,421.70) | 0.06 (0.00,0.71) |
| 4.5e-05                    | 0.007 1   | 148.4                 |                                   |                  |

\* SUCRA (95%CrI): 0.76 (0.47,0.94)

# TITLE: Forest plots for cognitive developmental delay, autism/dyspraxia, psychomotor developmental delay, language delay, and attention deficit hyperactivity disorder outcome





\* SUCRA (95%CrI): 0.91 (0.55,1.00)

# TITLE: Forest plots for cognitive developmental delay, autism/dyspraxia, psychomotor developmental delay, language delay, and attention deficit hyperactivity disorder outcome

| c. Psychomotor developmental delay |                                  |                   |  |  |
|------------------------------------|----------------------------------|-------------------|--|--|
|                                    |                                  |                   |  |  |
| Active Treatment vs Control*       | OR (95%Crl) (95%Prl)             | SUCRA (95% CrI)   |  |  |
| Levet + + +                        | 0.27 (0.00,4.26) (0.00,4.65)     | 0.94 (0.29,1.00)  |  |  |
| Pheno+Pheny 🔶                      | → 0.65 (0.00,13.32) (0.00,14.74) | 0.82 (0.12,1.00)  |  |  |
| Carbam+Pheny 🛏 🔶                   |                                  | 0.76 (0.06,1.00)  |  |  |
| Pheno ++++                         | 0.96 (0.39,2.29) (0.32,3.02)     | 0.76 (0.47,0.94)  |  |  |
| Carbam+Pheno + 🔶                   | + 1.55 (0.31,6.92) (0.26,7.99)   | 0.59 (0.18,0.94)  |  |  |
| Carbam - + + +                     | 1.68 (0.85,3.41) (0.59,4.61)     | 0.59 (0.35,0.82)  |  |  |
| Lamot ++++                         | 1.86 (0.72,4.76) (0.57,6.07)     | 0.53 (0.24,0.82)  |  |  |
| Clonaz + +                         | → 2.23 (0.47,9.62) (0.41,11.18)  | 0.47 (0.12,0.88)  |  |  |
| Pheny+Valpro 🛏 🔶                   | 2.24 (0.01,46.45) (0.01,49.92)   | 0.47 (0.00,1.00)  |  |  |
| Carbam+Pheno+Pheny 🔶 🔶             | → 2.75 (0.01,63.24) (0.01,70.65) | 0.41 (0.00,1.00)  |  |  |
| Clobaz                             | 2.81 (0.21,22.20) (0.19,26.50)   | 0.41 (0.00,0.94)  |  |  |
| Pheny                              | + 2.84 (0.97,7.93) (0.77,9.92)   | 0.41 (0.12,0.71)  |  |  |
| Ethos+Pheny 🔶                      | 3.15 (0.00,84.86) (0.00,92.48)   | 0.35 (0.00,1.00)  |  |  |
| Topir + 🔶                          |                                  | 0.29 (0.00,0.88)) |  |  |
| Valpro +•                          | + 4.16 (2.04,8.75) (1.52,12.05)  | 0.24 (0.06,0.53)  |  |  |
| Gabap                              |                                  | 0.12 (0.00,0.76)  |  |  |
| Carbam+Pheno+Valpro +              |                                  | 0.06 (0.00,0.59)  |  |  |
| 4.5e-05 0.007 1                    | 148.4                            |                   |  |  |
| Active treatment safer             | Control safer                    |                   |  |  |

\* SUCRA (95%CrI): 0.76 (0.53,0.94)

# TITLE: Forest plots for cognitive developmental delay, autism/dyspraxia, psychomotor developmental delay, language delay, and attention deficit hyperactivity disorder outcome



\* SUCRA (95%CrI): 0.75 (0.50,1.00)

# TITLE: Forest plots for cognitive developmental delay, autism/dyspraxia, psychomotor developmental delay, language delay, and attention deficit hyperactivity disorder outcome

0.67 (0.17,1.00)

0.67 (0.00,1.00)

0.50 (0.00,1.00)

0.33 (0.00,0.67)

0.17 (0.00,0.67)

0.50 (0.00,1.00)





TITLE: Network diagrams for cognitive developmental delay, autism/dyspraxia, psychomotor developmental delay, language delay, and attention deficit hyperactivity disorder outcomes.

CAPTION: Each treatment node is weighted according to the number of patients that have received the particular treatment, and each edge is weighted according to the number of studies comparing the treatments it connects.

Abbreviations: carbam - carbamazepine, clobaz - clobazam, clonaz - clonazepam, ethos - ethosuximide, gabap - gabapentin, lamot - lamotrigine, levet - levetiracetam, oxcar - oxcarbazepine, pheno phenobarbital, pheny - phenytoin, primid - primidone, topir - topiramate, valpro - valproate, vigab – vigabatrin

## PROTOCOL



**Open Access** 

# Comparative safety of anti-epileptic drugs among infants and children exposed *in utero* or during breastfeeding: protocol for a systematic review and network meta-analysis

Andrea C Tricco<sup>1</sup>, Elise Cogo<sup>1</sup>, Veroniki A Angeliki<sup>1</sup>, Charlene Soobiah<sup>1,2</sup>, Brian Hutton<sup>3</sup>, Brenda R Hemmelgarn<sup>4</sup>, David Moher<sup>3</sup>, Yaron Finkelstein<sup>5,6,7</sup> and Sharon E Straus<sup>1,8\*</sup>

#### Abstract

**Background:** Epilepsy affects about 1% of the general population. Anti-epileptic drugs (AEDs) prevent or terminate seizures in individuals with epilepsy. Pregnant women with epilepsy may continue taking AEDs. Many of these agents cross the placenta and increase the risk of major congenital malformations, early cognitive and developmental delays, and infant mortality. We aim to evaluate the comparative safety of AEDs approved for chronic use in Canada when administered to pregnant and breastfeeding women and the effects on their infants and children through a systematic review and network meta-analysis.

**Methods:** Studies examining the effects of AEDs administered to pregnant and breastfeeding women regardless of indication (e.g., epilepsy, migraine, pain, psychiatric disorders) on their infants and children will be included. We will include randomized clinical trials (RCTs), quasi-RCTs, non-RCTs, controlled before-after, interrupted time series, cohort, registry, and case-control studies. The main literature search will be executed in MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trials. We will seek unpublished literature through searches of trial protocol registries and conference abstracts. The literature search results screening, data abstraction, and risk of bias appraisal will be performed by two individuals, independently. Conflicts will be resolved through discussion. The risk of bias of experimental and quasi-experimental studies will be appraised using the Cochrane Effective Practice and Organization of Care Risk-of-Bias tool, methodological quality of observational studies will be appraised using the Newcastle-Ottawa Scale, and quality of reporting of safety outcomes will be conducted using the McMaster Quality Assessment Scale of Harms (McHarm) tool. If feasible and appropriate, we will conduct random effects meta-analysis. Network meta-analysis will be considered for outcomes that fulfill network meta-analysis assumptions.

The primary outcome is major congenital malformations (overall and by specific types), while secondary outcomes include fetal loss/miscarriage, minor congenital malformations (overall and by specific types), cognitive development, psychomotor development, small for gestational age, preterm delivery, and neonatal seizures. (Continued on next page)

Full list of author information is available at the end of the article



© 2014 Tricco et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

<sup>\*</sup> Correspondence: sharon.straus@utoronto.ca

<sup>&</sup>lt;sup>1</sup>Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street,

East Building, Toronto, Ontario M5B 1 T8, Canada

<sup>&</sup>lt;sup>8</sup>Department of Geriatric Medicine, University of Toronto, 172 St. George Street,

Toronto, Ontario M5R 0A3, Canada

Page 44 of 90

#### (Continued from previous page)

**Discussion:** Our systematic review will address safety concerns regarding the use of AEDs during pregnancy and breastfeeding. Our results will be useful to healthcare providers, policy-makers, and women of childbearing age who are taking anti-epileptic medications.

#### Systematic review registration: PROSPERO CRD42014008925.

**Keywords:** Anti-epileptic drug, Breastfeeding, Comparative safety, Congenital malformation, Epilepsy, Fetus, Infant, Network meta-analysis, Pregnancy, Systematic review

#### Background

Epilepsy is the most common chronic neurological condition, affecting 0.6 to 1% of the population [1,2]. Individuals with uncontrolled epilepsy experience recurrent seizures, which can have psychosocial and physical consequences, including a compromised life expectancy [3,4]. The goal of anti-epileptic treatment is to improve quality of life and health outcomes by reducing the frequency of seizures [4].

Anti-epileptic medications decrease seizures by reducing excitation and enhancing inhibition of neurons [5-7]. Many of these medications target different channels, including calcium, sodium, and glutamate, and are broadly classified as first generation agents (e.g., phenobarbitone, phenytoin, carbamazepine, sodium valproate, ethosuximide) and second generation agents (e.g., lamotrigine, levetiracetam, topiramate, gabapentin, vigabatrin, oxcarbazepine, clobazam, clonazepam, zonisamide, lacosamide, rufinamide, primidone) [8]. Due to the broad and varied mechanisms of action, the indications for some of these medications also include pain syndromes, psychiatric disorders, and migraine headaches [8].

Many clinical practice guidelines recommend that women of childbearing age continue to take their anti-epileptic medications; however, medications with lower risk of teratogenic events are advised [9,10] since anti-epileptic drugs (AEDs) cross the placenta or transfer through breast milk, posing risks to the fetus and infant [9,11,12].

Some AEDs have been associated with increased risk of harm to the fetus and infants. For example, exposure to valproate has led to increased risk of major congenital malformations [10], cognitive delay, and minor congenital abnormalities [13-16]. Phenobarbital has been associated with minor congenital abnormalities and developmental delay [17,18]. Carbamazepine and lamotrigine have been associated with minor congenital abnormalities [19-22]. However, other than studies of the use of valproate, many studies have produced inconsistent findings regarding harm to the fetus and infant with use of other agents [23]. As such, our objective is to evaluate the comparative safety of AEDs for infants and children who were exposed *in utero* or during breastfeeding through a systematic review and network meta-analysis.

## Methods/Design

#### Protocol

A systematic review protocol was developed and registered with the PROSPERO database (CRD42014008925, available at: http://www.crd.york.ac.uk/PROSPERO/display\_record. asp?ID=CRD42014008925). It was revised with feedback from the decision-makers who posed the query within Health Canada, healthcare practitioners, content experts, and research methodologists. The reporting of our systematic review protocol was guided by the Preferred Reporting Items for Systematic Reviews and Meta-analyses Protocols [24].

#### Eligibility criteria

We will include studies examining the effects of AEDs on infants and children who were exposed in utero or during breastfeeding. We will include experimental studies (randomized clinical trials [RCTs], quasi-RCTs, non-RCTs), guasi-experimental studies (controlled before and after studies, interrupted time series), and observational studies (cohort, case-control, registry studies) of pregnant women at any stage of pregnancy and breastfeeding women and their infants/children. The rationale for including other study designs in addition to RCTs is that there are ethical issues in conducting RCTs of AEDs in pregnancy, so RCT evidence might not exist for some or all of these drugs. Given that our review includes rare outcomes, including observational evidence is crucial. In contrast to efficacy evaluation, safety assessment usually requires very large sample sizes to be able to detect adverse events. Therefore, while RCTs have lower risk of bias, they usually do not have the statistical power needed to adequately evaluate uncommon/rare safety outcomes due to Type II (i.e., false negative) error [25]. Given that our review includes rare outcomes, including observational evidence is crucial [26]. Additionally, observational studies can often provide more generalizable evidence due to the strict participant inclusion criteria in most RCTs [27]. Real-world safety evidence that has external validity is important for the assessment of the possible risks of AEDs in pregnant and breastfeeding women.

The diagnosis of neurodevelopmental delay related to *in utero* exposure is made before adolescence, and

57

58

59

hence, we will limit inclusion to children up to 12 years of age. AEDs that are approved for chronic use in Canada will be included. Drugs that are only used acutely or those that are not currently approved for use in Canada will be excluded, as the focus of this review is on the Canadian setting [28-32]. However, most of the medications we will examine are available in other countries as well. The relevant 16 medications and their synonyms are listed in Additional file 1, and the excluded drugs are listed in Additional file 2. Studies of all combinations and doses of these medications are eligible for inclusion. Since we are only interested in exposures that occur in *utero* or during breastfeeding, studies examining AEDs administered directly to infants or children will be excluded. All indications for AEDs will be included such as epilepsy, migraine, pain, and psychiatric disorders.

In order to be included, studies must compare an antiepileptic medication against another included anti-epileptic medication, placebo, a 'no intervention' control group, or combinations of two or more anti-epileptic medications. Only studies providing results for our outcomes of interest will be included. Our primary outcome is major congenital malformations (overall and by specific type, such as craniofacial defects and neural tube defects). Secondary outcomes include minor congenital malformations (overall and by specific type, such as epicanthal folds and microstomia), cognition (e.g., global cognitive functioning and specific cognitive domains such as attention), psychomotor development (e.g., autism, dyspraxia), small for gestational age, preterm delivery, neonatal seizures, and fetal loss/miscarriage. No other limitations will be imposed on the eligibility criteria, including published/unpublished material, language of dissemination, duration of follow-up, or year of publication. The draft eligibility criteria can be found in Additional file 3.

#### Information sources and literature search

Our main literature search will be executed in the MED-LINE database. The search terms were drafted by an experienced librarian and can be found in Additional file 4. The search was peer reviewed by another librarian using the Peer Review of Electronic Search Strategies checklist [33].

In addition to MEDLINE, we will also search the EMBASE and the Cochrane Central Register of Controlled Trials databases. We will follow the MEDLINE search strategy for these databases, and the search terms will be adjusted accordingly. The electronic database search will be supplemented by searching for unpublished literature [34]. This will be accomplished through exploring conference abstracts, clinical trial registries, and contacting manufacturers of AEDs. We will also scan the reference lists of included studies and previous reviews in the area [23,35,36].

#### Study selection process

**BMJ Open** 

The eligibility criteria screening form will be pilot-tested by the team and is presented in Additional file 3. We will calculate inter-rater reliability from the pilot-test and screening will only commence after high agreement (e.g., kappa statistic  $\geq$ 60%) is observed [37]. Subsequently, two reviewers will screen each title/abstract and potentially relevant full-text articles from the literature search results, independently. Conflicts will be resolved through discussion. All screening will occur using our online screening software (synthesi.SR) [38].

#### Data items and data collection process

We will abstract data on the PICOS elements [39], including patient characteristics (e.g., age of the mother and infant/child, indication for anti-epileptic treatment, co-morbidities, concomitant medications), intervention details (e.g., type of anti-epileptic treatment, dose, route of administration, duration of treatment, timing [trimester] of treatment during pregnancy), comparator details (e.g., comparator agent, dose, route of administration), outcome results (e.g., major congenital abnormality, minor congenital abnormality, cognitive function, psychomotor development) at the longest duration of follow-up, and study characteristics (e.g., study design, country of conduct, year of conduct, sample size, setting). These characteristics will be abstracted using a data abstraction form created in Excel with an accompanying "cheat sheet" that will guide the reviewers with this process. The data abstraction form and cheat sheet will be pilot-tested and data abstraction will only commence when high agreement (e.g., kappa statistic ≥60%) [37] is observed. Each included study will be abstracted by two team members, independently, who will resolve disagreements through discussion.

#### Methodological quality/risk of bias appraisal

We will use various tools to assess the methodological quality/risk of bias of each of the studies that fulfill our eligibility criteria. This will be conducted by two reviewers, independently, and conflicts will be resolved through discussion. First, we will appraise the risk of bias of experimental and quasi-experimental studies using the Cochrane Effective Practice and Organization of Care Risk-of-Bias tool [40]. Second, we will assess the methodological quality of observational studies using the Newcastle-Ottawa Scale [41]. Third, the quality of reporting of harms will be appraised using the McMaster Quality Assessment Scale of Harms (McHarm) tool [42].

#### Synthesis of included studies

A narrative summary of study results will be presented along with evidence summary tables. When sufficient data are available, we will conduct random effects metaanalysis to calculate pooled odds ratios for dichotomous

data and pooled mean differences for continuous data

[43,44]. Direct (pairwise) meta-analysis will be per-

formed with RCTs alone in order to examine whether

the data are consistent between direct and indirect evi-

dence. If the large majority of included studies are obser-

vational, we will also conduct additional meta-analyses

including observational studies alone. Analyses will be

stratified by treatment indication (e.g., epilepsy, pain,

etc.) to reduce clinical heterogeneity between different

study populations whenever possible; for example, epilepsy itself in pregnant women is related to an increased

baseline risk of certain neonatal adverse outcomes. Stat-

istical, clinical, and methodological heterogeneity will be

examined prior to conducting the meta-analysis. Funnel

plots will be drawn for outcomes including at least 10

studies to explore asymmetry that might be explained by

clinical, statistical, and methodological heterogeneity.

The proportion of statistical heterogeneity will be exam-

ined using the  $I^2$  measure [45] and the magnitude of

statistical heterogeneity will be calculated using the re-

stricted maximum likelihood [46]. Meta-regression will

be conducted for clinically relevant subgroups or when

extensive statistical heterogeneity is observed (e.g.,  $I^2 \ge$ 

75%) [47]. This will allow the examination of the impact

of important factors on our results, such as maternal

age, dose, duration and timing (e.g., trimester) of anti-

epileptic treatment, co-morbidities, concomitant medi-

cations, risk of bias results, and sample size (due to Type

II statistical power errors with rare adverse events). To

ensure the meta-regression analysis is intuitive, the num-

i) transitivity (i.e., comparable distribution of effect modifiers across comparisons), which will be examined using boxplots or percentages to visually inspect potential effect modifiers of treatment effect [54]; ii) consistency between direct and indirect data, which will be examined locally (i.e., in certain paths of the network) using the loop-specific method [55,56] and the node-splitting method [57], and globally (i.e., evaluating the network as a whole), using the design-by-treatment interaction model [58]; and iii) we will quantify the amount of variability attributed to heterogeneity and inconsistency rather than sampling error, by calculating the  $I^2$  [59]. We will estimate the amount of heterogeneity using the restricted maximum likelihood method and assuming common within-network heterogeneity. We will compare the magnitude of heterogeneity between consistency and inconsistency models, as well as between meta-regression and network meta-analysis models to determine how much heterogeneity will be explained by inconsistency or the explanatory variable, respectively. We will first use the design-by-treatment model for the evaluation of inconsistency in a network as a whole and then, if inconsistency is detected, we will employ the loop-specific and node-splitting methods to identify which piece of evidence is responsible for inconsistency. As mentioned above, analyses will be stratified by treatment indication when clinically appropriate. Important heterogeneity and inconsistency will be explored using network metaregression using the same methods as described above,

Prior to conducting the network meta-analysis, we will hold a team meeting to finalize which treatment nodes will be included in the analysis since we are unclear about the indications, dosages, patient populations, and outcomes reported in all of the studies. We will discuss issues, including conducting a class versus independent drug analysis, inclusion of drug routes of administration and dosages, as well as timing of drug administration. These decisions will be examined through a sensitivity analysis in which we will classify treatment nodes using a different classification to see how stable our results are. The network meta-analysis results will be presented as summary treatment effects for each pair of treatments. Network meta-analysis will be conducted in Stata with the *mymeta* routine [60].

