Supplementary Online Content

Appendix A. Newcastle-Ottawa Scale scoring guide
Appendix B. List of included studies11
Appendix C. Key excluded studies
Appendix D. Table of Individual Study characteristics
Appendix E. Table of Patient characteristics
Appendix F. Methodological quality of observational studies - Newcastle Ottawa Scale results23
Appendix G. Comparison-adjusted funnel plots [*]
Appendix H. Statistically significant network meta-analysis results along with meta-analysis results, transitivity, and inconsistency assessments
Appendix I. Rank-heat plot of cognitive developmental delay, autism/dyspraxia, psychomotor developmental delay, language delay, and attention deficit hyperactivity disorder outcomes* 30
Appendix J. Number of studies and treatments per outcome 32
Appendix K. Sensitivity and network meta-regression analyses - Anti-epileptic drugs compared with Control

Appendix A. Newcastle-Ottawa Scale scoring guide

COHORT Studies

Excel Column	NOS* Answer Options**	NOS Coding Manual*
RefID	Enter the report's RefID.	8
DA	Enter your initials.	
First author	Enter the first author's last name.	
Year of publication	Enter the year of the publication.	
SELECTION:		
1) Representative- ness of the exposed cohort	 a) truly representative of the average pregnant woman taking AEDs in the community b) somewhat representative of the average pregnant woman taking AEDs in the community c) selected group of users e.g., nurses, volunteers d) no description of the derivation of the cohort 	Item is assessing the representativeness of exposed individuals in the community, not the representativeness of the sample of women from some general population. For example, subjects derived from groups likely to contain middle class, better educated, health oriented women are likely to be representative of postmenopausal estrogen users while they are not representative of all women (e.g. members of a health maintenance organisation (HMO) will be a representative sample of estrogen users. While the HMO may have an under-representation of ethnic groups, the poor, and poorly educated, these excluded groups are not the predominant users of estrogen). <u>Note:</u> Truly representative (A) is a population-based cohort at the provincial or national levels (e.g., a sample from 2 cities is not enough). We need very 'broad' sample of the population.

		community-based.
2) Selection of the	a) drawn from the same	Note:
non-exposed cohort	community as the exposed	In our review of mostly multi-arm studies, this question pertains to the
	cohort	study's comparator group(s) – including "active" controls (for example, a
	b) drawn from a different source	less teratogenic AED). Therefore, this will often be "A" for our studies.
	derivation of the non-exposed	
	cohort	
3) Ascertainment	a) secure record (e.g., surgical	Note:
of exposure	records)	Option 'A' includes patient hospital records, prescription drug database,
	b) structured interview	or hospital/clinic visits (e.g., patient is asked about "current" AED use
	c) written self-report	during a visit with their doctor).
	d) no description	
		Option 'B' includes a hospital/clinic visit, but the patients are asked to
		remember their AED use during pregnancy (e.g., retrospectively
		ascertained exposure).
		If a study used both medical records and interviews for everyone select
		'A'.
4) Demonstration	a) yes	In the case of mortality studies, outcome of interest is still the presence of
that outcome of	b) no	a disease/incident, rather than death. That is to say that a statement of 'no
interest was not		history of disease or incident' earns a star (i.e. option 'A').
present at start of		
study		Note:
		Since our review is on pregnant women, this question is 'A' for all.
		Please email us if a study involves breastfeeding women.
COMPARABILITY	•	
1) Comparability	a) answer is BOTH B & C (i.e.	Either exposed and non-exposed individuals must be matched in the
of cohorts on the	study controls for age and one	design and/or confounders must be adjusted for in the analysis.
basis of the design	other important factor)	Statements of no differences between groups or that differences were not
or analysis	b) study controls for age of the	statistically significant are not sufficient for establishing comparability.
	women	

c)	study controls for any other important factor	Note: If the relative risk for the exposure of interest is adjusted for the confounders listed, then the groups will be considered to be comparable
4	study does not control for any	on each variable used in the adjustment
u)	study does not control for any	on each variable used in the adjustment.
	described	There may be multiple ratings for this item for different categories of exposure (e.g., ever vs. never, current vs. previous or never). [A
		maximum of 2 stars can be allotted in this category].
		<u>Note:</u> The study should have initially matched the groups or presented adjusted odds ratios, AND in addition, since in our review we are analyzing each AED arm separately (instead of the whole exposed cohort), the study must also report the factor of interest for 'each AED arm' (or state that 'each AED arm' is matched).
		Thus, there are 2 parts to this question:
		<u>1) The study should have matched/adjusted for age at whatever level</u> of groups they were focused on (even if they aren't our abstracted AED arms); AND
		2) Then the study should also have reported the age for each AED arm.
		If they haven't done both of these 2 things, it's a 'D' here (unless they happen to combine these by reporting adjusted ORs for each of our AED arms).
		For our review, this generally pertains to the comparability of the MOTHERS. The exception here is in studies of cognitive/psychomotor development disorders in children - when age of the children should be comparable.
		The "other important factors" here are any one of these:

		 history of congenital malformations (CMs), fetal losses, preterm deliveries or small babies. family history of genetic problems or CMs. alcohol use. nutritional deficiencies (e.g., lack of folic acid). Example: Option 'B' indicates that the study initially matched groups based on the women's age (or reported adjusted ORs) AND they report the mean women's age for EACH of our arms (e.g., for Tx1, Tx2, etc.).
OUTCOME:		
1) Assessment of outcome	 a) independent OR blind assess ment b) record linkage c) self-report d) no description 	 For some outcomes (e.g. fractured hip), reference to the medical record is sufficient to satisfy the requirement for confirmation of the fracture. This would not be adequate for vertebral fracture outcomes where reference to x-rays would be required. a) Independent or blind assessment stated in the paper, or confirmation of the outcome by reference to secure records (x-rays, medical records, etc.) b) Record linkage (e.g. identified through ICD codes on database records) c) Self-report (i.e. no reference to original medical records or x-rays to confirm the outcome) d) No description. Note: Blind (A) is if they tell us that the outcome assessors were blinded to exposures; or if the outcome is objective. For our purposes, we will focus on the primary outcome of interest of our systematic raview, which is major malformations (an objective outcome)

		So most of ours will be A, unless the study is only on a secondary		
		outcome (e.g., cognitive development) and is based on the mother's self-		
		report of their child (e.g., not a clinical examination).		
2) Was follow-up	a) yes	An acceptable length of time should be decided before quality assessment		
long enough for	b) no	begins (e.g. 5 yrs. for exposure to breast implants)		
outcomes to occur				
		Note:		
		For this component, focus only on the outcomes that are reported in the		
		results.		
		For our purposes, we will focus on the primary outcome of interest of our		
		systematic review, which is <u>major malformations</u> .		
		• For studies focusing on 'birth' outcomes (i.e. malformations, preterm,		
		fetal losses, born small), the answer is 'A' if they follow the groups		
		until birth.		
		• For studies focusing on cognitive developmental disorders, an		
		adequate follow-up period (i.e. child's age) is 4 years.		
		• For studies focusing on psychomotor delays, an adequate follow-up		
		period is the earliest point of detection of the disorder.		
		• For studies focusing on neonatal seizures, an adequate follow-up		
		period (i.e. infant's age) is 6 months.		
3) Adequacy of	a) complete follow up - all	This item assesses the follow-up of the exposed and non-exposed cohorts		
follow up of	subjects accounted for	to ensure that losses are not related to either the exposure or the outcome.		
cohorts	b) subjects lost to follow up			
	unlikely to introduce bias -	Note:		
	small number lost (see	Especially check ones that start their total sample size (or figure		
	'Note'), or description	diagram) with only the ones who had "complete" data (or only those		
	provided of those lost	who they had "successfully" recruited), as these are often a 'D' (sing		
	c) follow up rate is inadequate	they don't report on the ones NOT followed up).		
	(see 'Note') and no			
	description of those lost	• For a prospective study, \geq 90% follow-up rate per year is adequate		
	d) no statement	(e.g., 10% dropout or less for 1 year, 20% for 2 years of follow-up,		
		etc.). This includes missing or incomplete data, etc.		

	•	For a retrospective cohort study, $\geq 80\%$ follow-up rate is adequate; including the ones that they could NOT recruit or who would NOT participate.
	•	For a survey/mail questionnaire, \geq 75% response rate is adequate. (For
		a survey, a dropout rate is congruent to a survey response rate).

CASE-CONTROL Studies

NOS* Answer Options**	NOS Coding Manual*
Enter the report's RefID.	
Enter your initials.	
Enter the first author's last name.	
Enter the year of the publication.	
 a) yes, with independent validation b) yes, e.g., record linkage or based on self-reports c) no description 	 a) Requires some independent validation (e.g. >1 person/record/time/ process to extract information, or reference to primary record source such as x-rays or medical/hospital records) b) Record linkage (e.g. ICD codes in database) or self-report with no reference to primary record c) No description <u>Note:</u> This question is assessing the group of infants that have the outcome of
	interest (e.g., CMs) – i.e. the "cases" in a case-control study design.
a) consecutive or obviously representative series of casesb) potential for selection biases, or not stated	 a) All eligible cases with outcome of interest over a defined period of time, all cases in a defined catchment area, all cases in a defined hospital or clinic, group of hospitals, health maintenance organisation, or an appropriate sample of those cases (e.g. random sample) b) Not satisfying requirements in part (a) or not stated
	NOS* Answer Options**Enter the report's RefID.Enter your initials.Enter the first author's last name.Enter the year of the publication.a) yes, with independent validationb) yes, e.g., record linkage or based on self-reportsc) no descriptiona) consecutive or obviously representative series of casesb) potential for selection biases, or not stated

		Note:		
		Option 'A' is a population-based sample.		
3) Selection of	a) community controls	This item assesses whether the control series used in the study is derived		
controls	b) hospital controls	from the same population as the cases and essentially would have been		
	c) no description	cases had the outcome been present.		
	, 1			
		a) Community controls (i.e. same community as cases and would be cases if had outcome)		
		b) Hospital controls, within same community as cases (i.e. not another		
		city) but derived from a hospitalised population		
		c) No description		
		Note:		
		This question is assessing the group of infants that don't have the		
		outcome (e.g., CMs) – i.e. the "controls" in a case-control study design.		
		Community controls (A) includes a population-based sample.		
4) Definition of	a) no history of disease	a) If cases are first occurrence of outcome, then it must explicitly state		
controls	(endpoint)	that controls have no history of this outcome. If cases have new (not		
	b) no description of source	necessarily first) occurrence of outcome, then controls with previous		
		occurrences of outcome of interest should not be excluded.		
		b) No mention of history of outcome		
		Note:		
		Since our review is on fetal effects, this question is 'A' for all studies.		
		Please email us if a study involves exposure during breastfeeding.		
COMPARABILITY				
1) Comparability	a) answer is BOTH B & C (i.e.	Either cases and controls must be matched in the design and/or		
of cases and	study controls for age and one	confounders must be adjusted for in the analysis. Statements of no		
controls on the	other important factor)	differences between groups or that differences were not statistically		
basis of the design	b) study controls for age of the	significant are not sufficient for establishing comparability.		

or analysis		women	
or analysis	c) d)	study controls for any other important factor study does not control for any important factor or it is not	Note: If the odds ratio for the exposure of interest is adjusted for the confounders listed, then the groups will be considered to be comparable on each variable used in the adjustment.
		described	There may be multiple ratings for this item for different categories of exposure (e.g. ever vs. never, current vs. previous or never). [A maximum of 2 stars can be allotted in this category].
			<u>Note:</u> The study should have initially matched the groups, AND in addition, since in our review we are analyzing each AED arm separately (instead of the whole cases group), the study must also report the factor of interest for 'each AED arm' (or state that 'each AED arm' is matched).
			For our review, this generally pertains to the comparability of the MOTHERS of the cases and controls. The exception here is in studies of cognitive/psychomotor development disorders in children - when age of the children should be comparable.
			 The "other important factors" here are any one of these: history of congenital malformations (CMs), fetal losses, preterm delivering on small behing
			 family history of genetic problems or CMs. alcohol use. putritional deficiencies (a.g., lack of folic acid)
			• Inutritional deficiencies (e.g., fack of folic acid).
			For example, Option 'B' indicates that the study initially matched groups based on the women's age AND they report the mean women's age for EACH arm (e.g., for $Tx1$, $Tx2$, etc.).
EXPOSURE:			