A sequential approach will be used for the network meta-analysis. We will first restrict our analysis to RCTs, which will be the primary analysis of interest. We will then include data from quasi-experimental studies, and finally, data from observational studies. This will provide an understanding of the contribution of each type of study design to our summary estimates, providing us with information on how these agents work above and beyond clinical trials.

ber of covariates examined will be less than 10% of the number of studies included in the meta-analysis for the particular outcome. We anticipate that many of these outcomes will be rare. To deal with studies reporting zero events in one treatment arm, 0.5 will be added to the numerator and 1 will be added to the denominator. We will exclude studies reporting zero events in all treatment arms for a particular outcome [48,49]. We also anticipate that we will encounter missing data in the included studies. We will contact the study authors for this data and if we are unable to receive the data, we will impute missing data (e.g., measures of variance) using established methods [50]. To ensure that our imputations do not bias our results, we will conduct a sensitivity analysis [51]. The meta-analysis and meta-regression will be analyzed in R using the *metafor* command [52]. A random-effects network meta-analysis will be con-

A random-effects network meta-analysis will be conducted to make inferences regarding the comparative safety of the various AEDs [15], as well as rank their safety using rankograms and the surface under the cumulative ranking curve [53]. We will ensure the following factors are present prior to conducting network meta-analysis: as necessary.

5

6

7

8

9

10

11

12

13 14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

#### Discussion

Epilepsy is the most common chronic neurological condition, affecting 0.6 to 1% of the population [1,2]. Given that approximately a third of patients receiving AEDs are of reproductive age and almost half of pregnancies are unplanned [61], the fetus may be exposed to these in the first trimester of pregnancy, including during the critical stage of embryogenesis [62].

The comparative safety of these agents is currently unknown and our results will be important for policymakers, healthcare providers, and women of childbearing age. To ensure our results have wide dissemination and uptake, we will publish our results in open access journals, present our findings at scientific conferences, conduct dissemination meetings with key stakeholders (including policy-makers and healthcare providers), and produce policy briefs for Health Canada, the organization that posed this query.

#### Additional files

Additional file 1: List of relevant medications. Additional file 2: Excluded drugs. Additional file 3: Draft eligibility criteria. Additional file 4: MEDLINE literature search.

#### Abbreviations

AEDs: Anti-epileptic drugs; RCTs: Randomized clinical trials.

#### Competing interests

The authors declare that they have no competing interests.

#### Authors' contributions

ACT conceived and designed the study, helped obtain funding for the study, and helped write the draft protocol. EC registered the protocol with the PROSPERO database and edited the draft protocol. AV helped write the draft protocol. CS edited the draft protocol. BH, BRH, DM, and YF provided input into the design, helped obtain funding for the study, and edited the draft protocol. SES conceived the study, designed the study, obtained the funding, and helped write the draft protocol. All authors read and approved the final protocol.

#### Acknowledgements

This systematic review was funded by the Canadian Institutes of Health Research/Drug Safety and Effectiveness Network (CIHR/DSEN). ACT and BH are funded by a CIHR/DSEN New Investigator Award in Knowledge Synthesis. BRH receives funding from the Alberta Heritage Foundation for Medical Research. DM is funded by a University of Ottawa Research Chair. SES is funded by a Tier 1 Canada Research Chair in Knowledge Translation. We thank Laure Perrier for conducting the literature searches and Becky Skidmore for peer reviewing the MEDLINE search strategy. We also thank Dr. Joseph Beyene for providing feedback on our original proposal and Wing Hui and Judy Tran for formatting the paper.

#### Author details

<sup>1</sup>Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, East Building, Toronto, Ontario M5B 1 T8, Canada. <sup>2</sup>Institute of Health Policy Management and Evaluation, University of Toronto, Health Sciences Building, 155 College Street, Suite 425, Toronto, Ontario M5T 3 M6, Canada. <sup>3</sup>Clinical Epidemiology Program, Centre for Practice-Changing Research, Ottawa Hospital Research Institute, The Ottawa Hospital – General Campus and University of Ottawa, 501 Smyth Road, Box 711, Ottawa, Ontario K1H 8 L6, Canada. <sup>4</sup>Departments of Medicine and Community Health Sciences, University of Calgary, TRW Building, 3rd Floor, 3280 Hospital Drive NW, Calgary, Alberta T2N 4Z6, Canada. <sup>5</sup>The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada. <sup>6</sup>Department of Pediatrics, University of Toronto, 172 St. George Street, Toronto, Ontario M5R 0A3, Canada. <sup>7</sup>Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Room 4207, Toronto, Ontario M5S 1A8, Canada. <sup>8</sup>Department of Geriatric Medicine, University of Toronto, 172 St. George Street, Toronto, Ontario M5R 0A3, Canada.

#### Received: 9 April 2014 Accepted: 17 June 2014 Published: 25 June 2014

#### References

- Hauser WA, Hesdorffer D: Epilepsy, Frequency, Causes and Consequences. New York: Demos Publications; 1990.
- Wiebe S, Bellhouse DR, Fallahay C, Eliasziw M: Burden of epilepsy: the Ontario Health Survey. Can J Neurol Sci 1999, 26(4):263–270.
- Sperling MR: The consequences of uncontrolled epilepsy. CNS Spectr 2004, 9(2):98–101. 106–109.
- 4. Jones MW: Consequences of epilepsy: why do we treat seizures? Can J Neurol Sci 1998, 25(4):S24–S26.
- Dickenson AH, Ghandehari J: Anti-convulsants and anti-depressants. Handb Exp Pharmacol 2007, 177:145–177.
- Stefani A, Spadoni F, Bernardi G: Voltage-activated calcium channels: targets of antiepileptic drug therapy? *Epilepsia* 1997, 38(9):959–965.
- Snutch TP, Reiner PB: Ca<sup>2+</sup> channels: diversity of form and function. Curr Opin Neurobiol 1992, 2(3):247–253.
- Spina E, Perugi G: Antiepileptic drugs: indications other than epilepsy. Epileptic Disord 2004, 6(2):57–75.
- 9. Harden CL, Pennell PB, Koppel BS, Hovinga CA, Gidal B, Meador KJ, Hopp J, Ting TY, Hauser WA, Thurman D, Kaplan PW, Robinson JN, French JA, Wiebe S, Wilner AN, Vazquez B, Holmes L, Krumholz A, Finnell R, Shafer PO, Le Guen CL, American Academy of Neurology; American Epilepsy Society: Management issues for women with epilepsy–focus on pregnancy (an evidence-based review): III. Vitamin K, folic acid, blood levels, and breast-feeding: report of the quality standards subcommittee and therapeutics and technology assessment subcommittee of the American Academy of Neurology and the American Epilepsy Society. *Epilepsia* 2009, 50(5):1247–1255.
- Harden CL, Meador KJ, Pennell PB, Hauser WA, Gronseth GS, French JA, Wiebe S, Thurman D, Koppel BS, Kaplan PW, Robinson JN, Hopp J, Ting TY, Gidal B, Hovinga CA, Wilner AN, Vazquez B, Holmes L, Krumholz A, Finnell R, Hirtz D, Le Guen C, American Academy of Neurology; American Epilepsy Society: Management issues for women with epilepsy-Focus on pregnancy (an evidence-based review): II. Teratogenesis and perinatal outcomes: Report of the Quality Standards Subcommittee and Therapeutics and Technology Subcommittee of the American Academy of Neurology and the American Epilepsy Society. *Epilepsia* 2009, 50(5):1237–1246.
- Samren EB, van Duijn CM, Koch S, Hiilesmaa VK, Klepel H, Bardy AH, Mannagetta GB, Deichl AW, Gaily E, Granstrom ML, Meinardi H, Grobbee DE, Hofman A, Janz D, Lindhout D: Maternal use of antiepileptic drugs and the risk of major congenital malformations: a joint European prospective study of human teratogenesis associated with maternal epilepsy. *Epilepsia* 1997, 38(9):981–990.
- Meador K, Reynolds MW, Crean S, Fahrbach K, Probst C: Pregnancy outcomes in women with epilepsy: a systematic review and meta-analysis of published pregnancy registries and cohorts. *Epilepsy Res* 2008, 81(1):1–13.
- Adab N, Jacoby A, Smith D, Chadwick D: Additional educational needs in children born to mothers with epilepsy. J Neurol Neurosurg Psychiatry 2001, 70(1):15–21.
- Adab N, Kini U, Vinten J, Ayres J, Baker G, Clayton-Smith J, Coyle H, Fryer A, Gorry J, Gregg J, Mawer G, Nicolaides P, Pickering L, Tunnicliffe L, Chadwick DW: The longer term outcome of children born to mothers with epilepsy. J Neurol Neurosurg Psychiatry 2004, 75(11):1575–1583.
- Gaily E, Kantola-Sorsa E, Hiilesmaa V, Isoaho M, Matila R, Kotila M, Nylund T, Bardy A, Kaaja E, Granstrom ML: Normal intelligence in children with prenatal exposure to carbamazepine. *Neurology* 2004, 62(1):28–32.
- Meador KJ, Baker GA, Browning N, Clayton-Smith J, Combs-Cantrell DT, Cohen M, Kalayjian LA, Kanner A, Liporace JD, Pennell PB, Privitera M, Loring DW, for the NEAD Study Group: Cognitive function at 3 years of age after fetal exposure to antiepileptic drugs. N Engl J Med 2009, 360(16):1597–1605.

#### **BMJ Open**

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

- Holmes LB, Wyszynski DF, Lieberman E: The AED (antiepileptic drug) pregnancy registry: a 6-year experience. Arch Neurol 2004, 61(5):673–678.
- Reinisch JM, Sanders SA, Mortensen EL, Rubin DB: In utero exposure to phenobarbital and intelligence deficits in adult men. JAMA 1995, 274(19):1518–1525.
- Morrow J, Russell A, Guthrie E, Parsons L, Robertson I, Waddell R, Irwin B, McGivern RC, Morrison PJ, Craig J: Malformation risks of antiepileptic drugs in pregnancy: a prospective study from the UK Epilepsy and Pregnancy Register. J Neurol Neurosurg Psychiatry 2006, 77(2):193–198.
- Meador KJ, Baker GA, Finnell RH, Kalayjian LA, Liporace JD, Loring DW, Mawer G, Pennell PB, Smith JC, Wolff MC, NEAD Study Group: In utero antiepileptic drug exposure: fetal death and malformations. *Neurology* 2006, 67(3):407–412.
- Vajda FJ, Hitchcock A, Graham J, Solinas C, O'Brien TJ, Lander CM, Eadie MJ: Foetal malformations and seizure control: 52 months data of the Australian Pregnancy Registry. *Eur J Neurol* 2006, 13(6):645–654.
- Holmes LB, Baldwin EJ, Smith CR, Habecker E, Glassman L, Wong SL, Wyszynski DF: Increased frequency of isolated cleft palate in infants exposed to lamotrigine during pregnancy. *Neurology* 2008, 70(22 Pt 2):2152–2158.
- Meador KJ, Penovich P, Baker GA, Pennell PB, Bromfield E, Pack A, Liporace JD, Sam M, Kalayjian LA, Thurman DJ, Moore E, Loring DW, NEAD Study Group: Antiepileptic drug use in women of childbearing age. *Epilepsy Behav* 2009, 15(3):339–343.
- 24. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart L: Reporting Guidelines for Systematic Review Protocols. In 19th Cochrane Colloquium: 19–22 October 2011; Madrid, Spain.
- Ross CJ, Visscher H, Sistonen J, Brunham LR, Pussegoda K, Loo TT, Rieder MJ, Koren G, Carleton BC, Hayden MR, CPNDS Consortium: The Canadian Pharmacogenomics Network for Drug Safety: a model for safety pharmacology. *Thyroid* 2010, 20(7):681–687.
- Eypasch E, Lefering R, Kum CK, Troidl H: Probability of adverse events that have not yet occurred: a statistical reminder. *BMJ* 1995, 311(7005):619–620.
- 27. Atkins D: Creating and synthesizing evidence with decision makers in mind: integrating evidence from clinical trials and other study designs. *Med Care* 2007, **45**(10 Supl 2):S16–S22.
- Health Canada: Drug Product Database. http://www.hc-sc.gc.ca/dhp-mps/ prodpharma/databasdon/index-eng.php.
- 29. United States National Library of Medicine's ChemIDPlus Lite Database. http://chem.sis.nlm.nih.gov/chemidplus/chemidlite.jsp.
- 30. Canadian Pharmacists Association: E-CPS (Compendium of Pharmaceuticals and Specialties). http://www.e-therapeutics.ca/home.whatsnew.action.
- Epilepsy Canada: Anticonvulsant Medications. http://www.epilepsy.ca/en-CA/ Diagnosis-and-Treatment/Anticonvulsant-Medications.html.
- Epilepsy Ontario: Anticonvulsant/Anti-Seizure Medication from A to Z. http://epilepsyontario.org/anticonvulsantanti-seizure-medication-from-a-to-z/.
- Sampson M, McGowan J, Cogo E, Grimshaw J, Moher D, Lefebvre C: An evidence-based practice guideline for the peer review of electronic search strategies. J Clin Epidemiol 2009, 62(9):944–952.
- Canadian Agency for Drugs and Technologies in Health: Grey Matters: A Practical Search Tool for Evidence-Based Medicine. http://www.cadth.ca/ resources/grey-matters.
- Adab N, Tudur SC, Vinten J, Williamson P, Winterbottom J: Common antiepileptic drugs in pregnancy in women with epilepsy. Cochrane Database Syst Rev 2004, 3:CD004848.
- Banach R, Boskovic R, Einarson T, Koren G: Long-term developmental outcome of children of women with epilepsy, unexposed or exposed prenatally to antiepileptic drugs: a meta-analysis of cohort studies. Drug Saf 2010, 33(1):73–79.
- 37. Landis JR, Koch GG: The measurement of observer agreement for categorical data. *Biometrics* 1977, **33**(1):159–174.
- 38. Synthesi.SR. http://knowledgetranslation.ca/sysrev/login.php.
- Stone PW: Popping the (PICO) question in research and evidence-based practice. Appl Nurs Res 2002, 15(3):197–198.
- 40. Cochrane Effective Practice and Organization of Care Group Draft Risk of Bias Tool. http://epoc.cochrane.org/epoc-author-resources.
- The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. http://www.ohri.ca/programs/clinical\_epidemiology/ oxford.asp.

- Santaguida PL, Raina P, Ismaila A: The Development of the McHarm Quality Assessment Scale for Adverse Events. Hamilton, Ontario: McMaster University; 2008.
- Raudenbush SW: Analyzing Effect Sizes: Random Effects Models. In The Handbook of Research Synthesis and Meta-analysis. 2nd edition. Edited by Cooper H, Hedges LV, Valentine JC. New York: Russell Sage Foundation; 2009:295–315.
- 44. Viechtbauer W: Bias and efficiency of meta-analytic variance estimators in the random-effects model. *J Educ Behav Stat* 2005, **30**(3):261–293.
- 45. Higgins JP, Thompson SG: Quantifying heterogeneity in a meta-analysis. *Stat Med* 2002, **21**(11):1539–1558.
- 46. Viechtbauer W: Confidence intervals for the amount of heterogeneity in meta-analysis. *Stat Med* 2007, **26**(1):37–52.
- Higgins JPT, Green S: Cochrane Handbook for Systematic Reviews of Interventions. The Cochrane Collaboration; 2009. http://www.cochrane.org/ handbook.
- Sweeting MJ, Sutton AJ, Lambert PC: What to add to nothing? Use and avoidance of continuity corrections in meta-analysis of sparse data. *Stat Med* 2004, 23(9):1351–1375.
- Bradburn MJ, Deeks JJ, Berlin JA, Russell Localio A: Much ado about nothing: a comparison of the performance of meta-analytical methods with rare events. *Stat Med* 2007, 26(1):53–77.
- 50. Littell JH, Corcoran J, Pillai V: *Systematic Reviews and Meta-Analysis*. New York: Oxford University Press; 2008.
- Carpenter J, Rucker G, Schwarzer G: Assessing the sensitivity of meta-analysis to selection bias: a multiple imputation approach. *Biometrics* 2011, 67(3):1066–1072.
- Conducting Meta-Analyses in R with the metafor Package. http://www.jstatsoft.org/v36/i03/.
- Salanti G, Ades AE, Ioannidis JP: Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol 2011, 64(2):163–171.
- Salanti G: Indirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: many names, many benefits, many concerns for the next generation evidence synthesis tool. *Res Synth Methods* 2012, 3(2):80–97.
- Song F, Altman DG, Glenny AM, Deeks JJ: Validity of indirect comparison for estimating efficacy of competing interventions: empirical evidence from published meta-analyses. *BMJ* 2003, 326(7387):472.
- Veroniki AA, Vasiliadis HS, Higgins JP, Salanti G: Evaluation of inconsistency in networks of interventions. Int J Epidemiol 2013, 42(1):332–345.
- 57. Dias S, Welton NJ, Caldwell DM, Ades AE: Checking consistency in mixed treatment comparison meta-analysis. *Stat Med* 2010, **29**(7–8):932–944.
- White IR, Barrett JK, Jackson D, Higgins JPT: Consistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression. *Res Synth Methods* 2012, 3(2):111–125.
- Jackson D, Barrett JK, Stephen R, White IR, Higgins JPT: A design-by-treatment interaction model for network meta-analysis with random inconsistency effects. Stat Med 2014, In press.
- 60. White IR: Multivariate random-effects meta-regression: updates to mvmeta. *Stata J* 2011, 11(2):255–270.
- Centers for Disease Control and Prevention: Unintended Pregnancy Prevention. http://www.cdc.gov/reproductivehealth/unintendedpregnancy/.
- Yerby MS: Pregnancy, teratogenesis, and epilepsy. Neurol Clin 1994, 12(4):749–771.