1) Assessment of	a) secure record (e.g., surgical	Note:
exposure	records)	Option 'A' includes patient hospital records, prescription drug database,
	b) structured interview where	or hospital/clinic visits (e.g., patient is asked about "current" AED use
	blind to case/control status	during a visit with their doctor).
	c) interview not blinded to	
	case/control status	"Interview" here includes a hospital/clinic visit, but the patients are asked
	d) written self-report or medical	to remember their AED use during pregnancy (e.g., retrospectively
	record only	ascertained exposure).
	e) no description	
2) Same method of	a) yes	Note:
ascertainment for	b) no	This question is asking whether the method of <u>ascertainment of exposure</u>
cases and controls		was the same for 'cases' (with the outcome) and 'controls' (without the
		outcome; in this case-control study design).
3) Non-response	a) same rate for both groups	Note:
rate	b) non-respondents described	For our review, this pertains to either the infants or the mothers of the
	c) rate different and no	case and control groups.
	designation	
		We're allowing 10% dropout per year for a prospective study – e.g., 10%
		for 1 year, 20% for 2 years of follow-up, etc.
		For a survey, we allow for a 75% response rate in order for it be adequate.
		For a survey, a dropout rate is congruent to a survey response rate.

*Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, Tugwell P. The Newcastle-Ottawa Scale (NOS) for assessing the quality of non-randomised studies in meta-analyses. Available at: <u>http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp</u>

In the **"NOS Coding Manual" column, the first section for each item is copied straight from the NOS documentation while the lower portions in each item are our "Notes" tailored for the AED review.

Appendix B. List of included studies

A total of 29 cohort studies¹⁻²⁹ with 9 companion reports³⁰⁻³⁸ were included

1. Adab N, Kini U, Vinten J, et al. The longer term outcome of children born to mothers with epilepsy. *J Neurol Neurosurg Psychiatry*. 2004;75(11):1575-83.

2. Arkilo D, Hanna J, Dickens D, et al. Pregnancy and neurodevelopmental outcomes with in-utero antiepileptic agent exposure. A pilot study. *Eur J Paediatr Neurol*. 2015;19(1):37-40.

3. Bromley R, Baxter N, Calderbank R, Mawer G, Clayton-Smith J, Baker G. A comprehensive review of the language abilities of children exposed to valproate or carbamazepine in utero. American Epilepsy Society; Texas2010.

4. Bromley RL, Calderbank R, Cheyne CP, et al. Cognition in school-age children exposed to levetiracetam, topiramate, or sodium valproate. *Neurology*. 2016;87(18):1943-53.

5. Bromley RL, Mawer GE, Briggs M, et al. The prevalence of neurodevelopmental disorders in children prenatally exposed to antiepileptic drugs. *J Neurol Neurosurg Psychiatry*. 2013;84(6):637-43.

6. Christensen J, Gronborg TK, Sorensen MJ, et al. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. *JAMA*. 2013;309(16):1696-703.

7. Cohen MJ, Meador KJ, Browning N, et al. Fetal antiepileptic drug exposure: Adaptive and emotional/behavioral functioning at age 6years. *Epilepsy Behav.* 2013;29(2):308-15.

8. Cummings C, Stewart M, Stevenson M, Morrow J, Nelson J. Neurodevelopment of children exposed in utero to lamotrigine, sodium valproate and carbamazepine. *Arch Dis Child*. 2011;96(7):643-7.

9. Dean JCS, Hailey H, Moore SJ, Lloyd DJ, Turnpenny PD, Little J. Long term health and neurodevelopment in children exposed to antiepileptic drugs before birth. *J Med Genet*. 2002;39(4):251-9.

10. D'Souza SW, Robertson IG, Donnai D, Mawer G. Fetal phenytoin exposure, hypoplastic nails, and jitteriness. *Arch Dis Child*. 1991;66(3):320-4.

11. Eriksson K, Viinikainen K, Mönkkönen A, et al. Children exposed to valproate in utero—Population based evaluation of risks and confounding factors for long-term neurocognitive development. *Epilepsy Res.* 2005;65(3):189-200.

12. Gaily E. Development and growth in children of epileptic mothers: a prospective controlled study. Helsinki, Finland: University of Helsinki; 1990.

13. Gogatishvili N, Ediberidze T, Lomidze G, Tatishvili N, Kasradze S. PO-0834 Long-term Developmental Outcome Of Children Prenatally Exposed To Antiepileptic Drugs. *Arch Dis Child*. 2014;99(Suppl 2):A526.

14. Gogatishvili N, Ediberidze T, Lomidze G, Tatishvili N, Kasradze S. Cognitive outcomes of children with fetal antiepileptic drug exposure at the age of 3-6 years-preliminary data. 1st Congress of the European Academy of Neurology; Berlin: European Journal of Neurology; 2015. p. 329.

15. Hurault-Delarue C, Damase-Michel C, Finotto L, et al. Psychomotor developmental effects of prenatal exposure to psychotropic drugs: a study in EFEMERIS database. *Fundam Clin Pharmacol.* 2016;30(5):476-82.

16. Jones KL, Lacro RV, Johnson KA, Adams J. Pattern of malformations in the children of women treated with carbamazepine during pregnancy. *N Engl J Med.* 1989;320(25):1661-6.

17. Katz JM, Pacia SV, Devinsky O. Current Management of Epilepsy and Pregnancy: Fetal Outcome, Congenital Malformations, and Developmental Delay. *Epilepsy Behav.* 2001;2(2):119-23.

18. Koch S, Jager-Roman E, Losche G, Nau H, Rating D, Helge H. Antiepileptic drug treatment in pregnancy: drug side effects in the neonate and neurological outcome. *Acta Paediatr*. 1996;85(6):739-46.

19. Mawer G, Clayton-Smith J, Coyle H, Kini U. Outcome of pregnancy in women attending an outpatient epilepsy clinic: adverse features associated with higher doses of sodium valproate. *Seizure*. 2002;11(8):512-8.

20. Miskov S, Juraski RG, Fucic A, et al. Croatian Pregnant Women with Epilepsy and Effects of Antiepileptic Drugs Exposure in their Offspring - seven years of prospective surveillance. American Epilepsy Society; Texas2010.

21. Miskov S, Juraski RG, Mikula I, et al. The Croatian model of integrative prospective management of epilepsy and pregnancy. *Acta Clin Croat*. 2016;55(4):535-48.

22. Nadebaum C, Anderson VA, Vajda F, Reutens DC, Barton S, Wood AG. Language skills of school-aged children prenatally exposed to antiepileptic drugs. *Neurology*. 2011;76(8):719-26.

23. Rihtman T, Parush S, Ornoy A. Developmental outcomes at preschool age after fetal exposure to valproic acid and lamotrigine: cognitive, motor, sensory and behavioral function. *Reprod Toxicol.* 2013;41:115-25.

24. Scolnik D, Nulman I, Rovet J, et al. Neurodevelopment of children exposed in utero to phenytoin and carbamazepine monotherapy. *JAMA*. 1994;271(10):767-70.

25. Shankaran S, Woldt E, Nelson J, Bedard M, Delaney-Black V. Antenatal phenobarbital therapy and neonatal outcome. II: Neurodevelopmental outcome at 36 months. *Pediatrics*. 1996;97(5):649-52.

26. van der Pol MC, Hadders-Algra M, Huisjes HJ, Touwen BC. Antiepileptic medication in pregnancy: late effects on the children's central nervous system development. *Am J Obstet Gynecol.* 1991;164(1 Pt 1):121-8.

27. Veiby G, Daltveit AK, Schjolberg S, et al. Exposure to antiepileptic drugs in utero and child development: a prospective population-based study. *Epilepsia*. 2013;54(8):1462-72.

28. Veiby G, Engelsen BA, Gilhus NE. Early child development and exposure to antiepileptic drugs prenatally and through breastfeeding: a prospective cohort study on children of women with epilepsy. *JAMA Neurol.* 2013;70(11):1367-74.

29. Wood AG, Nadebaum C, Anderson V, et al. Prospective assessment of autism traits in children exposed to antiepileptic drugs during pregnancy. *Epilepsia*. 2015;56(7):1047-55.

30. Bromley RL, Mawer G, Clayton-Smith J, Baker GA. Autism spectrum disorders following in utero exposure to antiepileptic drugs. *Neurology*. 2008;71(23):1923-4.

31. Gaily EK, Granstrom ML, Hiilesmaa VK, Bardy AH. Head circumference in children of epileptic mothers: contributions of drug exposure and genetic background. *Epilepsy Res*. 1990;5(3):217-22.

32. Hiilesmaa V. A prospective study on maternal and fetal outcome in 139 women with epilepsy. Helsinki: University of Helsinki; 1982.

33. Hiilesmaa VK, Bardy A, Teramo K. Obstetric outcome in women with epilepsy. *Am J Obstet Gynecol*. 1985;152(5):499-504.

34. Rasalam AD, Hailey H, Williams JH, et al. Characteristics of fetal anticonvulsant syndrome associated autistic disorder. *Dev Med Child Neurol*. 2005;47(8):551-5.

35. Tomson T, Battino D, Bonizzoni E, et al. Antiepileptic drugs and intrauterine death: A prospective observational study from EURAP. *Neurology*. 2015;85(7):580-8.

36. Viinikainen K, Eriksson K, Monkkonen A, et al. The effects of valproate exposure in utero on behavior and the need for educational support in school-aged children. *Epilepsy Behav*. 2006;9(4):636-40.

37. Vinten J, Adab N, Kini U, Gorry J, Gregg J, Baker GA. Neuropsychological effects of exposure to anticonvulsant medication in utero. *Neurology*. 2005;64(6):949-54.

38. Vinten J, Bromley RL, Taylor J, Adab N, Kini U, Baker GA. The behavioral consequences of exposure to antiepileptic drugs in utero. *Epilepsy Behav*. 2009;14(1):197-201.

Appendix	C.	Key	excluded	studies
----------	----	-----	----------	---------

Author, Year	Research Group	Title	Reason for Exclusion
Meador, 2009 ³⁹	Neurodevelopmental Effects of Antiepileptic Drug (NEAD) Study Group	Cognitive Function at 3 Years of Age after Fetal Exposure to Antiepileptic Drugs	Outcomes only reported as continuous variables
Meador, 2010 ⁴⁰	Neurodevelopmental Effects of Antiepileptic Drug (NEAD) Study Group	Effects of breastfeeding in children of women taking antiepileptic drugs	Outcomes only reported as continuous variables
Meador, 2011 ⁴¹	Neurodevelopmental Effects of Antiepileptic Drug (NEAD) Study Group	Foetal antiepileptic drug exposure and verbal versus non-verbal abilities at three years of age	Outcomes only reported as continuous variables
Meador, 2012 ⁴²	Neurodevelopmental Effects of Antiepileptic Drug (NEAD) Study Group	Effects of fetal antiepileptic drug exposure: Outcomes at age 4.5 years	Outcomes only reported as continuous variables
Meador, 2013 ⁴³	Neurodevelopmental Effects of Antiepileptic Drug (NEAD) Study Group	Fetal antiepileptic drug exposure and cognitive outcomes at age 6 years (NEAD study): a prospective observational study	Outcomes only reported as continuous variables
Shallcross, 2011 ⁴⁴	Liverpool and Manchester Neurodevelopment Group and The UK Epilepsy and Pregnancy Register	Child development following in utero exposure: Levetiracetam vs. sodium valproate	Outcomes only reported as continuous variables
Shallcross, 2014 ⁴⁵	Liverpool and Manchester	In utero exposure to levetiracetam vs. valproate: Development and language at 3 years of age	Outcomes only reported as continuous variables

Neurodevelopment	
Group and The UK	
Epilepsy and Pregnancy	
Register	

References

39. Meador KJ, Baker GA, Browning N, et al. Cognitive function at 3 years of age after fetal exposure to antiepileptic drugs. *N Engl J Med.* 2009;360(16):1597-605.