#### doi:10.1186/2046-4053-3-68

**Cite this article as:** Tricco *et al.*: Comparative safety of anti-epileptic drugs among infants and children exposed *in utero* or during breastfeeding: protocol for a systematic review and network meta-analysis. *Systematic Reviews* 2014 **3**:68.

| 1       |  |
|---------|--|
| 2       |  |
| 3       |  |
| 1       |  |
| 4       |  |
| 5       |  |
| 6       |  |
| 7       |  |
| 8       |  |
| 9       |  |
| 10      |  |
| 10      |  |
| 11      |  |
| 12      |  |
| 13      |  |
| 14      |  |
| 15      |  |
| 16      |  |
| 17      |  |
| 10      |  |
| 10      |  |
| 19      |  |
| 20      |  |
| 21      |  |
| 22      |  |
| 22      |  |
| 23      |  |
| 24      |  |
| 25      |  |
| 26      |  |
| 27      |  |
| 20      |  |
| 20      |  |
| 29      |  |
| 30      |  |
| 31      |  |
| 32      |  |
| 22      |  |
| 33      |  |
| 34      |  |
| 35      |  |
| 36      |  |
| 37      |  |
| 38      |  |
| 20      |  |
| 39      |  |
| 40      |  |
| 41      |  |
| 42      |  |
| 43      |  |
| 11      |  |
| <br>/ [ |  |
| 45      |  |
| 46      |  |
| 47      |  |
| 48      |  |
| 49      |  |
|         |  |
| 50      |  |
| 51      |  |
| 52      |  |
| 53      |  |
| 54      |  |
| 55      |  |
| 55      |  |
| 90      |  |
| 57      |  |
| 58      |  |
| 59      |  |
| 60      |  |
| 00      |  |

| PRISMA | NMA | Checklist |
|--------|-----|-----------|
|--------|-----|-----------|

| Section/Topic             | Item<br># | Checklist Item <sup>*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reported on<br>Page # |
|---------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| TITLE                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |
| Title                     | 1         | Identify the report as a systematic review<br>incorporating a network meta-analysis (or related<br>form of meta-analysis).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                     |
| ABSTRACT                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |
| Structured<br>summary     | 2         | <ul> <li>Provide a structured summary including, as applicable:</li> <li>Background: main objectives</li> <li>Methods: data sources; study eligibility criteria, participants, and interventions; study appraisal; and synthesis methods, such as network meta-analysis.</li> <li>Results: number of studies and participants identified; summary estimates with corresponding confidence/credible intervals; treatment rankings may also be discussed.</li> <li>Authors may choose to summarize pairwise comparisons against a chosen treatment included in their analyses for brevity.</li> <li>Discussion/Conclusions: limitations; conclusions and implications of findings.</li> <li>Other: primary source of funding; systematic review registration number with registry name.</li> </ul> | 4-5                   |
| INTRODUCTION              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |
| Rationale                 | 3         | Describe the rationale for the review in the context<br>of what is already known, <i>including mention of</i><br><i>why a network meta-analysis has been conducted</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                     |
| Objectives                | 4         | Provide an explicit statement of questions being<br>addressed, with reference to participants,<br>interventions, comparisons, outcomes, and study<br>design (PICOS).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                     |
| METHODS                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |
| Protocol and registration | 5         | Indicate whether a review protocol exists and if<br>and where it can be accessed (e.g., Web address);<br>and, if available, provide registration information,<br>including registration number.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                     |

| 2  |
|----|
| 3  |
| 4  |
| 4  |
| 5  |
| 6  |
| 7  |
| 1  |
| 8  |
| 9  |
| 10 |
| 10 |
| 11 |
| 12 |
| 10 |
| 13 |
| 14 |
| 15 |
| 16 |
| 10 |
| 17 |
| 18 |
| 10 |
| 19 |
| 20 |
| 21 |
| 22 |
| 22 |
| 23 |
| 24 |
| 25 |
| 20 |
| 26 |
| 27 |
| 28 |
| 20 |
| 29 |
| 30 |
| 21 |
| 51 |
| 32 |
| 33 |
| 31 |
| 34 |
| 35 |
| 36 |
| 27 |
| 37 |
| 38 |
| 39 |
| 10 |
| 40 |
| 41 |
| 42 |
| 13 |
| 40 |
| 44 |
| 45 |
| 16 |
| 40 |
| 47 |
| 48 |
| 10 |
| 49 |
| 50 |
| 51 |
| 52 |
| 52 |
| 53 |
| 54 |
| 55 |
| 55 |
| 56 |
| 57 |
| 58 |
| 50 |
| 59 |
| 60 |

| Eligibility criteria                         | 6  | Specify study characteristics (e.g., PICOS, length<br>of follow-up) and report characteristics (e.g., years<br>considered, language, publication status) used as<br>criteria for eligibility, giving rationale. <i>Clearly</i><br><i>describe eligible treatments included in the</i><br><i>treatment network, and note whether any have</i><br><i>been clustered or merged into the same node (with</i><br><i>justification).</i> | 8                             |
|----------------------------------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Information sources                          | 7  | Describe all information sources (e.g., databases<br>with dates of coverage, contact with study authors<br>to identify additional studies) in the search and<br>date last searched.                                                                                                                                                                                                                                                | 9                             |
| Search                                       | 8  | Present full electronic search strategy for at least<br>one database, including any limits used, such that<br>it could be repeated.                                                                                                                                                                                                                                                                                                | Additional<br>File 1          |
| Study selection                              | 9  | State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).                                                                                                                                                                                                                                                                          | 9                             |
| Data collection process                      | 10 | Describe method of data extraction from reports<br>(e.g., piloted forms, independently, in duplicate)<br>and any processes for obtaining and confirming<br>data from investigators.                                                                                                                                                                                                                                                | 9                             |
| Data items                                   | 11 | List and define all variables for which data were<br>sought (e.g., PICOS, funding sources) and any<br>assumptions and simplifications made.                                                                                                                                                                                                                                                                                        | Additional<br>File 1          |
| Geometry of the<br>network                   | S1 | Describe methods used to explore the geometry of<br>the treatment network under study and potential<br>biases related to it. This should include how the<br>evidence base has been graphically summarized<br>for presentation, and what characteristics were<br>compiled and used to describe the evidence base to<br>readers.                                                                                                     | 10-12                         |
| Risk of bias<br>within individual<br>studies | 12 | Describe methods used for assessing risk of bias of<br>individual studies (including specification of<br>whether this was done at the study or outcome<br>level), and how this information is to be used in<br>any data synthesis.                                                                                                                                                                                                 | 9-10 (see also<br>Appendix A) |
| Summary<br>measures                          | 13 | State the principal summary measures (e.g., risk<br>ratio, difference in means). Also describe the use of<br>additional summary measures assessed, such as<br>treatment rankings and surface under the<br>cumulative ranking curve (SUCRA) values, as well<br>as modified approaches used to present summary<br>findings from meta-analyses.                                                                                       | 10-12                         |

| Planned methods<br>of analysis                        | 14         | <ul> <li>Describe the methods of handling data and combining results of studies for each network meta-analysis. This should include, but not be limited to:</li> <li><i>Handling of multi-arm trials;</i></li> <li><i>Selection of variance structure;</i></li> <li><i>Selection of prior distributions in Bayesian analyses; and</i></li> <li><i>Assessment of model fit.</i></li> </ul>                          | 10-12                             |
|-------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Assessment of<br>Inconsistency                        | S2         | Describe the statistical methods used to evaluate<br>the agreement of direct and indirect evidence in the<br>treatment network(s) studied. Describe efforts<br>taken to address its presence when found.                                                                                                                                                                                                           | 10-11                             |
| Risk of bias<br>across studies                        | 15         | Specify any assessment of risk of bias that may<br>affect the cumulative evidence (e.g., publication<br>bias, selective reporting within studies).                                                                                                                                                                                                                                                                 | 9-10                              |
| Additional<br>analyses<br><b>RESULTS</b> <sup>†</sup> | 16         | <ul> <li>Describe methods of additional analyses if done, indicating which were pre-specified. This may include, but not be limited to, the following: <ul> <li>Sensitivity or subgroup analyses;</li> <li>Meta-regression analyses;</li> <li>Alternative formulations of the treatment network; and</li> <li>Use of alternative prior distributions for Bayesian analyses (if applicable).</li> </ul> </li> </ul> | 11-12                             |
| Study selection                                       | 17         | Give numbers of studies screened, assessed for<br>eligibility, and included in the review, with reasons<br>for exclusions at each stage, ideally with a flow<br>diagram.                                                                                                                                                                                                                                           | 13 and Figure<br>1                |
| Presentation of<br>network<br>structure               | <b>S</b> 3 | Provide a network graph of the included studies to<br>enable visualization of the geometry of the<br>treatment network.                                                                                                                                                                                                                                                                                            | Figure 2                          |
| Summary of<br>network<br>geometry                     | S4         | Provide a brief overview of characteristics of the<br>treatment network. This may include commentary<br>on the abundance of trials and randomized patients<br>for the different interventions and pairwise<br>comparisons in the network, gaps of evidence in<br>the treatment network, and potential biases<br>reflected by the network structure.                                                                | 14-18                             |
| Study<br>characteristics                              | 18         | For each study, present characteristics for which<br>data were extracted (e.g., study size, PICOS,<br>follow-up period) and provide the citations.                                                                                                                                                                                                                                                                 | Table 1,<br>Appendices D<br>and E |

| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| ~-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 33<br>34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 33<br>34<br>35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 33<br>34<br>35<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 33<br>34<br>35<br>36<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 33<br>34<br>35<br>36<br>37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 33<br>34<br>35<br>36<br>37<br>38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 33<br>34<br>35<br>36<br>37<br>38<br>39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 33         34           35         36           37         38           39         40           41         42           43         44           45         46           47         48           501         501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 33         334         35         36         37         38         39         40         42         43         44         45         46         47         48         950         51         52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 33         334         35         36         37         38         39         41         42         43         44         45         46         47         48         95         51         52         53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| $33 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 41 \\ 42 \\ 43 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 95 \\ 51 \\ 52 \\ 53 \\ 54 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 33       35       36         334       35       36         37       38       39       41         42       43       445       46         47       48       90       51       52         53       54       55       55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 33         35         36           334         356         37         38         39         41         42         44         45         46         50         51         52         54         55         56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| $33 \\ 35 \\ 37 \\ 39 \\ 41 \\ 43 \\ 44 \\ 46 \\ 47 \\ 49 \\ 51 \\ 52 \\ 54 \\ 55 \\ 55 \\ 57 \\ 55 \\ 57 \\ 57 \\ 57$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| $33 \\ 35 \\ 37 \\ 39 \\ 41 \\ 43 \\ 44 \\ 46 \\ 47 \\ 49 \\ 51 \\ 52 \\ 54 \\ 55 \\ 57 \\ 55 \\ 57 \\ 20 \\ 57 \\ 57 \\ 57 \\ 57 \\ 57 \\ 57 \\ 57 \\ 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| $33 \\ 35 \\ 37 \\ 39 \\ 41 \\ 42 \\ 43 \\ 44 \\ 46 \\ 47 \\ 49 \\ 51 \\ 52 \\ 55 \\ 55 \\ 55 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 57 \\ 50 \\ 50$ |  |
| $33 \\ 35 \\ 37 \\ 39 \\ 41 \\ 42 \\ 44 \\ 45 \\ 46 \\ 47 \\ 49 \\ 51 \\ 52 \\ 53 \\ 55 \\ 57 \\ 59 \\ 59 \\ 51 \\ 51 \\ 51 \\ 55 \\ 57 \\ 59 \\ 51 \\ 51 \\ 51 \\ 51 \\ 51 \\ 51 \\ 51$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |

| Risk of bias within studies          | 19         | Present data on risk of bias of each study and, if available, any outcome level assessment.                                                                                                                                                                                                                                                                                                                                                                                                                                | Appendix F                                                            |
|--------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Results of individual studies        | 20         | For all outcomes considered (benefits or harms),<br>present, for each study: 1) simple summary data<br>for each intervention group, and 2) effect estimates<br>and confidence intervals. <i>Modified approaches</i><br><i>may be needed to deal with information from</i><br><i>larger networks</i> .                                                                                                                                                                                                                      | N/A<br>(data can be<br>provided by<br>the<br>corresponding<br>author) |
| Synthesis of<br>results              | 21         | Present results of each meta-analysis done,<br>including confidence/credible intervals. <i>In larger</i><br><i>networks, authors may focus on comparisons</i><br><i>versus a particular comparator (e.g. placebo or</i><br><i>standard care), with full findings presented in an</i><br><i>appendix. League tables and forest plots may be</i><br><i>considered to summarize pairwise comparisons.</i> If<br>additional summary measures were explored (such<br>as treatment rankings), these should also be<br>presented. | 15-18,<br>Figure 3,<br>Appendices<br>H, I, J                          |
| Exploration for<br>inconsistency     | <b>S</b> 5 | Describe results from investigations of<br>inconsistency. This may include such information<br>as measures of model fit to compare consistency<br>and inconsistency models, <i>P</i> values from statistical<br>tests, or summary of inconsistency estimates from<br>different parts of the treatment network.                                                                                                                                                                                                             | 14 (see also<br>Appendix H)                                           |
| Risk of bias<br>across studies       | 22         | Present results of any assessment of risk of bias across studies for the evidence base being studied.                                                                                                                                                                                                                                                                                                                                                                                                                      | 14 (see also<br>Appendix G)                                           |
| Results of<br>additional<br>analyses | 23         | Give results of additional analyses, if done (e.g.,<br>sensitivity or subgroup analyses, meta-regression<br>analyses, <i>alternative network geometries studied</i> ,<br><i>alternative choice of prior distributions for</i><br><i>Bayesian analyses</i> , and so forth).                                                                                                                                                                                                                                                 | Appendix K                                                            |
| Summary of                           | 24         | Summarize the main findings, including the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19-21                                                                 |
| evidence                             |            | strength of evidence for each main outcome;<br>consider their relevance to key groups (e.g.,<br>healthcare providers, users, and policy-makers).                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |
| Limitations                          | 25         | Discuss limitations at study and outcome level<br>(e.g., risk of bias), and at review level (e.g.,<br>incomplete retrieval of identified research,<br>reporting bias). <i>Comment on the validity of the</i><br><i>assumptions, such as transitivity and consistency.</i><br><i>Comment on any concerns regarding network</i><br><i>geometry (e.g., avoidance of certain comparisons).</i>                                                                                                                                 | 21-23                                                                 |

| Conclusions | 26 | Provide a general interpretation of the results in the context of other evidence, and implications for future research.                                                                                                                                                                                                                                                                                                                                | 23    |
|-------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|             |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| FUNDING     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| Funding     | 27 | Describe sources of funding for the systematic<br>review and other support (e.g., supply of data);<br>role of funders for the systematic review. This<br>should also include information regarding whether<br>funding has been received from manufacturers of<br>treatments in the network and/or whether some of<br>the authors are content experts with professional<br>conflicts of interest that could affect use of<br>treatments in the network. | 26-27 |

**Abbreviations:** PICOS - population, intervention, comparators, outcomes, study design \* Text in italics indicates wording specific to reporting of network meta-analyses that has been added to guidance from the PRISMA statement.

<sup>†</sup> Authors may wish to plan for use of appendices to present all relevant information in full detail for items in this section.



# **Supplementary Online Content**

| Appendix A. Newcastle-Ottawa Scale scoring guide                                                                                                                                       | 2    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Appendix B. List of included studies                                                                                                                                                   | 11   |
| Appendix C. Key excluded studies                                                                                                                                                       | 14   |
| Appendix D. Table of Individual Study characteristics                                                                                                                                  | 16   |
| Appendix E. Table of Patient characteristics                                                                                                                                           | 21   |
| Appendix F. Methodological quality of observational studies – Newcastle Ottawa Scale results                                                                                           | \$23 |
| Appendix G. Comparison-adjusted funnel plots <sup>*</sup>                                                                                                                              | 25   |
| Appendix H. Statistically significant network meta-analysis results along with meta-analysis results, transitivity, and inconsistency assessments                                      | 26   |
| Appendix I. Rank-heat plot of cognitive developmental delay, autism/dyspraxia, psychomotor developmental delay, language delay, and attention deficit hyperactivity disorder outcomes* | 30   |
| Appendix J. Number of studies and treatments per outcome                                                                                                                               | 32   |
| Appendix K. Sensitivity and network meta-regression analyses - Anti-epileptic drugs compared                                                                                           | d    |
| with Control                                                                                                                                                                           | 33   |



<sup>1</sup> For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

## Appendix A. Newcastle-Ottawa Scale scoring guide

## **COHORT Studies**

| Excel Column        | NOS* Answer Options**                                                                                                                                                                                                    | NOS Coding Manual*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RefID               | Enter the report's RefID.                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DA                  | Enter your initials.                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| First author        | Enter the first author's last name.                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Year of publication | Enter the year of the publication.                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SELECTION:          |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1) Representative-  | a) truly representative of the                                                                                                                                                                                           | Item is assessing the representativeness of exposed individuals in the                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ness of the exposed | average pregnant woman                                                                                                                                                                                                   | community, not the representativeness of the sample of women from                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| cohort              | taking AEDs in the community                                                                                                                                                                                             | some general population.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                     | <ul> <li>b) somewhat representative of<br/>the average pregnant woman<br/>taking AEDs in the<br/>community</li> <li>c) selected group of users e.g.,<br/>nurses, volunteers</li> <li>d) no description of the</li> </ul> | For example, subjects derived from groups likely to contain middle class,<br>better educated, health oriented women are likely to be representative of<br>postmenopausal estrogen users while they are not representative of all<br>women (e.g. members of a health maintenance organisation (HMO) will<br>be a representative sample of estrogen users. While the HMO may have<br>an under-representation of ethnic groups, the poor, and poorly educated,<br>these excluded groups are not the predominant users of estrogen). |
|                     | derivation of the cohort                                                                                                                                                                                                 | Note:         Truly representative (A) is a population-based cohort at the provincial or national levels (e.g., a sample from 2 cities is not enough). We need very 'broad' sample of the population.         Somewhat representative (B) includes private clinics, hospital-based, or                                                                                                                                                                                                                                           |

|                                                                                         |                                                                                                                                                                                                             | community-based                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2) Selection of the                                                                     | a) drawn from the same                                                                                                                                                                                      | Note:                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2) Selection of the<br>non-exposed cohort                                               | <ul> <li>a) drawn from the same<br/>community as the exposed<br/>cohort</li> <li>b) drawn from a different source</li> <li>c) no description of the<br/>derivation of the non-exposed<br/>cohort</li> </ul> | In our review of mostly multi-arm studies, this question pertains to the study's comparator group(s) – including "active" controls (for example, a less teratogenic AED). Therefore, this will often be 'A' for our studies.                                                                                                                                                                                                                                  |
| 3) Ascertainment<br>of exposure                                                         | <ul> <li>a) secure record (e.g., surgical records)</li> <li>b) structured interview</li> <li>c) written self-report</li> <li>d) no description</li> </ul>                                                   | Note:         Option 'A' includes patient hospital records, prescription drug database, or hospital/clinic visits (e.g., patient is asked about "current" AED use during a visit with their doctor).         Option 'B' includes a hospital/clinic visit, but the patients are asked to remember their AED use during pregnancy (e.g., retrospectively ascertained exposure).         If a study used both medical records and interviews for everyone select |
|                                                                                         |                                                                                                                                                                                                             | 'A'.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4) Demonstration<br>that outcome of<br>interest was not<br>present at start of<br>study | a) yes<br>b) no                                                                                                                                                                                             | In the case of mortality studies, outcome of interest is still the presence of a disease/incident, rather than death. That is to say that a statement of 'no history of disease or incident' earns a star (i.e. option 'A'). <u>Note:</u> Since our review is on pregnant women, this question is 'A' for all.                                                                                                                                                |
|                                                                                         |                                                                                                                                                                                                             | Please email us if a study involves breastfeeding women.                                                                                                                                                                                                                                                                                                                                                                                                      |
| COMPARABILITY                                                                           | •                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1) Comparability<br>of cohorts on the<br>basis of the design<br>or analysis             | <ul> <li>a) answer is BOTH B &amp; C (i.e. study controls for age and one other important factor)</li> <li>b) study controls for age of the women</li> </ul>                                                | Either exposed and non-exposed individuals must be matched in the design and/or confounders must be adjusted for in the analysis.<br>Statements of no differences between groups or that differences were not statistically significant are not sufficient for establishing comparability.                                                                                                                                                                    |