40. Meador KJ, Baker GA, Browning N, et al. Effects of breastfeeding in children of women taking antiepileptic drugs. *Neurology*. 2010;75(22):1954-60.

41. Meador KJ, Baker GA, Browning N, et al. Foetal antiepileptic drug exposure and verbal versus non-verbal abilities at three years of age. *Brain*. 2011;134(Pt 2):396-404.

42. Meador KJ, Baker GA, Browning N, et al. Effects of fetal antiepileptic drug exposure: outcomes at age 4.5 years. *Neurology*. 2012;78(16):1207-14.

43. Meador KJ, Baker GA, Browning N, et al. Fetal antiepileptic drug exposure and cognitive outcomes at age 6 years (NEAD study): a prospective observational study. *Lancet Neurol*. 2013;12(3):244-52.

44. Shallcross R, Bromley RL, Irwin B, Bonnett LJ, Morrow J, Baker GA. Child development following in utero exposure: levetiracetam vs sodium valproate. *Neurology*. 2011;76(4):383-9.

45. Shallcross R, Bromley RL, Cheyne CP, et al. In utero exposure to levetiracetam vs valproate: development and language at 3 years of age. *Neurology*. 2014;82(3):213-21.

46. Cohen MJ, Meador KJ, Browning N, et al. Fetal antiepileptic drug exposure: Adaptive and emotional/behavioral functioning at age 6 years. *Epilepsy Behav*. 2013;29(2):308-15.

Author, Year	Country of conduct	Registry or Setting	Study period Interventions		Outcomes	Funding
Adab, 2004 ^{*1} [CR: Vinten 2005 ³⁷ Vinten, 2009 ³⁸]	UK	Mersey Regional Epilepsy Clinic; Epilepsy Clinic at the Manchester Royal Infirmary; Antenatal clinic at St Mary's Hospital, Manchester	2000- 2001	Carbam, Control, Valpro	Cognitive Developmental Delay, Psychomotor Developmental Delay	NR
Arkilo, 2015 ²	USA	Minnesota Epilepsy Group	2006- 2011	Carbam, Lamot, Levet, Pheny, Valpro	Autism/Dyspraxia, Psychomotor Developmental Delay	NR
Bromley, 2010 ³	UK	Liverpool and Manchester Neurodevelopment Group	NR	Carbam, Valpro	Language Delay	NR
Bromley, 2013 ⁵ [CR: Bromley, 2008 ³⁰]	UK	Liverpool and Manchester Neurodevelopment group	2000- 2004	Carbam, Control, Lamot, Valpro	Autism/Dyspraxia, ADHD	mixed public & private
Bromley, 2016 ⁴ †	UK	UK Epilepsy and Pregnancy Register	2004- 2007	Control, Gabap, Levet, Topir, Valpro	Cognitive Developmental Delay	public
Christensen, 2013 ⁶ †	Denmark	Danish Civil Registration System; Danish Prescription Register; Danish Psychiatric Central Register; Danish	1996- 2006	Carbam, Clonaz, Lamot, Oxcar, Valpro	Autism/Dyspraxia	public

Appendix D. Table of Individual Study characteristics

		Birth Register; Danish National Hospital Register				
Cohen, 2013 ⁴⁶	USA;UK	Neurodevelopmental Effects of Antiepileptic Drugs Study Group	1999- 2004	Carbam, Lamot, Pheny, Valpro,	ADHD	public
Cummings, 2011 ⁸ † [CR: Tomson, 2015 ³⁵]	Northern Ireland	UK Epilepsy and Pregnancy Register (Northern Ireland); Northern Ireland Child Health System	1996- 2005	Carbam, Lamot, Valpro,	Cognitive Developmental Delay	public
Dean, 2002 ⁹ [CR: Rasalam, 2005 ³⁴]	Scotland	Aberdeen Maternity Hospital	1976- 2000	Carbam, Carbam+Pheno, Carbam+Pheny, Carbam+Valpro, Control, Ethos, Pheno, Pheno+Pheny, Pheno+Valpro, Pheny, Primid, Valpro	Psychomotor Developmental Delay, ADHD	NR
D'Souza, 1991 ¹⁰	United Kingdom	St Mary's Hospital	1980- 1982	Carbam, Control, Pheno, Pheny, Valpro	Cognitive Developmental Delay	public
Eriksson, 2005 ¹¹ † [CR: Viinikainen, 2006 ³⁶]	Finland	Kuopio University Hospital	1989- 2000	Carbam, Control, Valpro	Cognitive Developmental Delay, Psychomotor Developmental Delay	public

Gaily, 1990 ¹² [CR: Gaily, 1990 ³¹ ; Hiilesmaa, 1982 ³² ; Hiilesmaa, 1985 ³³]	Finland	Helsinki University Central Hospital	1975- 1979	Carbam, Carbam+Pheno+Pheny, Carbam+Pheny, Carbam+Valpro, Control, Ethos+Pheny, Pheno+Pheny, Pheny, Pheny+Primid, Pheny+Valpro	Cognitive Developmental Delay , Psychomotor Developmental Delay	mixed public & private
Gogatishvili, 2014 ¹³	Georgia	Georgian National AED- Pregnancy Registry	NR	Carbam, Lamot, Valpro	Cognitive Developmental Delay	public
Gogatishvili, 2015 ¹⁴	Georgia	Georgian National AED- Pregnancy Registry	NR	Carbam, Carbam+Levet, Lamot, Pheno, Valpro	Language Delay	public
Hurault- Delarue, 2012 ¹⁵	France	EFEMERIS database - Caisse Primaire d'Assurance Maladie of Haute-Garonne and Maternal and Infant Protection Service; Antenatal Diagnostic Centre	2004- 2008	Carbam, Clobaz, Clonaz, Gabap, Lamot, Pheno, Topir, Valpro	Psychomotor Developmental Delay	NR
Jones, 1989 ¹⁶ †	US	California Teratogen Registry	1979- 1988	Carbam, Carbam+Pheno, Carbam+Pheno+Valpro, Carbam+Primid	Cognitive Developmental Delay, Psychomotor Developmental Delay	public
Katz, 2001 ¹⁷	USA	Mount Sinai Comprehensive Epilepsy Center	1990- 2000	Carbam, Control, Lamot, Pheno, Pheny, Primid, Valpro	Cognitive Developmental Delay	NR

Koch, 1996 ¹⁸	Germany	NR	1976- 1983	Pheno, Pheny, Primid, Valpro	Cognitive Developmental Delay	public
Mawer, 2002 ¹⁹	England	Manchester Royal Infirmary	1990- 1999	Carbam, Lamot, Pheny, Valpro	Cognitive Developmental Delay	NR
Miskov, 2010 ²⁰	Croatia	NR	2003- 2010	Carbam, Control, Gabap, Lamot, Valpro	Psychomotor Developmental Delay, Neonatal Seizures	NR
Miskov, 2016 ²¹	Croatia	Sestre milosrdnice University Hospital Center	2003- 2013	Carbam, Carbam+Lamot, Carbam+Pheno, Carbam+Pheny+Topir, Control, Clonaz+Valpro, Gabap, Lamot, Oxcar, Pheno, Pheny, Topir+Valpro, Valpro	Attention Deficit Hyperactivity Disorder	NR
Nadebaum, 2011 ²² †	Australia	Australian Registry of Antiepileptic Drug Use in Pregnancy	2007- 2009	Carbam, Lamot, Valpro	Language Delay	mixed public & private
Rihtman, 2013 ²³	Israel	Israeli Teratogen Information Service	NR	Lamot, Valpro	Neonatal Seizure	mixed public & private
Scolnik, 1994 ²⁴	Canada	Hospital for Sick Children - Motherisk Program; North York General Hospital; Toronto Hospital; Oshawa General Hospital	1987- 1992	Carbam, Pheny	Cognitive Developmental Delay	public

Wood, 2015 ²⁹ †	Australia	Australian Registry of Antiepileptic Drug Use in Pregnancy	2007- 2010	Carbam, Carbam+Clonaz, Carbam+Lamot, Carbam+Pheny, Lamot+Valpro, Valpro	Autism/Dyspraxia	public
Veiby, 2013b ²⁸ †	Norway	Medical Birth Registry of Norway	1999- 2008	Carbam, Control, Lamot, Valpro	Psychomotor Developmental Delay, Autism/Dyspraxia, Language Delay, ADHD	public
Veiby, 2013a ²⁷ †	Norway	Norwegian Institute of Public Health- Mother and Child Cohort Study	1999- 2009	Carbam, Control, Lamot, Valpro	Social Impairment	public
Van der Pol, 1991 ²⁶	Netherlands	Groningen University Hospital	1973- 1981	Carbam, Carbam+Pheno, Control, Pheno	Psychomotor Developmental Delay	public
Shankaran, 1996 ²⁵	USA	Children's Hospital of Michigan	NR	Control, Pheno	Psychomotor Developmental Delay, Language Delay	public

Abbreviations: ADHD – Attention Deficit Hyperactivity Disorder; NR – Not Reported

Carbam = Carbamazepine; Clobaz = Clobazam; Clonaz = Clonazepam; Ethos = Ethosuximide; Gabap = Gabapentin; Lamot = Lamotrigine; Levet = Levetiracetam; Oxcar = Oxcarbazepine; Pheno = Phenobarbital; Pheny = Phenytoin; Primid = Primidone; Topir = Topiramate; Valpro = Valproate; Vigab = Viagabatrin

*Single publication reporting on two separate cohorts †Registry Studies

Appendix E. Table of Patient characteristics

Author, Year	Indication	Sample Size*	Mean Age (Women)	Mean Age (Children)/ Follow-up period†	AED Exposure Timing	Maternal Alcohol Use n/N‡	Maternal Tobacco Use n/N‡
Adab, 2004a ¹ § [CR: Vinten 2005 ³⁷ ; Vinten, 2009 ³⁸]	Epilepsy	177	26.1	9-10.5	NR	24/279‡	68/249‡
Adab, 2004b ¹ § [CR: Vinten 2005 ³⁷ ; Vinten, 2009 ³⁸]	Epilepsy	81	26.1	3-3.33	NR	24/279‡	68/249‡
Arkilo, 2015 ²	Epilepsy	59	NR	NA	First trimester	NR	NR
Bromley, 2010^3	NR	60	NR	6-7	Whole pregnancy	NR	NR
Bromley, 2013 ⁵ [CR: Bromley, 2008 ³⁰]	Epilepsy	156	28	6	NR	28/156	42/156
Bromley, 2016 ⁴	Epilepsy	185	NR	NR	NR	31/185	35/185
Christensen, 2013 ⁶	NR	2011	NR	NR	Whole pregnancy	NR	NR
Cohen, 2013 ⁴⁶	Epilepsy	108	30	6	During pregnancy and breastfeeding	12/192‡	NR
Cummings, 2011 ⁸ [CR: Tomson, 2015 ³⁵]	Epilepsy	142	NR	2-3	During pregnancy and breastfeeding	32/108‡	19/108‡
Dean, 2002 ⁹ [CR: Rasalam, 2005 ³⁴]	Epilepsy	287	27	3.75-15.5	First trimester	NR	NR
D'Souza, 1991 ¹⁰	Epilepsy	42	26.5	2.5-3.5	Whole pregnancy	NR	NR
Eriksson, 2005 ¹¹ [CR: Viinikainen, 2006 ³⁶]	Epilepsy	39	28.2	NR	NR	NR	NR