| c) study contro | s for any other Note: If the relative risk for the exposure of interest is adjusted for the confounders listed then the groups will be considered to be comparable |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| d) study does r | on each variable used in the adjustment.                                                                                                                           |
| important fa    | ctor or it is not                                                                                                                                                  |
| described       | There may be multiple ratings for this item for different categories of                                                                                            |
|                 | exposure (e.g., ever vs. never, current vs. previous or never). [A                                                                                                 |
|                 | maximum of 2 stars can be allotted in this category].                                                                                                              |
|                 |                                                                                                                                                                    |
|                 | Note:                                                                                                                                                              |
|                 | I he study should have initially matched the groups or presented adjusted                                                                                          |
|                 | AFD arm separately (instead of the whole exposed cohort), the study                                                                                                |
|                 | must also report the factor of interest for 'each AED arm' (or state the                                                                                           |
|                 | 'each AED arm' is matched).                                                                                                                                        |
|                 |                                                                                                                                                                    |
|                 | Thus, there are 2 parts to this question:                                                                                                                          |
|                 |                                                                                                                                                                    |
|                 | 1) The study should have matched/adjusted for age at whatever level<br>of groups they ware focused on (over if they grow't our shotrested AFI                      |
|                 | arms). AND                                                                                                                                                         |
|                 |                                                                                                                                                                    |
|                 | 2) Then the study should also have reported the age for each AED a                                                                                                 |
|                 |                                                                                                                                                                    |
|                 | If they haven't done both of these 2 things, it's a 'D' here (unless they                                                                                          |
|                 | happen to combine these by reporting adjusted ORs for each of our AE                                                                                               |
|                 |                                                                                                                                                                    |
|                 | For our review, this generally pertains to <b>the comparability of the</b>                                                                                         |
|                 | MOTHERS.                                                                                                                                                           |
|                 | The exception here is in studies of cognitive/psychomotor developmen                                                                                               |
|                 | disorders in children - when age of the children should be comparable.                                                                                             |
|                 | The "other important factors" here are any one of these                                                                                                            |

|                             |                                                                                                                                      | <ul> <li>history of congenital malformations (CMs), fetal losses, preterm deliveries or small babies.</li> <li>family history of genetic problems or CMs.</li> <li>alcohol use.</li> <li>nutritional deficiencies (e.g., lack of folic acid).</li> </ul> Example: <ul> <li>Option 'B' indicates that the study initially matched groups based on the women's acce (or expected a diverted OB c) AND there expect the constraints of the study initially divergence of the study initially divergence of the study initially divergence of the study initial divergence of the study ini</li></ul> |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | í A                                                                                                                                  | women's age for EACH of our arms (e.g., for Tx1, Tx2, etc.).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| OUTCOME:                    |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1) Assessment of<br>outcome | <ul> <li>a) independent OR blind assessment</li> <li>b) record linkage</li> <li>c) self-report</li> <li>d) no description</li> </ul> | <ul> <li>For some outcomes (e.g. fractured hip), reference to the medical record is sufficient to satisfy the requirement for confirmation of the fracture. This would not be adequate for vertebral fracture outcomes where reference to x-rays would be required.</li> <li>a) Independent or blind assessment stated in the paper, or confirmation of the outcome by reference to secure records (x-rays, medical records, etc.)</li> <li>b) Record linkage (e.g. identified through ICD codes on database records)</li> <li>c) Self-report (i.e. no reference to original medical records or x-rays to confirm the outcome)</li> <li>d) No description.</li> </ul> Note: Blind (A) is if they tell us that the outcome assessors were blinded to exposures; or if the outcome is objective.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                             |                                                                                                                                      | For our purposes, we will focus on the primary outcome of interest of our systematic review, which is <u>major malformations (an objective outcome)</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                             |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|                                                                     | So most of ours will be A, unless the study is only on a secondary                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                     | outcome (e.g., cognitive development) and is based on the mother's self-                                                                                                                                                                                                                                     |
|                                                                     | report of their child (e.g., not a clinical examination).                                                                                                                                                                                                                                                    |
| a) yes                                                              | An acceptable length of time should be decided before quality assessment                                                                                                                                                                                                                                     |
| b) no                                                               | begins (e.g. 5 yrs. for exposure to breast implants)                                                                                                                                                                                                                                                         |
|                                                                     |                                                                                                                                                                                                                                                                                                              |
|                                                                     | Note:                                                                                                                                                                                                                                                                                                        |
|                                                                     | For this component, focus only on the outcomes that are reported in the                                                                                                                                                                                                                                      |
|                                                                     | results.                                                                                                                                                                                                                                                                                                     |
|                                                                     | For our purposes, we will focus on the primary outcome of interest of our                                                                                                                                                                                                                                    |
|                                                                     | systematic review, which is major malformations.                                                                                                                                                                                                                                                             |
|                                                                     |                                                                                                                                                                                                                                                                                                              |
|                                                                     | • For studies focusing on 'birth' outcomes (i.e. malformations, preterm,                                                                                                                                                                                                                                     |
|                                                                     | fetal losses, born small), the answer is 'A' if they follow the groups                                                                                                                                                                                                                                       |
|                                                                     | until birth.                                                                                                                                                                                                                                                                                                 |
|                                                                     | • For studies focusing on cognitive developmental disorders, an                                                                                                                                                                                                                                              |
|                                                                     | adequate follow-up period (i.e. child's age) is 4 years.                                                                                                                                                                                                                                                     |
|                                                                     | • For studies focusing on psychomotor delays, an adequate follow-up                                                                                                                                                                                                                                          |
|                                                                     | period is the earliest point of detection of the disorder.                                                                                                                                                                                                                                                   |
|                                                                     | • For studies focusing on neonatal seizures, an adequate follow-up                                                                                                                                                                                                                                           |
|                                                                     | period (i.e. infant's age) is 6 months.                                                                                                                                                                                                                                                                      |
| a) complete follow up - all                                         | This item assesses the follow-up of the exposed and non-exposed cohorts                                                                                                                                                                                                                                      |
| subjects accounted for                                              | to ensure that losses are not related to either the exposure or the outcome.                                                                                                                                                                                                                                 |
| b) subjects lost to follow up                                       |                                                                                                                                                                                                                                                                                                              |
| unlikely to introduce bias -                                        | Note:                                                                                                                                                                                                                                                                                                        |
| small number lost (see                                              | Especially check ones that start their total sample size (or figure                                                                                                                                                                                                                                          |
| 'Note'), or description                                             | diagram) with only the ones who had "complete" data (or only those                                                                                                                                                                                                                                           |
| provided of those lost                                              | who they had "successfully" recruited), as these are often a 'D' (since                                                                                                                                                                                                                                      |
| c) follow up rate is inadequate                                     | they don't report on the ones NOT followed up).                                                                                                                                                                                                                                                              |
| (see 'Note') and no                                                 |                                                                                                                                                                                                                                                                                                              |
|                                                                     |                                                                                                                                                                                                                                                                                                              |
| description of those lost                                           | • For a prospective study, $\geq 90\%$ follow-up rate per year is adequate                                                                                                                                                                                                                                   |
| <ul><li>description of those lost</li><li>d) no statement</li></ul> | <ul> <li>For a prospective study, ≥90% follow-up rate per year is adequate<br/>(e.g., 10% dropout or less for 1 year, 20% for 2 years of follow-up,</li> </ul>                                                                                                                                               |
|                                                                     | <ul> <li>a) yes</li> <li>b) no</li> <li>a) complete follow up - all subjects accounted for</li> <li>b) subjects lost to follow up unlikely to introduce bias - small number lost (see 'Note'), or description provided of those lost</li> <li>c) follow up rate is inadequate (see 'Note') and no</li> </ul> |

| <ul> <li>For a retrospective cohort study, ≥80% follow-up rate is adequate; including the ones that they could NOT recruit or who would NOT participate.</li> <li>For a survey/mail questionnaire, ≥75% response rate is adequate. (For a survey, a dropout rate is congruent to a survey response rate).</li> </ul> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                      |
| _                                                                                                                                                                                                                                                                                                                    |

# **CASE-CONTROL Studies**

| Evol Column         | NOS* Answer Ontions**               | NOS Coding Monuel*                                                         |
|---------------------|-------------------------------------|----------------------------------------------------------------------------|
| Exter Column        | NOS Answer Options                  | NOS Counig Manual                                                          |
| RefID               | Enter the report's RefID.           |                                                                            |
| DA                  | Enter your initials.                |                                                                            |
| First author        | Enter the first author's last name. |                                                                            |
| Year of publication | Enter the year of the publication.  |                                                                            |
| SELECTION:          |                                     |                                                                            |
| 1) Is the case      | a) yes, with independent            | a) Requires some independent validation (e.g. >1 person/record/time/       |
| definition          | validation                          | process to extract information, or reference to primary record source      |
| adequate?           | b) yes, e.g., record linkage or     | such as x-rays or medical/hospital records)                                |
| -                   | based on self-reports               | b) Record linkage (e.g. ICD codes in database) or self-report with no      |
|                     | c) no description                   | reference to primary record                                                |
|                     | i, i i i i i                        | c) No description                                                          |
|                     |                                     |                                                                            |
|                     |                                     | Note:                                                                      |
|                     |                                     | This question is assessing the group of infants that have the outcome of   |
|                     |                                     | interest (e.g., $CMs$ ) – i.e. the "cases" in a case-control study design. |
| 2) Representative-  | a) consecutive or obviously         | a) All eligible cases with outcome of interest over a defined period of    |
| ness of the cases   | representative series of cases      | time, all cases in a defined catchment area, all cases in a defined        |
|                     | b) potential for selection biases,  | hospital or clinic, group of hospitals, health maintenance organisation,   |
|                     | or not stated                       | or an appropriate sample of those cases (e.g. random sample)               |
|                     |                                     | b) Not satisfying requirements in part (a), or not stated.                 |

|                           |                                                                                               | Note:                                                                                                                                                                                                                                                                                      |
|---------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           |                                                                                               | Option 'A' is a population-based sample.                                                                                                                                                                                                                                                   |
| 3) Selection of           | a) community controls                                                                         | This item assesses whether the control series used in the study is derived                                                                                                                                                                                                                 |
| controls                  | <ul><li>b) hospital controls</li><li>c) no description</li></ul>                              | from the same population as the cases and essentially would have been cases had the outcome been present.                                                                                                                                                                                  |
|                           | <b>O</b>                                                                                      | a) Community controls (i.e. same community as cases and would be cases if had outcome)                                                                                                                                                                                                     |
|                           | De                                                                                            | <ul><li>b) Hospital controls, within same community as cases (i.e. not another city) but derived from a hospitalised population</li><li>c) No description</li></ul>                                                                                                                        |
|                           |                                                                                               | Note                                                                                                                                                                                                                                                                                       |
|                           |                                                                                               | This question is assessing the group of infants that don't have the                                                                                                                                                                                                                        |
|                           | ·                                                                                             | outcome (e.g. $CM_s$ ) – i.e. the "controls" in a case-control study design                                                                                                                                                                                                                |
|                           |                                                                                               | outcome (e.g., ettis) i.e. the controls in a cuse control study design.                                                                                                                                                                                                                    |
|                           |                                                                                               | Community controls (A) includes a population-based sample.                                                                                                                                                                                                                                 |
| 4) Definition of controls | <ul><li>a) no history of disease<br/>(endpoint)</li><li>b) no description of source</li></ul> | a) If cases are first occurrence of outcome, then it must explicitly state<br>that controls have no history of this outcome. If cases have new (not<br>necessarily first) occurrence of outcome, then controls with previous<br>occurrences of outcome of interest should not be excluded. |
|                           |                                                                                               | b) No mention of history of outcome                                                                                                                                                                                                                                                        |
|                           |                                                                                               | Note:                                                                                                                                                                                                                                                                                      |
|                           |                                                                                               | Since our review is on fetal effects, this question is 'A' for all studies.                                                                                                                                                                                                                |
|                           |                                                                                               | Please email us if a study involves exposure during breastfeeding.                                                                                                                                                                                                                         |
| COMPARABILIT              | Y:                                                                                            |                                                                                                                                                                                                                                                                                            |
| 1) Comparability          | a) answer is BOTH B & C (i.e.                                                                 | Either cases and controls must be matched in the design and/or                                                                                                                                                                                                                             |
| of cases and              | study controls for age and one                                                                | confounders must be adjusted for in the analysis. Statements of no                                                                                                                                                                                                                         |
| controls on the           | other important factor)                                                                       | differences between groups or that differences were not statistically                                                                                                                                                                                                                      |
| basis of the design       | b) study controls for age of the                                                              | significant are not sufficient for establishing comparability.                                                                                                                                                                                                                             |

| or analysis      | women<br>c) study controls for any other Note: If the odds ratio for the exposure of interest is adjusted for the |
|------------------|-------------------------------------------------------------------------------------------------------------------|
|                  | important factor increase is adjusted for the considered to be comparable                                         |
|                  | d) study does not control for any on each variable used in the adjustment.                                        |
|                  | important factor or it is not                                                                                     |
|                  | described There may be multiple ratings for this item for different categories of                                 |
|                  | exposure (e.g. ever vs. never, current vs. previous or never). [A maximu                                          |
|                  | of 2 stars can be allotted in this category].                                                                     |
|                  | Note:                                                                                                             |
|                  | The study should have initially matched the groups, AND in addition,                                              |
|                  | since in our review we are analyzing each AED arm separately (instead                                             |
|                  | the whole cases group), the study must also report the factor of interest                                         |
|                  | for 'each AED arm' (or state that 'each AED arm' is matched).                                                     |
|                  | For our review, this generally pertains to the comparability of the                                               |
|                  | MOTHERS of the cases and controls.                                                                                |
|                  | The exception here is in studies of cognitive/psychomotor development                                             |
|                  | disorders in children - when age of the children should be comparable.                                            |
|                  | The "other important factors" here are any one of these:                                                          |
|                  | <ul> <li>history of congenital malformations (CMs), fetal losses, preterm</li> </ul>                              |
|                  | deliveries or small babies.                                                                                       |
|                  | • family history of genetic problems or CMs.                                                                      |
|                  | • alcohol use.                                                                                                    |
|                  | • nutritional deficiencies (e.g., lack of folic acid).                                                            |
|                  | For example, Option 'B' indicates that the study initially matched group                                          |
|                  | based on the women's age AND they report the mean women's age for                                                 |
|                  | EACH arm (e.g., for Tx1, Tx2, etc.).                                                                              |
|                  |                                                                                                                   |
| <b>EXPOSURE:</b> |                                                                                                                   |

| 1) Assessment of   | a) secure record (e.g., surgical  | Note:                                                                         |  |
|--------------------|-----------------------------------|-------------------------------------------------------------------------------|--|
| exposure           | records)                          | Option 'A' includes patient hospital records, prescription drug database,     |  |
| •                  | b) structured interview where     | or hospital/clinic visits (e.g., patient is asked about "current" AED use     |  |
|                    | blind to case/control status      | during a visit with their doctor).                                            |  |
|                    | c) interview not blinded to       |                                                                               |  |
|                    | case/control status               | "Interview" here includes a hospital/clinic visit, but the patients are asked |  |
|                    | d) written self-report or medical | to remember their AED use during pregnancy (e.g., retrospectively             |  |
|                    | record only                       | ascertained exposure).                                                        |  |
|                    | e) no description                 |                                                                               |  |
| 2) Same method of  | a) yes                            | Note:                                                                         |  |
| ascertainment for  | b) no                             | This question is asking whether the method of ascertainment of exposure       |  |
| cases and controls |                                   | was the same for 'cases' (with the outcome) and 'controls' (without the       |  |
|                    |                                   | outcome; in this case-control study design).                                  |  |
| 3) Non-response    | a) same rate for both groups      | Note:                                                                         |  |
| rate               | b) non-respondents described      | For our review, this pertains to either the infants or the mothers of the     |  |
|                    | c) rate different and no          | case and control groups.                                                      |  |
|                    | designation                       |                                                                               |  |
|                    |                                   | We're allowing 10% dropout per year for a prospective study – e.g., 10%       |  |
|                    |                                   | for 1 year, 20% for 2 years of follow-up, etc.                                |  |
|                    |                                   |                                                                               |  |
|                    |                                   | For a survey, we allow for a 75% response rate in order for it be adequate.   |  |
|                    |                                   |                                                                               |  |
|                    |                                   | For a survey, a dropout rate is congruent to a survey response rate.          |  |

\*Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, Tugwell P. The Newcastle-Ottawa Scale (NOS) for assessing the quality of non-randomised studies in meta-analyses. Available at: <u>http://www.ohri.ca/programs/clinical\_epidemiology/oxford.asp</u>

\*\*In the **"NOS Coding Manual" column**, the first section for each item is copied straight from the NOS documentation while the lower portions in each item are our "Notes" tailored for the AED review.

## Appendix B. List of included studies

A total of 29 cohort studies<sup>1-29</sup> with 9 companion reports<sup>30-38</sup> were included

1. Adab N, Kini U, Vinten J, et al. The longer term outcome of children born to mothers with epilepsy. *J Neurol Neurosurg Psychiatry*. 2004;75(11):1575-83.

2. Arkilo D, Hanna J, Dickens D, et al. Pregnancy and neurodevelopmental outcomes with in-utero antiepileptic agent exposure. A pilot study. *Eur J Paediatr Neurol*. 2015;19(1):37-40.

3. Bromley R, Baxter N, Calderbank R, Mawer G, Clayton-Smith J, Baker G. A comprehensive review of the language abilities of children exposed to valproate or carbamazepine in utero. American Epilepsy Society; Texas2010.

4. Bromley RL, Calderbank R, Cheyne CP, et al. Cognition in school-age children exposed to levetiracetam, topiramate, or sodium valproate. *Neurology*. 2016;87(18):1943-53.

5. Bromley RL, Mawer GE, Briggs M, et al. The prevalence of neurodevelopmental disorders in children prenatally exposed to antiepileptic drugs. *J Neurol Neurosurg Psychiatry*. 2013;84(6):637-43.

6. Christensen J, Gronborg TK, Sorensen MJ, et al. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. *JAMA*. 2013;309(16):1696-703.

7. Cohen MJ, Meador KJ, Browning N, et al. Fetal antiepileptic drug exposure: Adaptive and emotional/behavioral functioning at age 6years. *Epilepsy Behav*. 2013;29(2):308-15.

8. Cummings C, Stewart M, Stevenson M, Morrow J, Nelson J. Neurodevelopment of children exposed in utero to lamotrigine, sodium valproate and carbamazepine. *Arch Dis Child*. 2011;96(7):643-7.

9. Dean JCS, Hailey H, Moore SJ, Lloyd DJ, Turnpenny PD, Little J. Long term health and neurodevelopment in children exposed to antiepileptic drugs before birth. *J Med Genet*. 2002;39(4):251-9.

10. D'Souza SW, Robertson IG, Donnai D, Mawer G. Fetal phenytoin exposure, hypoplastic nails, and jitteriness. *Arch Dis Child*. 1991;66(3):320-4.

11. Eriksson K, Viinikainen K, Mönkkönen A, et al. Children exposed to valproate in utero—Population based evaluation of risks and confounding factors for long-term neurocognitive development. *Epilepsy Res.* 2005;65(3):189-200.

12. Gaily E. Development and growth in children of epileptic mothers: a prospective controlled study. Helsinki, Finland: University of Helsinki; 1990.

13. Gogatishvili N, Ediberidze T, Lomidze G, Tatishvili N, Kasradze S. PO-0834 Long-term Developmental Outcome Of Children Prenatally Exposed To Antiepileptic Drugs. *Arch Dis Child*. 2014;99(Suppl 2):A526.

14. Gogatishvili N, Ediberidze T, Lomidze G, Tatishvili N, Kasradze S. Cognitive outcomes of children with fetal antiepileptic drug exposure at the age of 3-6 years-preliminary data. 1st Congress of the European Academy of Neurology; Berlin: European Journal of Neurology; 2015. p. 329.

15. Hurault-Delarue C, Damase-Michel C, Finotto L, et al. Psychomotor developmental effects of prenatal exposure to psychotropic drugs: a study in EFEMERIS database. *Fundam Clin Pharmacol*. 2016;30(5):476-82.

16. Jones KL, Lacro RV, Johnson KA, Adams J. Pattern of malformations in the children of women treated with carbamazepine during pregnancy. *N Engl J Med.* 1989;320(25):1661-6.

### **BMJ Open**

17. Katz JM, Pacia SV, Devinsky O. Current Management of Epilepsy and Pregnancy: Fetal Outcome, Congenital Malformations, and Developmental Delay. Epilepsy Behav. 2001;2(2):119-23.

18. Koch S, Jager-Roman E, Losche G, Nau H, Rating D, Helge H. Antiepileptic drug treatment in pregnancy: drug side effects in the neonate and neurological outcome. Acta Paediatr. 1996:85(6):739-46.

Mawer G, Clayton-Smith J, Coyle H, Kini U. Outcome of pregnancy in women attending 19. an outpatient epilepsy clinic: adverse features associated with higher doses of sodium valproate. Seizure. 2002;11(8):512-8.

Miskov S, Juraski RG, Fucic A, et al. Croatian Pregnant Women with Epilepsy and 20. Effects of Antiepileptic Drugs Exposure in their Offspring - seven years of prospective surveillance. American Epilepsy Society; Texas2010.

Miskov S, Juraski RG, Mikula I, et al. The Croatian model of integrative prospective 21. management of epilepsy and pregnancy. Acta Clin Croat. 2016;55(4):535-48.

Nadebaum C, Anderson VA, Vajda F, Reutens DC, Barton S, Wood AG. Language skills 22. of school-aged children prenatally exposed to antiepileptic drugs. *Neurology*. 2011;76(8):719-26.

23. Rihtman T, Parush S, Ornoy A. Developmental outcomes at preschool age after fetal exposure to valproic acid and lamotrigine: cognitive, motor, sensory and behavioral function. Reprod Toxicol. 2013;41:115-25.

24. Scolnik D, Nulman I, Rovet J, et al. Neurodevelopment of children exposed in utero to phenytoin and carbamazepine monotherapy. JAMA. 1994;271(10):767-70.

Shankaran S, Woldt E, Nelson J, Bedard M, Delaney-Black V. Antenatal phenobarbital 25. therapy and neonatal outcome. II: Neurodevelopmental outcome at 36 months. *Pediatrics*. 1996;97(5):649-52.

van der Pol MC, Hadders-Algra M, Huisjes HJ, Touwen BC. Antiepileptic medication in 26. pregnancy: late effects on the children's central nervous system development. Am J Obstet Gynecol. 1991;164(1 Pt 1):121-8.

Veiby G, Daltveit AK, Schjolberg S, et al. Exposure to antiepileptic drugs in utero and 27. child development: a prospective population-based study. *Epilepsia*. 2013;54(8):1462-72.

Veiby G, Engelsen BA, Gilhus NE. Early child development and exposure to 28. antiepileptic drugs prenatally and through breastfeeding: a prospective cohort study on children of women with epilepsy. JAMA Neurol. 2013;70(11):1367-74.

Wood AG, Nadebaum C, Anderson V, et al. Prospective assessment of autism traits in 29. children exposed to antiepileptic drugs during pregnancy. *Epilepsia*. 2015;56(7):1047-55.

Bromley RL, Mawer G, Clayton-Smith J, Baker GA. Autism spectrum disorders 30. following in utero exposure to antiepileptic drugs. Neurology. 2008;71(23):1923-4.

Gaily EK, Granstrom ML, Hillesmaa VK, Bardy AH. Head circumference in children of 31. epileptic mothers: contributions of drug exposure and genetic background. *Epilepsy Res.* 1990;5(3):217-22.

Hillesmaa V. A prospective study on maternal and fetal outcome in 139 women with 32. epilepsy. Helsinki: University of Helsinki; 1982.

Hiilesmaa VK, Bardy A, Teramo K. Obstetric outcome in women with epilepsy. Am J 33. Obstet Gynecol. 1985;152(5):499-504.

Rasalam AD, Hailey H, Williams JH, et al. Characteristics of fetal anticonvulsant 34. syndrome associated autistic disorder. Dev Med Child Neurol. 2005;47(8):551-5.

35. Tomson T, Battino D, Bonizzoni E, et al. Antiepileptic drugs and intrauterine death: A prospective observational study from EURAP. *Neurology*. 2015;85(7):580-8.

36. Viinikainen K, Eriksson K, Monkkonen A, et al. The effects of valproate exposure in utero on behavior and the need for educational support in school-aged children. *Epilepsy Behav*. 2006;9(4):636-40.

37. Vinten J, Adab N, Kini U, Gorry J, Gregg J, Baker GA. Neuropsychological effects of exposure to anticonvulsant medication in utero. *Neurology*. 2005;64(6):949-54.

38. Vinten J, Bromley RL, Taylor J, Adab N, Kini U, Baker GA. The behavioral consequences of exposure to antiepileptic drugs in utero. Epilepsy Behav. 2009;14(1):197-201. 

## Appendix C. Key excluded studies

| Author,<br>Year                   | Research Group                                                                                            | Title                                                                                                                   | Reason for Exclusion                              |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Meador,<br>2009 <sup>39</sup>     | Neurodevelopmental<br>Effects of Antiepileptic<br>Drug (NEAD) Study<br>Group                              | Cognitive Function at 3 Years of Age after Fetal Exposure to<br>Antiepileptic Drugs                                     | Outcomes only reported<br>as continuous variables |
| Meador,<br>2010 <sup>40</sup>     | Neurodevelopmental<br>Effects of Antiepileptic<br>Drug (NEAD) Study<br>Group                              | Effects of breastfeeding in children of women taking antiepileptic drugs                                                | Outcomes only reported as continuous variables    |
| Meador,<br>2011 <sup>41</sup>     | Neurodevelopmental<br>Effects of Antiepileptic<br>Drug (NEAD) Study<br>Group                              | Foetal antiepileptic drug exposure and verbal versus non-verbal abilities at three years of age                         | Outcomes only reported as continuous variables    |
| Meador,<br>2012 <sup>42</sup>     | Neurodevelopmental<br>Effects of Antiepileptic<br>Drug (NEAD) Study<br>Group                              | Effects of fetal antiepileptic drug exposure: Outcomes at age 4.5 years                                                 | Outcomes only reported<br>as continuous variables |
| Meador,<br>2013 <sup>43</sup>     | Neurodevelopmental<br>Effects of Antiepileptic<br>Drug (NEAD) Study<br>Group                              | Fetal antiepileptic drug exposure and cognitive outcomes at age 6 years (NEAD study): a prospective observational study | Outcomes only reported<br>as continuous variables |
| Shallcross,<br>2011 <sup>44</sup> | Liverpool and<br>Manchester<br>Neurodevelopment<br>Group and The UK<br>Epilepsy and Pregnancy<br>Register | Child development following in utero exposure:<br>Levetiracetam vs. sodium valproate                                    | Outcomes only reported<br>as continuous variables |
| Shallcross, 2014 <sup>45</sup>    | Liverpool and<br>Manchester                                                                               | In utero exposure to levetiracetam vs. valproate:<br>Development and language at 3 years of age                         | Outcomes only reported as continuous variables    |
| Neurodevelopment       |  |
|------------------------|--|
| Group and The UK       |  |
| Epilepsy and Pregnancy |  |
| Register               |  |

#### References

39. Meador KJ, Baker GA, Browning N, et al. Cognitive function at 3 years of age after fetal exposure to antiepileptic drugs. *N Engl J Med.* 2009;360(16):1597-605.

40. Meador KJ, Baker GA, Browning N, et al. Effects of breastfeeding in children of women taking antiepileptic drugs. *Neurology*. 2010;75(22):1954-60.

41. Meador KJ, Baker GA, Browning N, et al. Foetal antiepileptic drug exposure and verbal versus non-verbal abilities at three years of age. *Brain*. 2011;134(Pt 2):396-404.

42. Meador KJ, Baker GA, Browning N, et al. Effects of fetal antiepileptic drug exposure: outcomes at age 4.5 years. *Neurology*. 2012;78(16):1207-14.

43. Meador KJ, Baker GA, Browning N, et al. Fetal antiepileptic drug exposure and cognitive outcomes at age 6 years (NEAD study): a prospective observational study. *Lancet Neurol*. 2013;12(3):244-52.

44. Shallcross R, Bromley RL, Irwin B, Bonnett LJ, Morrow J, Baker GA. Child development following in utero exposure: levetiracetam vs sodium valproate. *Neurology*. 2011;76(4):383-9.

45. Shallcross R, Bromley RL, Cheyne CP, et al. In utero exposure to levetiracetam vs valproate: development and language at 3 years of age. *Neurology*. 2014;82(3):213-21.

46. Cohen MJ, Meador KJ, Browning N, et al. Fetal antiepileptic drug exposure: Adaptive and emotional/behavioral functioning at age 6 years. *Epilepsy Behav*. 2013;29(2):308-15.

10

### Appendix D. Table of Individual Study characteristics

| Author, Year                                                                                  | Country of conduct | Registry or Setting                                                                                                                                      | Registry or Setting Study<br>period Interventions |                                         | Outcomes                                                                      | Funding                      |
|-----------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------|------------------------------|
| Adab, 2004 <sup>*1</sup><br>[CR: Vinten<br>2005 <sup>37</sup> Vinten,<br>2009 <sup>38</sup> ] | UK                 | Mersey Regional<br>Epilepsy Clinic;<br>Epilepsy Clinic at the<br>Manchester Royal<br>Infirmary; Antenatal<br>clinic at St Mary's<br>Hospital, Manchester | 2000-<br>2001                                     | Carbam, Control, Valpro                 | Cognitive<br>Developmental<br>Delay,<br>Psychomotor<br>Developmental<br>Delay | NR                           |
| Arkilo, 2015 <sup>2</sup>                                                                     | USA                | Minnesota Epilepsy<br>Group                                                                                                                              | 2006-<br>2011                                     | Carbam, Lamot, Levet,<br>Pheny, Valpro  | Autism/Dyspraxia,<br>Psychomotor<br>Developmental<br>Delay                    | NR                           |
| Bromley, 2010 <sup>3</sup>                                                                    | UK                 | Liverpool and<br>Manchester<br>Neurodevelopment<br>Group                                                                                                 | NR                                                | Carbam, Valpro                          | Language Delay                                                                | NR                           |
| Bromley, 2013 <sup>5</sup><br>[CR: Bromley,<br>2008 <sup>30</sup> ]                           | UK                 | Liverpool and<br>Manchester<br>Neurodevelopment group                                                                                                    | 2000-<br>2004                                     | Carbam, Control, Lamot,<br>Valpro       | Autism/Dyspraxia,<br>ADHD                                                     | mixed<br>public &<br>private |
| Bromley,<br>2016 <sup>4</sup> †                                                               | UK                 | UK Epilepsy and<br>Pregnancy Register                                                                                                                    | 2004-<br>2007                                     | Control, Gabap, Levet,<br>Topir, Valpro | Cognitive<br>Developmental<br>Delay                                           | public                       |
| Christensen,<br>2013 <sup>6</sup> †                                                           | Denmark            | Danish Civil Registration<br>System; Danish<br>Prescription Register;<br>Danish Psychiatric<br>Central Register; Danish                                  | 1996-<br>2006                                     | Carbam, Clonaz, Lamot,<br>Oxcar, Valpro | Autism/Dyspraxia                                                              | public                       |
|                                                                                               |                    |                                                                                                                                                          |                                                   |                                         |                                                                               |                              |

**BMJ Open** 

|                                                                                |                     | Birth Register; Danish<br>National Hospital<br>Register                                                 |               |                                                                                                                                           |                                                                            |        |
|--------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------|
| Cohen, 2013 <sup>46</sup>                                                      | USA;UK              | Neurodevelopmental<br>Effects of Antiepileptic<br>Drugs Study Group                                     | 1999-<br>2004 | Carbam, Lamot, Pheny,<br>Valpro,                                                                                                          | ADHD                                                                       | public |
| Cummings,<br>2011 <sup>8</sup> † [CR:<br>Tomson,<br>2015 <sup>35</sup> ]       | Northern<br>Ireland | UK Epilepsy and<br>Pregnancy Register<br>(Northern Ireland);<br>Northern Ireland Child<br>Health System | 1996-<br>2005 | Carbam, Lamot, Valpro,                                                                                                                    | Cognitive<br>Developmental<br>Delay                                        | public |
| Dean, 2002 <sup>9</sup><br>[CR: Rasalam,<br>2005 <sup>34</sup> ]               | Scotland            | Aberdeen Maternity<br>Hospital                                                                          | 1976-<br>2000 | Carbam, Carbam+Pheno,<br>Carbam+Pheny,<br>Carbam+Valpro, Control,<br>Ethos, Pheno, Pheno+Pheny,<br>Pheno+Valpro, Pheny,<br>Primid, Valpro | Psychomotor<br>Developmental<br>Delay,<br>ADHD                             | NR     |
| D'Souza,<br>1991 <sup>10</sup>                                                 | United<br>Kingdom   | St Mary's Hospital                                                                                      | 1980-<br>1982 | Carbam, Control, Pheno,<br>Pheny, Valpro                                                                                                  | Cognitive<br>Developmental<br>Delay                                        | public |
| Eriksson,<br>2005 <sup>11</sup> † [CR:<br>Viinikainen,<br>2006 <sup>36</sup> ] | Finland             | Kuopio University<br>Hospital                                                                           | 1989-<br>2000 | Carbam, Control, Valpro                                                                                                                   | Cognitive<br>Developmental<br>Delay, Psychomotor<br>Developmental<br>Delay | public |

| Page | 71 | of | 90 |  |
|------|----|----|----|--|
|------|----|----|----|--|

| Gaily, $1990^{12}$<br>[CR: Gaily,<br>$1990^{31}$ ; Helsin<br>Hiilesmaa, Finland Centra<br>$1982^{32}$ ;<br>Hiilesmaa,<br>$1985^{33}$ ]                                                                                                      |         | Helsinki University<br>Central Hospital                                                                                                                               | 1975-<br>1979 | Carbam,<br>Carbam+Pheno+Pheny,<br>Carbam+Pheny,<br>Carbam+Valpro, Control,<br>Ethos+Pheny, Pheno+Pheny,<br>Pheny, Pheny+Primid,<br>Pheny+Valpro | Cognitive<br>Developmental<br>Delay ,<br>Psychomotor<br>Developmental<br>Delay | mixe<br>publ<br>priva |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------|--|
| Gogatishvili,<br>2014 <sup>13</sup>                                                                                                                                                                                                         | Georgia | Georgian National AED-<br>Pregnancy Registry                                                                                                                          | NR            | Carbam, Lamot, Valpro                                                                                                                           | Cognitive<br>Developmental<br>Delay                                            | publ                  |  |
| Gogatishvili,<br>2015 <sup>14</sup>                                                                                                                                                                                                         | Georgia | Georgian National AED-<br>Pregnancy Registry                                                                                                                          | NR            | Carbam, Carbam+Levet,<br>Lamot, Pheno, Valpro                                                                                                   | Language Delay                                                                 | publi                 |  |
| Hurault-<br>Delarue, 2012 <sup>15</sup> France France<br>Delarue, 2012 <sup>15</sup> France<br>EFEMERIS data<br>Caisse Primaire<br>d'Assurance Ma<br>Haute-Garonne a<br>Maternal and Inf<br>Protection Servio<br>Antenatal Diagno<br>Centre |         | EFEMERIS database -<br>Caisse Primaire<br>d'Assurance Maladie of<br>Haute-Garonne and<br>Maternal and Infant<br>Protection Service;<br>Antenatal Diagnostic<br>Centre | 2004-<br>2008 | Carbam, Clobaz, Clonaz,<br>Gabap, Lamot, Pheno, Topir,<br>Valpro                                                                                | Psychomotor<br>Developmental<br>Delay                                          | NR                    |  |
| Jones, 1989 <sup>16</sup> †                                                                                                                                                                                                                 | US      | California Teratogen<br>Registry                                                                                                                                      | 1979-<br>1988 | Carbam, Carbam+Pheno,<br>Carbam+Pheno+Valpro,<br>Carbam+Primid                                                                                  | Cognitive<br>Developmental<br>Delay ,<br>Psychomotor<br>Developmental<br>Delay | publi                 |  |
| Katz, 2001 <sup>17</sup>                                                                                                                                                                                                                    | USA     | Mount Sinai<br>Comprehensive Epilepsy<br>Center                                                                                                                       | 1990-<br>2000 | Carbam, Control, Lamot,<br>Pheno, Pheny, Primid,<br>Valpro                                                                                      | Cognitive<br>Developmental<br>Delay                                            | NR                    |  |

BMJ Open

| Koch, 1996 <sup>18</sup>          | Germany   | ıy NR                                                                                                                                    |               | Pheno, Pheny, Primid,<br>Valpro                                                                                                                           | Cognitive<br>Developmental<br>Delay                         | public                       |
|-----------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------|
| Mawer, 2002 <sup>19</sup>         | England   | Manchester Royal<br>Infirmary                                                                                                            | 1990-<br>1999 | Carbam, Lamot, Pheny,<br>Valpro                                                                                                                           | Cognitive<br>Developmental<br>Delay                         | NR                           |
| Miskov, 2010 <sup>20</sup>        | Croatia   | NR                                                                                                                                       | 2003-<br>2010 | Carbam, Control, Gabap,<br>Lamot, Valpro                                                                                                                  | Psychomotor<br>Developmental<br>Delay, Neonatal<br>Seizures | NR                           |
| Miskov, 2016 <sup>21</sup>        | Croatia   | Sestre milosrdnice<br>University Hospital<br>Center                                                                                      | 2003-<br>2013 | Carbam, Carbam+Lamot,<br>Carbam+Pheno,<br>Carbam+Pheny+Topir,<br>Control, Clonaz+Valpro,<br>Gabap, Lamot, Oxcar,<br>Pheno, Pheny,<br>Topir+Valpro, Valpro | Attention Deficit<br>Hyperactivity<br>Disorder              | NR                           |
| Nadebaum,<br>2011 <sup>22</sup> † | Australia | Australian Registry of<br>Antiepileptic Drug Use in<br>Pregnancy                                                                         | 2007-<br>2009 | Carbam, Lamot, Valpro                                                                                                                                     | Language Delay                                              | mixed<br>public &<br>private |
| Rihtman,<br>2013 <sup>23</sup>    | Israel    | Israeli Teratogen<br>Information Service                                                                                                 | NR            | Lamot, Valpro                                                                                                                                             | Neonatal Seizure                                            | mixed<br>public &<br>private |
| Scolnik, 1994 <sup>24</sup>       | Canada    | Hospital for Sick<br>Children - Motherisk<br>Program;<br>North York General<br>Hospital; Toronto<br>Hospital;<br>Oshawa General Hospital | 1987-<br>1992 | Carbam, Pheny                                                                                                                                             | Cognitive<br>Developmental<br>Delay                         | public                       |

| Page | 73 | of | 90 |
|------|----|----|----|
| 1    |    |    |    |

| Shankaran,<br>1996 <sup>25</sup>   | USA         | Children's Hospital of<br>Michigan                                        | NR            | Control, Pheno                                                                   | Psychomotor<br>Developmental<br>Delay, Language<br>Delay                               | public |
|------------------------------------|-------------|---------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------|
| Van der Pol,<br>1991 <sup>26</sup> | Netherlands | Groningen University<br>Hospital                                          | 1973-<br>1981 | Carbam, Carbam+Pheno,<br>Control, Pheno                                          | Psychomotor<br>Developmental<br>Delay                                                  | public |
| Veiby,<br>2013a <sup>27</sup> †    | Norway      | Norwegian Institute of<br>Public Health- Mother<br>and Child Cohort Study | 1999-<br>2009 | Carbam, Control, Lamot,<br>Valpro                                                | Social Impairment                                                                      | public |
| Veiby,<br>2013b <sup>28</sup> †    | Norway      | Medical Birth Registry of<br>Norway                                       | 1999-<br>2008 | Carbam, Control, Lamot,<br>Valpro                                                | Psychomotor<br>Developmental<br>Delay,<br>Autism/Dyspraxia,<br>Language Delay,<br>ADHD | public |
| Wood, 2015 <sup>29</sup> †         | Australia   | Australian Registry of<br>Antiepileptic Drug Use in<br>Pregnancy          | 2007-<br>2010 | Carbam, Carbam+Clonaz,<br>Carbam+Lamot,<br>Carbam+Pheny,<br>Lamot+Valpro, Valpro | Autism/Dyspraxia                                                                       | public |