Gaily, 1990 ¹² [CR: Gaily, 1990 ³¹ ; Hiilesmaa, 1982 ³² ; Hiilesmaa, 1985 ³³	Epilepsy	134	27.8	5.5	First trimester	NR	NR
Gogatishvili, 2014 ¹³	NR	39	NR	2 to 4	NR	NR	NR
Gogatishvili, 2015 ¹⁴	NR	23	NR	3 to 6	NR	NR	NR
Hurault-Delarue, 2012 ¹⁵	NR	109	NR	0.75	NR	NR	NR
Jones, 1989 ¹⁶	Epilepsy	63	NR	NR	Whole pregnancy	NR	NR
Katz, 2001 ¹⁷	Epilepsy	51	31	NR	NR	NR	NR
Koch, 1996 ¹⁸	Epilepsy	40	NR	6	First trimester	NR	NR
Mawer, 2002 ¹⁹	Epilepsy	52	NR	NR	NR	NR	NR
Miskov, 2010 ²⁰	Epilepsy	55	NR	NR	NR	NR	NR
Miskov, 2016 ²¹	Epilepsy	74	34	NR	NR	NR	6/74
Nadebaum, 2011 ²²	Epilepsy	66	31.6	7.4	During pregnancy and breastfeeding	NR	5/66
Rihtman, 2013 ²³	Epilepsy	72	NR	NR	During pregnancy and breastfeeding	NR	NR
Scolnik, 1994 ²⁴	Epilepsy	75	NR	1.5-3	1st trimester	NR	NR
Shankaran, 1996 ²⁵	NR	96	NR	NR	NR	NR	NR
Van der Pol, 1991 ²⁶	Epilepsy	57	NR	6-13	NR	NR	NR
Veiby, 2013a ²⁷	Epilepsy	422	NR	0.5	During pregnancy and breastfeeding	NR	NR
Veiby, 2013b ²⁸	Epilepsy	248	28.9	3	NR	NR	68/726‡
Wood, 2015 ²⁹	Epilepsy	77	NR	6-8	NR	NR	NR

Abbreviations: NA – Not applicable; NR – Not reported

* Sample size used for analysis; ineligible treatment arms (i.e. treatment arms with excluded drugs or unspecified polytherapy) are not included in the count † The mean age for children/follow-up period data were only collected for outcomes related to cognitive and/or psychomotor development

‡ Total sample size is based on the number of women enrolled in the study; may differ from the sample size used for analysis

§ Single publication reporting on two separate cohorts

First Author, Year	Representativen ess of the exposed cohort	Selection of the non- exposed cohort	Ascertainme nt of exposure	Demonstratio n that outcome of interest was not present at start of study	Comparabili ty of cohorts on the basis of the design or analysis	Assessmen t of outcome	Was follow-up long enough for outcomes to occur	Adequac y of follow up of cohorts
Adab, 2004 ¹	В	А	А	А	С	А	А	С
Arkilo, 2015 ²	В	А	В	А	D	А	А	С
Bromley, 2010^3	D	А	D	А	D	D	В	D
Bromley, 2013 ⁵	А	А	А	А	А	А	А	С
Bromley, 2016 ⁴	А	А	А	А	А	А	А	С
Christensen, 2013 ⁶	А	А	А	А	А	В	А	В
Cohen, 2013 ⁴⁶	А	А	D	А	А	А	А	С
Cummings, 2011 ⁸	А	А	А	А	А	А	А	С
Dean, 2002 ⁹	В	А	А	А	D	А	А	С
D'Souza, 1991 ¹⁰	В	А	А	А	D	А	А	А
Eriksson, 2005 ¹¹	В	А	А	А	В	А	А	D
Gaily, 1990 ¹²	В	А	А	А	D	А	А	А
Gogatishvili, 2014 ¹³	A	А	D	A	D	A	А	D
Gogatishvili, 2015 ¹⁴	А	A	D	А	D	А	A	D

Appendix F. Methodological quality of observational studies – Newcastle Ottawa Scale results

Hurault-								
Delarue, 2012 ¹⁵	А	А	А	А	А	А	А	А
Jones, 1989 ¹⁶	А	А	В	А	D	А	А	В
Katz, 2001 ¹⁷	В	А	А	А	D	А	А	D
Koch, 1996 ¹⁸	В	А	В	А	D	А	А	С
Mawer, 2002 ¹⁹	В	А	А	А	D	А	А	В
Miskov, 2010 ²⁰	D	А	D	А	D	D	А	D
Miskov, 2016 ²¹	С	А	А	А	D	А	А	D
Nadebaum, 2011 ²²	А	А	А	А	А	А	А	В
Rihtman, 2013 ²³	А	В	А	А	А	А	А	С
Scolnik, 1994 ²⁴	В	А	А	А	D	А	А	А
Shankaran, 1996 ²⁵	В	А	А	А	D	А	А	В
Van der Pol, 1991 ²⁶	В	А	D	А	А	А	А	В
Veiby, 2013a ²⁷	А	А	А	А	А	А	А	D
Veiby, 2013b ²⁸	А	А	А	А	А	А	А	С
Wood, 2015 ²⁹	А	А	А	А	D	А	А	С

Appendix G. Comparison-adjusted funnel plots*

* Funnel plots have been produced only for outcomes with ≥ 10 studies. For multi-arm studies we plot data points from each study-specific basic parameter (treatment comparisons with a study-specific common comparator)

Appendix H. Statistically significant network meta-analysis results along with meta-analysis results, transitivity, and inconsistency assessments