Carbam = Carbamazepine; Clobaz = Clobazam; Clonaz = Clonazepam; Ethos = Ethosuximide; Gabap = Gabapentin; Lamot = Lamotrigine; Levet = Levetiracetam; Oxcar = Oxcarbazepine; Pheno = Phenobarbital; Pheny = Phenytoin; Primid = Primidone; Topir = Topiramate; Valpro = Valproate; Vigab = Viagabatrin

\*Single publication reporting on two separate cohorts †Registry Studies

### **Appendix E. Table of Patient characteristics**

| Author, Year                                                                                   | Indication | Sample<br>Size* | Mean Age<br>(Women) | Mean Age<br>(Children)/<br>Follow-up<br>period† | AED Exposure<br>Timing                | Maternal<br>Alcohol Use<br>n/N‡ | Maternal<br>Tobacco<br>Use<br>n/N‡ |
|------------------------------------------------------------------------------------------------|------------|-----------------|---------------------|-------------------------------------------------|---------------------------------------|---------------------------------|------------------------------------|
| Adab, 2004a <sup>1</sup> §<br>[CR: Vinten 2005 <sup>37</sup> ;<br>Vinten, 2009 <sup>38</sup> ] | Epilepsy   | 177             | 26.1                | 9-10.5                                          | NR                                    | 24/279‡                         | 68/249‡                            |
| Adab, 2004b <sup>1</sup> §<br>[CR: Vinten 2005 <sup>37</sup> ;<br>Vinten, 2009 <sup>38</sup> ] | Epilepsy   | 81              | 26.1                | 3-3.33                                          | NR                                    | 24/279‡                         | 68/249‡                            |
| Arkilo, $2015^2$                                                                               | Epilepsy   | 59              | NR                  | NA                                              | First trimester                       | NR                              | NR                                 |
| Bromley, $2010^3$                                                                              | NR         | 60              | NR                  | 6-7                                             | Whole pregnancy                       | NR                              | NR                                 |
| Bromley, 2013 <sup>5</sup><br>[CR: Bromley, 2008 <sup>30</sup> ]                               | Epilepsy   | 156             | 28                  | 6                                               | NR                                    | 28/156                          | 42/156                             |
| Bromley, 2016 <sup>4</sup>                                                                     | Epilepsy   | 185             | NR                  | NR                                              | NR                                    | 31/185                          | 35/185                             |
| Christensen, 2013 <sup>6</sup>                                                                 | NR         | 2011            | NR                  | NR                                              | Whole pregnancy                       | NR                              | NR                                 |
| Cohen, 2013 <sup>46</sup>                                                                      | Epilepsy   | 108             | 30                  | 6                                               | During pregnancy<br>and breastfeeding | 12/192‡                         | NR                                 |
| Cummings, 2011 <sup>8</sup><br>[CR: Tomson, 2015 <sup>35</sup> ]                               | Epilepsy   | 142             | NR                  | 2-3                                             | During pregnancy<br>and breastfeeding | 32/108‡                         | 19/108‡                            |
| Dean, 2002 <sup>9</sup><br>[CR: Rasalam, 2005 <sup>34</sup> ]                                  | Epilepsy   | 287             | 27                  | 3.75-15.5                                       | First trimester                       | NR                              | NR                                 |
| D'Souza, 1991 <sup>10</sup>                                                                    | Epilepsy   | 42              | 26.5                | 2.5-3.5                                         | Whole pregnancy                       | NR                              | NR                                 |
| Eriksson, 2005 <sup>11</sup><br>[CR: Viinikainen, 2006 <sup>36</sup> ]                         | Epilepsy   | 39              | 28.2                | NR                                              | NR                                    | NR                              | NR                                 |

| Gaily, 1990 <sup>12</sup><br>[CR: Gaily, 1990 <sup>31</sup> ;<br>Hiilesmaa, 1982 <sup>32</sup> ;<br>Hiilesmaa, 1985 <sup>33</sup> | Epilepsy | 134 | 27.8 | 5.5    | First trimester                       | NR | NR     |
|-----------------------------------------------------------------------------------------------------------------------------------|----------|-----|------|--------|---------------------------------------|----|--------|
| Gogatishvili, 2014 <sup>13</sup>                                                                                                  | NR       | 39  | NR   | 2 to 4 | NR                                    | NR | NR     |
| Gogatishvili, 2015 <sup>14</sup>                                                                                                  | NR       | 23  | NR   | 3 to 6 | NR                                    | NR | NR     |
| Hurault-Delarue, 2012 <sup>15</sup>                                                                                               | NR       | 109 | NR   | 0.75   | NR                                    | NR | NR     |
| Jones, 1989 <sup>16</sup>                                                                                                         | Epilepsy | 63  | NR   | NR     | Whole pregnancy                       | NR | NR     |
| Katz, 2001 <sup>17</sup>                                                                                                          | Epilepsy | 51  | 31   | NR     | NR                                    | NR | NR     |
| Koch, 1996 <sup>18</sup>                                                                                                          | Epilepsy | 40  | NR   | 6      | First trimester                       | NR | NR     |
| Mawer, 2002 <sup>19</sup>                                                                                                         | Epilepsy | 52  | NR   | NR     | NR                                    | NR | NR     |
| Miskov, 2010 <sup>20</sup>                                                                                                        | Epilepsy | 55  | NR   | NR     | NR                                    | NR | NR     |
| Miskov, 2016 <sup>21</sup>                                                                                                        | Epilepsy | 74  | 34   | NR     | NR                                    | NR | 6/74   |
| Nadebaum, 2011 <sup>22</sup>                                                                                                      | Epilepsy | 66  | 31.6 | 7.4    | During pregnancy<br>and breastfeeding | NR | 5/66   |
| Rihtman, 2013 <sup>23</sup>                                                                                                       | Epilepsy | 72  | NR C | NR     | During pregnancy<br>and breastfeeding | NR | NR     |
| Scolnik, 1994 <sup>24</sup>                                                                                                       | Epilepsy | 75  | NR   | 1.5-3  | 1st trimester                         | NR | NR     |
| Shankaran, 1996 <sup>25</sup>                                                                                                     | NR       | 96  | NR   | NR     | NR                                    | NR | NR     |
| Van der Pol, 1991 <sup>26</sup>                                                                                                   | Epilepsy | 57  | NR   | 6-13   | NR                                    | NR | NR     |
| Veiby, 2013a <sup>27</sup>                                                                                                        | Epilepsy | 422 | NR   | 0.5    | During pregnancy<br>and breastfeeding | NR | NR     |
| Veiby, 2013b <sup>28</sup>                                                                                                        | Epilepsy | 248 | 28.9 | 3      | NR                                    | NR | 68/726 |
| Wood, 2015 <sup>29</sup>                                                                                                          | Epilepsy | 77  | NR   | 6-8    | NR                                    | NR | NR     |

**Abbreviations:** NA – Not applicable; NR – Not reported

\* Sample size used for analysis; ineligible treatment arms (i.e. treatment arms with excluded drugs or unspecified polytherapy) are not included in the count

† The mean age for children/follow-up period data were only collected for outcomes related to cognitive and/or psychomotor development

‡ Total sample size is based on the number of women enrolled in the study; may differ from the sample size used for analysis

§ Single publication reporting on two separate cohorts

BMJ Open

Appendix F. Methodological quality of observational studies – Newcastle Ottawa Scale results

| First Author,<br>Year               | Representativen<br>ess of the<br>exposed cohort | Selection<br>of the<br>non-<br>exposed<br>cohort | Ascertainme<br>nt of<br>exposure | Demonstratio<br>n that<br>outcome of<br>interest was<br>not present<br>at start of<br>study | Comparabili<br>ty of cohorts<br>on the basis<br>of the design<br>or analysis | Assessmen<br>t of<br>outcome | Was<br>follow-up<br>long<br>enough<br>for<br>outcomes<br>to occur | Adequac<br>y of<br>follow up<br>of<br>cohorts |
|-------------------------------------|-------------------------------------------------|--------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------|-----------------------------------------------|
| Adab, 2004 <sup>1</sup>             | В                                               | А                                                | Α                                | А                                                                                           | С                                                                            | А                            | А                                                                 | С                                             |
| Arkilo, 2015 <sup>2</sup>           | В                                               | A                                                | В                                | А                                                                                           | D                                                                            | А                            | А                                                                 | С                                             |
| Bromley, $2010^3$                   | D                                               | А                                                | D                                | А                                                                                           | D                                                                            | D                            | В                                                                 | D                                             |
| Bromley, 2013 <sup>5</sup>          | А                                               | А                                                | A                                | А                                                                                           | А                                                                            | А                            | А                                                                 | С                                             |
| Bromley, 2016 <sup>4</sup>          | А                                               | А                                                | А                                | А                                                                                           | А                                                                            | А                            | А                                                                 | С                                             |
| Christensen, 2013 <sup>6</sup>      | А                                               | А                                                | А                                | А                                                                                           | А                                                                            | В                            | А                                                                 | В                                             |
| Cohen, 2013 <sup>46</sup>           | А                                               | А                                                | D                                | A                                                                                           | А                                                                            | А                            | А                                                                 | С                                             |
| Cummings, 2011 <sup>8</sup>         | А                                               | А                                                | А                                | А                                                                                           | А                                                                            | А                            | А                                                                 | С                                             |
| Dean, 2002 <sup>9</sup>             | В                                               | А                                                | А                                | А                                                                                           | D                                                                            | Α                            | А                                                                 | С                                             |
| D'Souza,<br>1991 <sup>10</sup>      | В                                               | А                                                | А                                | А                                                                                           | D                                                                            | А                            | А                                                                 | А                                             |
| Eriksson,<br>2005 <sup>11</sup>     | В                                               | A                                                | A                                | А                                                                                           | В                                                                            | A                            | A                                                                 | D                                             |
| Gaily, 1990 <sup>12</sup>           | В                                               | А                                                | А                                | А                                                                                           | D                                                                            | А                            | А                                                                 | А                                             |
| Gogatishvili,<br>2014 <sup>13</sup> | А                                               | А                                                | D                                | А                                                                                           | D                                                                            | А                            | А                                                                 | D                                             |
| Gogatishvili,<br>2015 <sup>14</sup> | A                                               | А                                                | D                                | А                                                                                           | D                                                                            | A                            | А                                                                 | D                                             |

| Page | 77 | of | 90 |  |
|------|----|----|----|--|
|------|----|----|----|--|

| Hurault-                           |   |   |   |   |   |   |   |  |
|------------------------------------|---|---|---|---|---|---|---|--|
| Delarue,<br>2012 <sup>15</sup>     | А | А | А | А | А | А | А |  |
| Jones, 1989 <sup>16</sup>          | А | А | В | А | D | А | А |  |
| Katz, 2001 <sup>17</sup>           | В | А | А | А | D | А | А |  |
| Koch, 1996 <sup>18</sup>           | В | А | В | А | D | А | А |  |
| Mawer,<br>2002 <sup>19</sup>       | В | А | А | А | D | А | А |  |
| Miskov,<br>2010 <sup>20</sup>      | D | А | D | А | D | D | А |  |
| Miskov,<br>2016 <sup>21</sup>      | С | A | А | А | D | А | А |  |
| Nadebaum,<br>2011 <sup>22</sup>    | А | А | A | А | А | А | А |  |
| Rihtman, 2013 <sup>23</sup>        | А | В | А | А | А | А | А |  |
| Scolnik,<br>1994 <sup>24</sup>     | В | А | А | А | D | А | А |  |
| Shankaran,<br>1996 <sup>25</sup>   | В | А | А | A | D | А | А |  |
| Van der Pol,<br>1991 <sup>26</sup> | В | А | D | А | А | А | А |  |
| Veiby,<br>2013a <sup>27</sup>      | А | А | А | А | A | Α | А |  |
| Veiby,<br>2013b <sup>28</sup>      | А | А | А | А | А | А | А |  |
| Wood. 2015 <sup>29</sup>           | А | А | А | А | D | A | А |  |

BMJ Open



Log-odds ratio centered at comparison-specific pooled effect

\* Funnel plots have been produced only for outcomes with  $\geq 10$  studies. For multi-arm studies we plot data points from each study-specific basic parameter (treatment comparisons with a study-specific common comparator)

**BMJ Open** 

# Appendix H. Statistically significant network meta-analysis results along with meta-analysis results, transitivity, and inconsistency assessments

| Treatment<br>Comparison       | Number of<br>Studies<br>(Mean<br>Baseline Risk) | Number of<br>patients<br>(Mean Age) | Treatment<br>Indication | Timing                    | Comparability<br>of cohorts         | Adequacy<br>of follow<br>up of<br>cohorts | MA<br>Odds Ratio<br>(95% CrI)      | NMA<br>Odds Ratio<br>(95% CrI)<br>(95% PrI) |
|-------------------------------|-------------------------------------------------|-------------------------------------|-------------------------|---------------------------|-------------------------------------|-------------------------------------------|------------------------------------|---------------------------------------------|
|                               | Cogn                                            | itive Develop                       | omental Dela            | y (10 studi               | ies, 748 patients                   | , 14 treatme                              | ents)                              |                                             |
| Lamot vs Valpro               | 4 (NA)                                          | 140<br>(31.00)                      | Epilepsy                | NR                        | Н                                   | Н                                         | 0.17<br>(0.02-0.87)                | 0.13<br>(0.01-0.57)<br>(0.01-0.75)          |
| Valpro vs Control             | 4 (0.06)                                        | 267<br>(28.80)                      | Epilepsy                | 1st<br>trimester          | Н                                   | Н                                         | 8.15<br>(3.19-22.33)               | 7.40<br>(3.00-18.46)<br>(1.81-27.63)        |
| Valpro vs Carbam              | 6 (NA)                                          | 310<br>(27.80)                      | Epilepsy                | NR                        | Н                                   | L                                         | 3.32<br>(1.56-7.04)                | 3.54<br>(1.69-7.26)<br>(0.95-12.32)         |
| Valpro vs Pheno               | 3 (NA)                                          | 36<br>(27.80)                       | Epilepsy                | 1st<br>trimester          | Н                                   | L                                         | 4.25<br>(0.82-34.07)               | 5.59<br>(1.21-35.07)<br>(0.93-45.99)        |
| Valpro vs Pheny               | 3 (NA)                                          | 58<br>(31.00)                       | Epilepsy                | 1st<br>trimester          | Н                                   | L                                         | 3.12<br>(0.75-14.12)               | 2.88<br>(1.04-8.49)<br>(0.69-12.62)         |
| Common between-s              | tudy variance a                                 | cross treatme                       | ent compariso           | ons                       |                                     |                                           | 0.13                               | 0.12                                        |
| Residual deviance:            | 44.72 Data                                      | points: 47                          | DIC: 78.7               |                           |                                     |                                           | (0.00-0.97)                        | (0.00-1.15)<br>(NA)                         |
| Evaluation of consi.<br>model | stency using the                                | e design-by-tr                      | eatment inter           | action                    | Chi-square test:<br>Degrees of Free | 14.15<br>dom: 17                          | P- value: 0.66<br>Heterogeneity: 0 |                                             |
|                               | For                                             | peer review o                       | nly - http://bm         | 26<br>J <b>jopen.bmj.</b> | com/site/about/g                    | uidelines.xh                              | tml                                |                                             |

| 2  |
|----|
| 3  |
| 3  |
| 4  |
| 5  |
| 6  |
| 7  |
| 1  |
| 8  |
| 9  |
| 10 |
| 10 |
| 11 |
| 12 |
| 13 |
| 10 |
| 14 |
| 15 |
| 16 |
| 17 |
| 40 |
| 18 |
| 19 |
| 20 |
| 24 |
| 21 |
| 22 |
| 23 |
| 24 |
| 24 |
| 25 |
| 26 |
| 27 |
| 20 |
| 20 |
| 29 |
| 30 |
| 31 |
| 22 |
| 32 |
| 33 |
| 34 |
| 25 |
| 55 |
| 36 |
| 37 |
| 38 |
| 00 |
| 39 |
| 40 |
| 41 |
| 12 |
| 42 |
| 43 |
| 44 |
| 45 |
| 16 |
| 40 |
| 47 |
| 48 |
| 10 |

| Treatment<br>Comparison                    | Number of<br>Studies<br>(Mean<br>Baseline Risk) | Number of<br>patients<br>(Mean Age) | Treatment<br>Indication | Timing                   | Comparability<br>of cohorts | Adequacy<br>of follow<br>up of<br>cohorts | MA<br>Odds Ratio<br>(95% CrI)    | NMA<br>Odds Ratio<br>(95% CrI)<br>(95% PrI)                              |
|--------------------------------------------|-------------------------------------------------|-------------------------------------|-------------------------|--------------------------|-----------------------------|-------------------------------------------|----------------------------------|--------------------------------------------------------------------------|
|                                            |                                                 | Autism Dys                          | praxia (5 st            | udies, 2551              | l patients, 12 tr           | eatments)                                 |                                  |                                                                          |
| Lamot vs Control                           | 2 (0.00)                                        | 254 (27.75)                         | Epilepsy                | 1st<br>trimester         | Н                           | Н                                         | 13.77<br>(2.06-188.00)           | 8.88<br>(1.29-112.00)<br>(0.94-146.80)                                   |
| Lamot+Valpro vs<br>Carbam                  | 1 (NA)                                          | 40 (NR)                             | Epilepsy                | NR                       | L                           | L                                         | 15.02<br>(2.04-171.90)           | 22.89<br>(2.58-219.00)<br>(1.90-282.20)                                  |
| Lamot+Valpro vs<br>Clonaz                  | NA                                              | NR                                  | NR                      | NR                       | NR                          | NR                                        | NA                               | 20.21<br>(1.48-351.30)<br>(1.15-455.00)                                  |
| Lamot+Valpro vs<br>Control                 | NA                                              | NR                                  | NR                      | NR                       | NR                          | NR                                        | NA                               | 132.70<br>(7.41-3.9 x 10 <sup>3</sup> )<br>(5.82-4.6 x 10 <sup>3</sup> ) |
| Lamot+Valpro vs<br>Lamot                   | NA                                              | NR                                  | NR                      | NR                       | NR                          | NR                                        | NA                               | 14.61<br>(1.51-149.10)<br>(1.14-196.80)                                  |
| Oxcar vs Control                           | NA                                              | NR                                  | NR                      | NR                       | NR                          | NR                                        | NA                               | 13.51<br>(1.28-221.40)<br>(0.86-267.40)                                  |
| Valpro vs Carbam                           | 5 (NA)                                          | 1003<br>(27.83)                     | Epilepsy                | 1st<br>trimester         | L L                         | O <sub>L</sub>                            | 3.20<br>(1.20-8.68)              | 3.02<br>(1.09-8.40)<br>(0.57-14.31)                                      |
| Valpro vs Control                          | 2 (0.00)                                        | 249 (27.75)                         | Epilepsy                | 1st<br>trimester         | Н                           | Н                                         | 9.19<br>(1.14-132.10)            | 17.29<br>(2.40-217.60)<br>(1.61-274.90)                                  |
| Common between-st                          | tudy variance o                                 | across treatme                      | nt comparise            | ons                      |                             |                                           | 0.12                             | 0.16<br>(0.00-1.95)                                                      |
| Residual deviance:                         | 24 Data poin                                    | ts: 24 DIC:                         | 44                      |                          |                             |                                           |                                  | (NA)                                                                     |
| Evaluation of consist<br>interaction model | stency using th                                 | e design-by-tre                     | eatment                 | Chi-square<br>Degrees of | test: 3.79<br>Freedom: 5    |                                           | P- value: 0.57<br>Heterogeneity: | 0                                                                        |

| Page | 81 | of | 90 |
|------|----|----|----|
|------|----|----|----|

| No<br>Treatment S<br>Comparison<br>Bas     | umber of<br>Studies<br>(Mean<br>seline Risk | Number of<br>patients<br>(Mean Age) | Treatment<br>Indication | Timing                   | Comparability<br>of cohorts  | Adequacy<br>of follow<br>up of<br>cohorts | MA<br>Odds Ratio<br>(95% CrI)      | NMA<br>Odds Ratio<br>(95% CrI)<br>(95% PrI) |
|--------------------------------------------|---------------------------------------------|-------------------------------------|-------------------------|--------------------------|------------------------------|-------------------------------------------|------------------------------------|---------------------------------------------|
|                                            | Psych                                       | omotor Develo                       | opmental De             | lay (11 stu              | dies, 1145 patier            | nts, 18 treatr                            | nents)                             |                                             |
| Carbam+Pheno+Valpro<br>vs Control          | NA                                          | NR                                  | NR                      | NR                       | NR                           | NR                                        | NA                                 | 19.12<br>(1.49-337.50)<br>(1.34-370.40)     |
| Carbam+Pheno+Valpro<br>vs Pheno            | NA                                          | NR                                  | NR                      | NR                       | NR                           | NR                                        | NA                                 | 19.86<br>(1.38-393.60)<br>(1.26-423.30)     |
| Levet vs<br>Carbam+Pheno+Valpro            | NA                                          | NR                                  | NR                      | NR                       | NR                           | NR                                        | NA                                 | 0.01<br>(0.00-0.58)<br>(0.00-0.62)          |
| Valpro vs Carbam                           | 7<br>(NA)                                   | 331 (27.80)                         | Epilepsy                | 1st<br>trimester         | Н                            | Н                                         | 2.72<br>(1.39-5.67)                | 2.45<br>(1.27-4.88)<br>(0.95-6.77)          |
| Valpro vs Control                          | 5<br>(0.07)                                 | 331 (28.38)                         | Epilepsy                | 1st<br>trimester         | Н                            | Н                                         | 3.53<br>(1.60-8.64)                | 4.16<br>(2.04-8.75)<br>(1.52-12.05)         |
| Valpro vs Pheno                            | 2<br>(NA)                                   | 141 (NR)                            | Epilepsy                | 1st<br>trimester         | Н                            | Н                                         | 3.68<br>(1.17-12.30)               | 4.32<br>(1.72-11.20)<br>(1.34-14.51)        |
| Common between-study                       | variance                                    | e across treatm                     | ent comparis            | ons                      |                              |                                           | 0.05                               | 0.06                                        |
| Residual deviance: 45                      | Data poi                                    | ints: 51 DIC                        | : 78                    |                          |                              |                                           | 0.05<br>(0.00-0.49)                | (0.00-0.63)<br>(NA)                         |
| Evaluation of consistend interaction model | cy using t                                  | the design-by-tr                    | reatment                | Chi-square<br>Degrees of | e test: 13.46<br>Freedom: 21 |                                           | P- value: 0.89<br>Heterogeneity: 0 |                                             |
|                                            | Fo                                          | or peer review o                    | only - http://br        | 28<br>njopen.bmj         | .com/site/about/g            | uidelines.xht                             | ml                                 |                                             |

| 2  |
|----|
| 3  |
| 4  |
| 4  |
| 5  |
| 6  |
| 7  |
| 1  |
| 8  |
| 9  |
| 10 |
| 10 |
| 11 |
| 12 |
| 12 |
| 13 |
| 14 |
| 15 |
| 16 |
| 10 |
| 17 |
| 18 |
| 19 |
| 10 |
| 20 |
| 21 |
| 22 |
| ~~ |
| 23 |
| 24 |
| 25 |
| 20 |
| 26 |
| 27 |
| 28 |
| 20 |
| 29 |
| 30 |
| 31 |
| 00 |
| 32 |
| 33 |
| 34 |
| 25 |
| 30 |
| 36 |
| 37 |
| 20 |
| 38 |
| 39 |
| 40 |
| 11 |
| 41 |
| 42 |
| 43 |
| 11 |
| 44 |
| 45 |
| 46 |
| 47 |
| 41 |
| 48 |
| 10 |

| Treatment<br>Comparison                                                                                         | Number of<br>Studies<br>(Mean<br>Baseline Risk)                                   | Number of<br>patients<br>(Mean Age)                                         | Treatment<br>Indication                                                     | Timing                                                        | Comparability<br>of cohorts                                                              | Adequacy<br>of follow<br>up of<br>cohorts                                  | MA<br>Odds Ratio<br>(95% CrI)                                                           | NMA<br>Odds Ratio<br>(95% CrI)<br>(95% PrI)     |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------|
|                                                                                                                 |                                                                                   | Languag                                                                     | e Delay (5 stu                                                              | udies, 509                                                    | patients, 5 treat                                                                        | tments)                                                                    |                                                                                         |                                                 |
| Valpro vs Control                                                                                               | 1<br>(0.03)                                                                       | 173<br>(28.90) E <sub>F</sub>                                               | pilepsy                                                                     | NR                                                            | L                                                                                        | Н                                                                          | 6.96<br>(1.14-37.03)                                                                    | 7.95<br>(1.50-49.13)<br>(0.96-74.52)            |
| Common between-s                                                                                                | tudy variance d                                                                   | across treatme                                                              | ent compariso                                                               | ons                                                           |                                                                                          |                                                                            | 0.15                                                                                    | 0.16                                            |
| Residual deviance:                                                                                              | 12 Data poin                                                                      | ts: 14 DIC:                                                                 | : 23                                                                        |                                                               |                                                                                          |                                                                            | (0.00-1.85)                                                                             | (0.00-2.15)<br>(NA)                             |
| Evaluation of consi<br>interaction model                                                                        | stency using th                                                                   | e design-by-tr                                                              | reatment                                                                    | Chi-square<br>Degrees of                                      | e test: 2.33<br>f Freedom: 3                                                             |                                                                            | P- value: 0.50<br>Heterogeneity: 0                                                      | )                                               |
|                                                                                                                 |                                                                                   | ADI                                                                         | HD (4 studies                                                               | s, 750 pati                                                   | ents, 6 treatmen                                                                         | ts)                                                                        |                                                                                         |                                                 |
|                                                                                                                 |                                                                                   |                                                                             | No statistic                                                                | cally signij                                                  | ficant results                                                                           |                                                                            |                                                                                         |                                                 |
| Residual deviance:                                                                                              | 12 Data poin                                                                      | ts: 17 DIC:                                                                 | : 22                                                                        |                                                               | 181                                                                                      |                                                                            |                                                                                         |                                                 |
| Abbreviations: ADHD<br>risk of bias; MA - Meta<br>Carbam = Carbamazepi<br>Levetiracetam; Oxcar =<br>Viagabatrin | ) - Attention Defic<br>-analysis; NA - N<br>ne; Clobaz = Clol<br>Oxcarbazepine; I | it Hyperactivity<br>ot applicable; Nl<br>oazam; Clonaz =<br>Pheno = Phenoba | Disorder; CrI - (<br>MA - Network M<br>Clonazepam; En<br>arbital; Pheny = 1 | Credible Inte<br>Meta-analysi<br>thos = Ethos<br>Phenytoin; F | erval; DIC - Devianc<br>s; NR- Not Reported<br>uximide; Gabap = G<br>Pridmid = Primidone | e Information (<br>l; PrI - Predictiv<br>abapentin; Lan<br>; Topir = Topir | Criterion; H- high risk<br>ve Interval<br>not = Lamotrigine; Le<br>amate; Valpro = Valp | t of bias; L - low<br>evet =<br>proate; Vigab = |
|                                                                                                                 |                                                                                   |                                                                             |                                                                             |                                                               |                                                                                          |                                                                            |                                                                                         |                                                 |
|                                                                                                                 |                                                                                   |                                                                             |                                                                             |                                                               |                                                                                          |                                                                            |                                                                                         |                                                 |
|                                                                                                                 |                                                                                   |                                                                             |                                                                             |                                                               |                                                                                          |                                                                            |                                                                                         |                                                 |
|                                                                                                                 |                                                                                   |                                                                             |                                                                             |                                                               |                                                                                          |                                                                            |                                                                                         |                                                 |
|                                                                                                                 |                                                                                   |                                                                             |                                                                             |                                                               |                                                                                          |                                                                            |                                                                                         |                                                 |
|                                                                                                                 |                                                                                   |                                                                             |                                                                             |                                                               |                                                                                          |                                                                            |                                                                                         |                                                 |
|                                                                                                                 | For                                                                               | neer review o                                                               | nlv - http://bm                                                             | 29<br>Niopen hmi                                              | com/site/about/o                                                                         | uidelines vh                                                               | tml                                                                                     |                                                 |



## Appendix I. Rank-heat plot of cognitive developmental delay, autism/dyspraxia, psychomotor developmental delay, language

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Abbreviations: carbam - carbamazepine, clobaz - clobazam, clonaz - clonazepam, ethos - ethosuximide, gabap - gabapentin, lamot - lamotrigine, levet - levetiracetam, oxcar - oxcarbazepine, pheno - phenobarbital, pheny - phenytoin, primid - primidone, topir - topiramate, valpro - valproate, vigab - vigabatrin

\*Rank-heat plot of cognitive developmental delay, autism/dyspraxia, psychomotor developmental delay, language delay, and attention deficit hyperactivity disorder outcomes (5 circles) and 25 treatments (25 radii). Each sector is coloured according to the surface under the cumulative ranking curve value of the corresponding treatment and outcome using the transformation of three colours red (0%), yellow (50%), and green (100%).

BMJ Open

| Total studies        | Range<br>of study<br>arms | # of<br>treatments | # of<br>patients | # of direct<br>treatment<br>comparisons | # of NMA<br>treatment<br>comparisons | Statistically<br>significant<br>NMA<br>treatment<br>effects | # of<br>studies<br>with zero<br>events in<br>all arms | # of studies<br>with<br>ineligible<br>outcome<br>definition* |
|----------------------|---------------------------|--------------------|------------------|-----------------------------------------|--------------------------------------|-------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------|
| <b>Cognitive Dev</b> | elopmental                | Delay              |                  |                                         |                                      |                                                             |                                                       |                                                              |
| 11                   | (2,8)                     | 18                 | 933              | 62                                      | 153                                  | 5                                                           | 1                                                     | 5                                                            |
| Autism/Dyspr         | axia                      |                    |                  |                                         |                                      |                                                             |                                                       |                                                              |
| 5                    | (4,6)                     | 12                 | 2551             | 34                                      | 66                                   | 8                                                           | 0                                                     | 4                                                            |
| Neonatal Seizi       | ure                       |                    |                  |                                         |                                      |                                                             |                                                       |                                                              |
| 1                    | (2,2)                     | 2                  | 69               | 1                                       | 0                                    | 0                                                           | 1                                                     | 1                                                            |
| Psychomotor ]        | Developme                 | ntal Delay         |                  |                                         |                                      |                                                             |                                                       |                                                              |
| 11                   | (2,8)                     | 18                 | 1145             | 74                                      | 153                                  | 6                                                           | 0                                                     | 5                                                            |
| Language Dela        | ay                        |                    |                  |                                         |                                      |                                                             |                                                       |                                                              |
| 5                    | (2,4)                     | 5                  | 509              | 7                                       | 10                                   | 1                                                           | 0                                                     | 3                                                            |
| ADHD                 |                           |                    |                  |                                         |                                      |                                                             |                                                       |                                                              |
| 5                    | (4,6)                     | 7                  | 816              | 20                                      | 21                                   | 0                                                           | 0                                                     | 0                                                            |
| Social Impair        | ment                      |                    |                  |                                         |                                      |                                                             |                                                       |                                                              |
| 1                    | (4,4)                     | 4                  | 422              | 1                                       | 0                                    | 0                                                           | 0                                                     | 0                                                            |

| Treatment Comparison                                     | NMA Odds Ratio          | 95% CrI                                          | 95% PrI                              |
|----------------------------------------------------------|-------------------------|--------------------------------------------------|--------------------------------------|
| Cognitive Developmental Delay – Sensitivity              | Analysis - Epilepsy or  | nly (10 studies, 910 patien                      | ts, 17 treatments)                   |
| Carbamazepine vs Control                                 | 2.08                    | (0.79 - 5.82)                                    | (0.47 - 9.34)                        |
| Carbamazepine+Phenobarbital vs Control                   | 0.62                    | (0.00 - 15.31)                                   | (0.00 - 19.29)                       |
| Carbamazepine+Phenobarbital+Phenytoin vs Control         | 4.75                    | (0.01 - 164.80)                                  | (0.01 - 192.50)                      |
| Carbamazepine+Phenobarbital+Valproate vs Control         | 15.00                   | (1.00 - 367.10)                                  | (0.82 - 426.90)                      |
| Carbamazepine+Phenytoin vs Control                       | 9.84                    | (0.60 - 136.30)                                  | (0.49 - 164.50)                      |
| Ethosuximide+Phenytoin vs Control                        | 6.53                    | (0.02 - 216.00)                                  | (0.02 - 251.30)                      |
| Gabapentin vs Control                                    | 1.43                    | (0.05 - 14.28)                                   | (0.04 - 18.20)                       |
| Lamotrigine vs Control                                   | 0.79                    | (0.05 - 5.12)                                    | (0.05 - 6.66)                        |
| Levetiracetam vs Control                                 | 3.46                    | (0.65 - 17.14)                                   | (0.47 - 23.57)                       |
| Phenobarbital vs Control                                 | 0.55                    | (0.01 - 5.38)                                    | (0.01 - 6.85)                        |
| Phenobarbital+Phenytoin vs Control                       | 1.28                    | (0.00 - 36.18)                                   | (0.00 - 44.03)                       |
| Phenytoin vs Control                                     | 2.47                    | (0.65 - 8.25)                                    | (0.41 - 12.47)                       |
| Phenytoin+Valproate vs Control                           | 3.68                    | (0.01 - 121.00)                                  | (0.01 - 135.00)                      |
| Primidone vs Control                                     | 1.97                    | (0.25 - 12.16)                                   | (0.19 - 16.25)                       |
| Topiramate vs Control                                    | 3.06                    | (0.42 - 17.51)                                   | (0.32 - 23.57)                       |
| Valproate vs Control                                     | 7.48                    | (2.99 - 19.04)                                   | (1.67 - 31.21)                       |
| Common within-network between-study variance             | 0.16                    | (0.00 - 1.36)                                    |                                      |
| Evaluation of inconsistency using the design-by-treatmen | t interaction model     | Chi-square test: 12.98<br>Degrees of Freedom: 14 | P-value: 0.53<br>Heterogeneity: 0.00 |
| Cognitive Developmental Delay - Sensitivity Analys       | is - First generation A | AEDs only (6 studies, 480                        | patients, 13 treatments)             |
| Carbamazepine vs Control                                 | 1.68                    | (0.37 - 7.82)                                    | (0.19 - 14.98)                       |
| Carbamazepine+Phenytoin vs Control                       | 8.98                    | (0.36 - 169.90)                                  | (0.26 - 243.60)                      |
| Carbamazepine+Phenobarbital vs Control                   | 0.46                    | (0.00 - 21.02)                                   | (0.00 - 28.01)                       |
| Carbamazepine+Phenobarbital+Phenytoin vs Control         | 4.12                    | (0.01 - 180.10)                                  | (0.00 - 236.30)                      |
| Carbamazepine+Phenobarbital+Valproate vs Control         | 12.84                   | (0.50 - 435.70)                                  | (0.35 - 604.30)                      |
| Ethosuximide+Phenytoin vs Control                        | 5.65                    | (0.01 - 219.00)                                  | (0.01 - 291.50)                      |

### Appendix K. Sensitivity and network meta-regression analyses - Anti-epileptic drugs compared with Control

 BMJ Open

| Treatment Comparison                                        | NMA Odds Ratio                 | 95% CrI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 95% PrI                              |
|-------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Phenobarbital vs Control                                    | 0.64                           | (0.00 - 26.02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.00 - 35.36)                       |
| Phenobarbital+Phenytoin vs Control                          | 1.06                           | (0.00 - 37.64)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.00 - 50.85)                       |
| Phenytoin vs Control                                        | 2.08                           | (0.26 - 12.50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.13 - 22.02)                       |
| Phenytoin+Valproate vs Control                              | 3.14                           | (0.00 - 135.80)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.00 - 178.90)                      |
| Primidone vs Control                                        | 3.30                           | (0.18 - 43.76)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.12 - 68.72)                       |
| Valproate vs Control                                        | 13.22                          | (3.20 - 64.06)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (1.50 - 128.40)                      |
| Common within-network between-study variance                | 0.27                           | (0.00 - 2.97)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |
| Evaluation of inconsistency using the design-by-treatment   | nt interaction model           | Chi-square test: 3.31<br>Degrees of Freedom: 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P-value: 0.35<br>Heterogeneity: 0.00 |
| <b>Cognitive Developmental Delay - Sensitivity Analysis</b> | - Maternal Alcohol or          | r Tobacco use (3 studies,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 504 patients, 7 treatmen             |
| Carbamazepine vs Control                                    | 1.97                           | (0.40 - 10.01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.19 - 21.27)                       |
| Gabapentin vs Control                                       | 1.47                           | (0.04 - 19.01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.02 - 27.11)                       |
| Lamotrigine vs Control                                      | 0.41                           | (0.00 - 10.09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.00 - 13.61)                       |
| Levetiracetam vs Control                                    | 3.55                           | (0.43 - 24.13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.23 - 42.39)                       |
| Topiramate vs Control                                       | 3.17                           | (0.30 - 24.07)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.18 - 44.87)                       |
| Valproate vs Control                                        | 7.79                           | (1.84 - 29.60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.84 - 62.77)                       |
| Common within-network between-study variance                | 0.27                           | (0.00 - 3.29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |
| Evaluation of inconsistency using the design-by-treatment   | nt interaction model           | Chi-square test: 2.69<br>Degrees of Freedom: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P-value: 0.26<br>Heterogeneity: NA   |
| <b>Cognitive Developmental Delay - Sensit</b>               | tivity Analysis - Low <b>F</b> | Risk of Bias: "Adequacy of the second s | of follow-up''                       |
| (4 studies                                                  | s, 283 patients, 12 trea       | tments)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                    |
| Carbamazepine vs Control                                    | 2.68                           | $(0.05 - 2.9 \times 10^3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $(0.03 - 4.3 \times 10^{3})$         |
| Carbamazepine+Phenobarbital vs Control                      | 0.67                           | $(0.00 - 2.2 \times 10^3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $(0.00 - 2.9 \times 10^3)$           |
| Carbamazepine+Phenobarbital+Phenytoin vs Control            | 5.23                           | $(0.01 - 7.2 \times 10^3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $(0.00 - 1.1 \times 10^4)$           |
| Carbamazepine+Phenobarbital+Valproate vs Control            | 22.18                          | $(0.10 - 4.8 \times 10^4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $(0.06 - 7.7 \times 10^4)$           |
| Carbamazepine+Phenytoin vs Control                          | 11.45                          | $(0.13 - 1.2 \times 10^4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $(0.07 - 1.8 \times 10^4)$           |
| Ethosuximide+Phenytoin vs Control                           | 6.45                           | $(0.01 - 8.3 \times 10^3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $(0.00 - 1.4 \text{ x} 10^4)$        |
| Lamotrigine vs Control                                      | 0.52                           | $(0.00 - 1.2 \times 10^3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $(0.00 - 1.9 \times 10^3)$           |
| Phenobarbital+Phenytoin vs Control                          | 1.33                           | $(0.00 - 1.8 \times 10^3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $(0.00 - 2.7 \times 10^3)$           |
| Phenytoin vs Control                                        | 1.67                           | $(0.03 - 1.8 \times 10^3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $(0.01 - 2.5 \times 10^3)$           |
| -                                                           |                                | . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                    |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| 1<br>2   |                     |
|----------|---------------------|
| 3        | т                   |
| 4        | <br>Phenytoin⊥Valnr |
| 5<br>6   | Velproste ve Con    |
| 7        | Common within a     |
| 8        | Common within-      |
| 9<br>10  | Evaluation of inc   |
| 11       | Cog                 |
| 12       |                     |
| 13       | Carbamazepine v     |
| 14       | Gabapentin vs Co    |
| 16       | Lamotrigine vs C    |
| 17       | Levetiracetam vs    |
| 18<br>10 | Topiramate vs Co    |
| 20       | Valproate vs Con    |
| 21       | Common within-r     |
| 22       |                     |
| 23<br>24 | Evaluation of inco  |
| 25       |                     |
| 26       |                     |
| 27       | Carbamazepine       |
| 20<br>29 | Carbamazepine+      |
| 30       | Carbamazepine+      |
| 31       | Carbamazepine+      |
| 32<br>33 | Carbamazepine+      |
| 34       | Carbamazepine+      |
| 35       | Ethosuximide+P      |
| 36<br>27 | Gabapentin vs C     |
| 37<br>38 | Lamotrigine vs (    |
| 39       | Levetiracetam v     |
| 40       | Phenobarbital vs    |
| 41<br>42 | Phenobarbital (B    |
| 42       |                     |
| 44       |                     |
| 45       |                     |
| 46<br>47 |                     |
| 48       |                     |
|          |                     |

| Treatment Comparison                                             | NMA Odds Ratio                 | 95% CrI                    | 95% PrI                    |  |  |
|------------------------------------------------------------------|--------------------------------|----------------------------|----------------------------|--|--|
| enytoin+Valproate vs Control                                     | 3.94                           | $(0.00 - 6.7 \times 10^3)$ | $(0.00 - 8.8 \times 10^3)$ |  |  |
| lproate vs Control                                               | 5.9                            | $(0.06 - 9.7 \times 10^3)$ | $(0.03 - 1.5 \times 10^4)$ |  |  |
| mmon within-network between-study variance                       | 1.01                           | (0.01 - 5.85)              |                            |  |  |
| aluation of inconsistency using the design-by-treatmen           | t interaction model            | Chi-square test: 5.07      | P-value: 0.08              |  |  |
|                                                                  |                                | Degrees of Freedom: 2      | Heterogeneity: 0.00        |  |  |
| Cognitive Developmental Delay - Sensitiv                         | ity Analysis - Low Ri          | sk of Bias: "Comparabili   | ty of cohorts''            |  |  |
| (3 studies, 366 patients, 7 treatments)                          |                                |                            |                            |  |  |
| rbamazepine vs Control                                           | 1.46                           | (0.11 - 19.59)             | (0.06 - 38.10)             |  |  |
| bapentin vs Control                                              | 1.19                           | (0.03 - 22.80)             | (0.02 - 39.35)             |  |  |
| motrigine vs Control                                             | 0.27                           | (0.00 - 11.80)             | (0.00 - 19.37)             |  |  |
| vetiracetam vs Control                                           | 2.90                           | (0.30 - 32.81)             | (0.15 - 62.97)             |  |  |
| piramate vs Control                                              | 2.55                           | (0.22 - 29.21)             | (0.11 - 64.23)             |  |  |
| lproate vs Control                                               | 5.79                           | (1.05 - 47.35)             | (0.47 - 102.90)            |  |  |
| mmon within-network between-study variance                       | 0.38                           | (0.00 - 4.14)              |                            |  |  |
| aluation of inconsistency using the design-by-treatmen           | t interaction model            | Chi-square test: 1.47      | P-value: 0.48              |  |  |
|                                                                  |                                | Degrees of Freedom: 2      | Heterogeneity: NA          |  |  |
| Cognitive Developmental Delay – Network Meta-regression Analysis |                                |                            |                            |  |  |
| (11 studies                                                      | <u>, 933 patients, 18 trea</u> | itments)                   | (0.400.77)                 |  |  |
| arbamazepine vs Control                                          | 1.99                           | (0.64 - 6.18)              | (0.40 - 9.77)              |  |  |
| arbamazepine+Levetiracetam vs Control                            | 0.54                           | (0.00 - 16.36)             | (0.00 - 19.87)             |  |  |
| arbamazepine+Phenobarbital vs Control                            | 0.50                           | (0.00 - 16.10)             | (0.00 - 19.36)             |  |  |
| arbamazepine+Phenobarbital+Phenytoin vs Control                  | 4.36                           | (0.01 - 171.20)            | (0.01 - 194.60)            |  |  |
| arbamazepine+Phenobarbital+Valproate vs Control                  | 14.58                          | (0.90 - 413.20)            | (0.74 - 488.90)            |  |  |
| arbamazepine+Phenytoin vs Control                                | 9.44                           | (0.50 - 130.50)            | (0.39 - 162.40)            |  |  |
| thosuximide+Phenytoin vs Control                                 | 5.77                           | (0.01 - 234.70)            | (0.01 - 268.10)            |  |  |
| abapentin vs Control                                             | 1.37                           | (0.04 - 15.51)             | (0.03 - 19.10)             |  |  |
| amotrigine vs Control                                            | 0.87                           | (0.07 - 5.14)              | (0.06 - 6.76)              |  |  |
| evetiracetam vs Control                                          | 3.43                           | (0.57 - 18.78)             | (0.42 - 24.85)             |  |  |
| henobarbital vs Control                                          | 1.16                           | (0.13 - 8.59)              | (0.10 - 11.43)             |  |  |
| henobarbital+Phenytoin vs Control                                | 1.34                           | (0.00 - 39.21)             | (0.00 - 49.39)             |  |  |
|                                                                  |                                |                            |                            |  |  |

 **BMJ Open** 

| Treatment Comparison                                      | NMA Odds Ratio             | 95% CrI                                          | 95% PrI                              |
|-----------------------------------------------------------|----------------------------|--------------------------------------------------|--------------------------------------|
| Phenytoin vs Control                                      | 2.43                       | (0.55 - 9.14)                                    | (0.36 - 13.45)                       |
| Phenytoin+Valproate vs Control                            | 3.58                       | (0.01 - 134.20)                                  | (0.01 - 161.70                       |
| Primidone vs Control                                      | 2.03                       | (0.21 - 16.49)                                   | (0.16 - 21.39)                       |
| Topiramate vs Control                                     | 2.93                       | (0.41 - 16.34)                                   | (0.31 - 22.91)                       |
| Valproate vs Control                                      | 7.03                       | (2.26 - 20.02)                                   | (1.41 - 30.92)                       |
| Common within-network between-study variance              | 0.16                       | (0.00 - 1.27)                                    |                                      |
| Regression Coefficient                                    | 1.01                       | (0.76 - 1.56)                                    |                                      |
| Evaluation of inconsistency using the design-by-treatment | nent interaction model     | Chi-square test: 14.15<br>Degrees of Freedom: 17 | P-value: 0.66<br>Heterogeneity: 0.   |
| Autism/Dyspraxia - Sensitivity Analysis - La              | rge cohort (>300 patien    | ts) - (1 study, 2,551 patien                     | ts, 5 treatments)**                  |
| Clonazepam vs Carbamazepine                               | 1.08                       | (0.24 - 4.85)                                    | -                                    |
| Lamotrigine vs Carbamazepine                              | 1.20                       | (0.36 - 4.00)                                    | -                                    |
| Oxcarbazepine vs Carbamazepine                            | 2.13                       | (0.62 - 7.35)                                    | -                                    |
| Valproate vs Carbamazepine                                | 3.05                       | (0.97 - 9.52)                                    | -                                    |
| Common within-network between-study variance              | NA                         | NA                                               |                                      |
| Evaluation of inconsistency using the design-by-treatm    | ent interaction model      | NA                                               | NA                                   |
| Autism/Dyspraxia - Sensitivity Ana                        | lysis - Epilepsy only (4 s | tudies, 540 patients, 10 tr                      | eatments)                            |
| Carbamazepine vs Control                                  | 5.20                       | (0.54 - 90.53)                                   | (0.33 - 133.0                        |
| Carbamazepine+Clonazepam vs Control                       | 7.90                       | (0.01 - 653.30)                                  | (0.01 - 881.0                        |
| Carbamazepine+Lamotrigine vs Control                      | 4.25                       | (0.01 - 333.60)                                  | (0.01 - 446.9                        |
| Carbamazepine+Phenytoin vs Control                        | 9.03                       | (0.01 - 666.30)                                  | (0.01 - 893.0                        |
| Lamotrigine vs Control                                    | 10.24                      | (1.25 - 171.40)                                  | (0.67 - 248.5                        |
| Lamotrigine+Valproate vs Control                          | 120.20                     | $(5.25 - 4.5 \times 10^3)$                       | (3.51 - 6.0 x 1                      |
| Levetiracetam vs Control                                  | 3.52                       | (0.00 - 272.20)                                  | (0.00 - 364.3                        |
| Phenytoin vs Control                                      | 8.10                       | (0.01 - 577.50)                                  | (0.01 - 754.6                        |
| Valproate vs Control                                      | 14.41                      | (1.66 - 252.10)                                  | (0.88 - 378.0                        |
| Common within-network between-study variance              | 0.31                       | (0.00 - 3.04)                                    |                                      |
| Evaluation of inconsistency using the design-by-treatm    | ent interaction model      | Chi-square test: 2.9<br>Degrees of Freedom: 3    | P-value: 0.41<br>Heterogeneity: 0.00 |

| 2<br>3   |  |
|----------|--|
| 4<br>5   |  |
| 6        |  |
| 7<br>8   |  |
| 9<br>10  |  |
| 11<br>12 |  |
| 13       |  |
| 14<br>15 |  |
| 16<br>17 |  |
| 18       |  |
| 20       |  |
| 21<br>22 |  |
| 23<br>24 |  |
| 25<br>26 |  |
| 27       |  |
| 28<br>29 |  |
| 30<br>31 |  |
| 32<br>33 |  |
| 34       |  |
| 36       |  |
| 37<br>38 |  |
| 39<br>40 |  |
| 41       |  |
| 43       |  |
| 44<br>45 |  |
| 46<br>47 |  |
| 48       |  |
|          |  |

| Treatment Comparison                                                                                                            | NMA Odds Ratio       | 95% CrI                                        | 95% PrI                              |  |
|---------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------|--------------------------------------|--|
| Autism/Dyspraxia - Sensitivity Analysis - Maternal Tobacco Use (4 studies, 540 patients, 10 treatments)                         |                      |                                                |                                      |  |
| Carbamazepine vs Control                                                                                                        | 2.51                 | (0.05 - 154.30)                                | (0.04 - 254.50)                      |  |
| Lamotrigine vs Control                                                                                                          | 24.84                | $(2.14 - 1.2 \times 10^3)$                     | $(1.23 - 2.2 \times 10^3)$           |  |
| Valproate vs Control                                                                                                            | 33.40                | $(2.60 - 1.7 \times 10^3)$                     | $(1.45 - 2.9 \times 10^3)$           |  |
| Common within-network between-study variance                                                                                    | 0.39                 | (0.00 - 4.47)                                  |                                      |  |
| Evaluation of inconsistency using the design-by-treatment                                                                       | t interaction model  | NA - all closed loops are for                  | ormed from a multi-arm study         |  |
| Autism/Dyspraxia - Sensitivity Analysis                                                                                         | - Maternal Alcohol U | se (1 study, 156 patients, 4                   | 4 treatments)                        |  |
| Carbamazepine vs Control                                                                                                        | Excluded due to      | -                                              | -                                    |  |
|                                                                                                                                 | zero events          | (0.21 100.00)                                  |                                      |  |
| Lamotrigine vs Control                                                                                                          | 4.65                 | (0.21 - 100.00)                                | -                                    |  |
| Valproate vs Control                                                                                                            | 1.15                 | (0.42 - 142.86)                                | -                                    |  |
| <i>Common within-network between-study variance</i>                                                                             | 1.91                 | (0.36 - 10.13)                                 |                                      |  |
| Evaluation of inconsistency using the design-by-treatment interaction model NA NA                                               |                      |                                                |                                      |  |
| Autism/Dyspraxia - Sensitivity Analysis - Low Risk of Bias: "Adequacy of Follow-up"<br>(3 studies 2 244 patients 10 treatments) |                      |                                                |                                      |  |
| Carbamazepine vs Control                                                                                                        | 3.97                 | $(0.17 - 2.4 \times 10^3)$                     | $(0.11 - 3.0 \times 10^3)$           |  |
| Carbamazepine+Clonazepam vs Control                                                                                             | 7.48                 | $(0.01 - 7.8 \times 10^3)$                     | $(0.01 - 9.0 \times 10^3)$           |  |
| Carbamazepine+Lamotrigine vs Control                                                                                            | 4.47                 | $(0.00 - 5.0 \times 10^3)$                     | $(0.00 - 5.7 \times 10^3)$           |  |
| Carbamazepine+Phenytoin vs Control                                                                                              | 7.23                 | $(0.01 - 6.6 \times 10^3)$                     | $(0.01 - 8.2 \times 10^3)$           |  |
| Clonazepam vs Control                                                                                                           | 4.88                 | $(0.12 - 3.2 \times 10^3)$                     | $(0.09 - 3.8 \times 10^3)$           |  |
| Lamotrigine vs Control                                                                                                          | 6.55                 | $(0.30 - 4.4 \times 10^3)$                     | $(0.21 - 4.7 \times 10^3)$           |  |
| Lamotrigine+Valproate vs Control                                                                                                | 113.50               | $(2.33 - 7.8 \times 10^4)$                     | $(1.62 - 8.9 \times 10^4)$           |  |
| Oxcarbazepine vs Control                                                                                                        | 10.23                | $(0.36 - 6.8 \times 10^3)$                     | $(0.26 - 7.5 \times 10^3)$           |  |
| Valproate vs Control                                                                                                            | 13.97                | $(0.68 - 8.4 \times 10^3)$                     | $(0.47 - 1.0 \times 10^4)$           |  |
| Common within-network between-study variance                                                                                    | 0.23                 | (0.00 - 2.88)                                  |                                      |  |
| Evaluation of inconsistency using the design-by-treatment                                                                       | t interaction model  | Chi-square test: 2.17<br>Degrees of Freedom: 3 | P-value: 0.54<br>Heterogeneity: 0.00 |  |

| Treatment Comparison                                         | NMA Odds Ratio                 | 95% CrI                                        | 95% PrI                              |
|--------------------------------------------------------------|--------------------------------|------------------------------------------------|--------------------------------------|
| Autism/Dyspraxia - Sensitivity A                             | Analysis - Low Risk of B       | Bias: "Comparability of C                      | ohorts''                             |
| (4 studie                                                    | es, 2,395 patients, 12 tre     | atments)                                       |                                      |
| Carbamazepine vs Control                                     | 9.55                           | (0.90 - 246.20)                                | (0.61 - 329.40)                      |
| Carbamazepine+Clonazepam vs Control                          | 13.58                          | $(0.01 - 1.3 \times 10^3)$                     | $(0.01 - 1.6 \times 10^3)$           |
| Carbamazepine+Lamotrigine vs Control                         | 7.11                           | (0.01 - 614.20)                                | (0.01 - 717.60)                      |
| Carbamazepine+Phenytoin vs Control                           | 10.97                          | $(0.01 - 1.1 \times 10^3)$                     | $(0.01 - 1.4 \times 10^3)$           |
| Clonazepam vs Control                                        | 8.33                           | (0.45 - 263.10)                                | (0.33 - 353.70)                      |
| Lamotrigine vs Control                                       | 10.98                          | (1.07 - 283.50)                                | (0.71 - 358.20)                      |
| Lamotrigine+Valproate vs Control                             | 194.10                         | $(8.06 - 8.4 \times 10^3)$                     | $(6.28 - 1.0 \times 10^4)$           |
| Levetiracetam vs Control                                     | 4.25                           | (0.00 - 390.90)                                | (0.00 - 485.30)                      |
| Oxcarbazepine vs Control                                     | 17.60                          | (1.22 - 552.20)                                | (0.86 - 727.40)                      |
| Phenytoin vs Control                                         | 9.76                           | (0.01 - 861.60)                                | $(0.01 - 1.0 \times 10^3)$           |
| Valproate vs Control                                         | 21.06                          | (1.86 - 525.40)                                | (1.25 - 681.90)                      |
| Common within-network between-study variance                 | 0.19                           | (0.00 - 2.43)                                  |                                      |
| Evaluation of inconsistency using the design-by-treatment    | ent interaction model          | Chi-square test: 3.36<br>Degrees of Freedom: 5 | P-value: 0.64<br>Heterogeneity: 0.00 |
| Autism/Dyspraxia - Sensitivity An                            | alysis - Maternal IQ (1        | study, 77 patients, 6 treat                    | ments)**                             |
| Carbamazepine+Clonazepam vs Carbamazepine                    | 1.86                           | (0.07 - 47.62)                                 | -                                    |
| Carbamazepine+Lamotrigine vs Carbamazepine                   | 1.18                           | (0.05 - 27.78)                                 | -                                    |
| Carbamazepine+Phenytoin vs Carbamazepine                     | 1.86                           | (0.07 - 47.62)                                 | -                                    |
| Lamotrigine+Valproate vs Carbamazepine                       | 15.87                          | (1.87 - 142.86)                                | -                                    |
| Valproate vs Carbamazepine                                   | 1.33                           | (0.18 - 10.20)                                 | -                                    |
| Common within-network between-study variance                 | NA                             | NA                                             |                                      |
| Evaluation of inconsistency using the design-by-treatm       | ent interaction model          | NA                                             | NA                                   |
| Abbreviations: NMA – Network Meta-analysis; OR – odds ratio; | CrI – Credible Interval; PrI – | Predictive Interval                            |                                      |

Abbreviations: NMA - Network Meta-analysis; OR - odds ratio; CrI - Credible Interval; PrI - Predictive Interval

\*\* Network did not include a control arm, comparison with Carbamazepine is reported instead