Treatment Comparison	Number of Studies (Mean Baseline Risk)	Number of patients (Mean Age)	Treatment Indication	Timing	Comparability of cohorts	Adequacy of follow up of cohorts	MA Odds Ratio (95% CrI)	NMA Odds Ratio (95% CrI) (95% PrI)
	Cogn	itive Develop	omental Dela	y (10 studi	ies, 748 patients	, 14 treatme	ents)	
Lamot vs Valpro	4 (NA)	140 (31.00)	Epilepsy	NR	Н	Н	0.17 (0.02-0.87)	0.13 (0.01-0.57) (0.01-0.75)
Valpro vs Control	4 (0.06)	267 (28.80)	Epilepsy	1st trimester	Н	Н	8.15 (3.19-22.33)	7.40 (3.00-18.46) (1.81-27.63)
Valpro vs Carbam	6 (NA)	310 (27.80)	Epilepsy	NR	Н	L	3.32 (1.56-7.04)	3.54 (1.69-7.26) (0.95-12.32)
Valpro vs Pheno	3 (NA)	36 (27.80)	Epilepsy	1st trimester	Н	L	4.25 (0.82-34.07)	5.59 (1.21-35.07) (0.93-45.99)
Valpro vs Pheny	3 (NA)	58 (31.00)	Epilepsy	1st trimester	Н	L	3.12 (0.75-14.12)	2.88 (1.04-8.49) (0.69-12.62)
Common between-s	study variance a	icross treatme	ent compariso	ns			0.13	0.12
Residual deviance: 44.72 Data points: 47 DIC: 78.7 (0.00-0.97) (0.00-1.15) (NA)								
Evaluation of consistency using the design-by-treatment interactionChi-square test: 14.15P- value: 0.66modelDegrees of Freedom: 17Heterogeneity: 0								

Treatment Comparison	Number of Studies (Mean Baseline Risk)	Number of patients (Mean Age)	Treatment Indication	Timing	Comparability of cohorts	Adequacy of follow up of cohorts	MA Odds Ratio (95% CrI)	NMA Odds Ratio (95% CrI) (95% PrI)	
Autism Dyspraxia (5 studies, 2551 patients, 12 treatments)									
Lamot vs Control	2 (0.00)	254 (27.75)	Epilepsy	1st trimester	Н	Н	13.77 (2.06-188.00)	8.88 (1.29-112.00) (0.94-146.80)	
Lamot+Valpro vs Carbam	1 (NA)	40 (NR)	Epilepsy	NR	L	L	15.02 (2.04-171.90)	22.89 (2.58-219.00) (1.90-282.20)	
Lamot+Valpro vs Clonaz	NA	NR	NR	NR	NR	NR	NA	20.21 (1.48-351.30) (1.15-455.00)	
Lamot+Valpro vs Control	NA	NR	NR	NR	NR	NR	NA	132.70 (7.41-3.9 x 10 ³) (5.82-4.6 x 10 ³)	
Lamot+Valpro vs Lamot	NA	NR	NR	NR	NR	NR	NA	$14.61 \\ (1.51-149.10) \\ (1.14-196.80)$	
Oxcar vs Control	NA	NR	NR	NR	NR	NR	NA	13.51 (1.28-221.40) (0.86-267.40)	
Valpro vs Carbam	5 (NA)	1003 (27.83)	Epilepsy	1st trimester	L	L	3.20 (1.20-8.68)	3.02 (1.09-8.40) (0.57-14.31)	
Valpro vs Control	2 (0.00)	249 (27.75)	Epilepsy	1st trimester	Н	Н	9.19 (1.14-132.10)	17.29 (2.40-217.60) (1.61-274.90)	
Common between-study variance across treatment comparisons							0.12 (0.00-1.37)	0.16 (0.00-1.95) (NA)	
Residual deviance: 24Data points: 24DIC: 44Evaluation of consistency using the design-by-treatment interaction modelChi-square test: 3.79 Degrees of Freedom: 5							P- value: 0.57 Heterogeneity:	0	

Treatment Comparison	Number of Studies (Mean Baseline Risk)	Number of patients (Mean Age)	Treatment Indication	t Timing	Comparability of cohorts	Adequacy of follow up of cohorts	MA Odds Ratio (95% CrI)	NMA Odds Ratio (95% CrI) (95% PrI)		
	Psychomotor Developmental Delay (11 studies, 1145 patients, 18 treatments)									
Carbam+Pheno+Va vs Control	lpro NA	NR	NR	NR	NR	NR	NA	19.12 (1.49-337.50) (1.34-370.40)		
Carbam+Pheno+Va vs Pheno	lpro NA	NR	NR	NR	NR	NR	NA	19.86 (1.38-393.60) (1.26-423.30)		
Levet vs Carbam+Pheno+Va	lpro NA	NR	NR	NR	NR	NR	NA	0.01 (0.00-0.58) (0.00-0.62)		
Valpro vs Carbam	7 (NA)	331 (27.80)	Epilepsy	1st trimester	Н	Н	2.72 (1.39-5.67)	2.45 (1.27-4.88) (0.95-6.77)		
Valpro vs Control	5 (0.07)	331 (28.38)	Epilepsy	1st trimester	Н	Н	3.53 (1.60-8.64)	4.16 (2.04-8.75) (1.52-12.05)		
Valpro vs Pheno	2 (NA)	141 (NR)	Epilepsy	1st trimester	Н	Н	3.68 (1.17-12.30)	4.32 (1.72-11.20) (1.34-14.51)		
Common between-st	tudy variance	e across treatm	ent comparis	sons			0.05	0.06		
Residual deviance: 45 Data points: 51 DIC: 78 0.05 (0.00-0.49) (0.00-0.49)							(0.00-0.63) (NA)			
<i>Evaluation of consistency using the design-by-treatment interaction model</i>				Chi-square test: 13.46 Degrees of Freedom: 21			P- value: 0.89 Heterogeneity: 0			

Treatment Comparison	Number of Studies (Mean Baseline Risk)	Number of patients (Mean Age)	Treatment Indication	Timing	Comparability of cohorts	Adequacy of follow up of cohorts	MA Odds Ratio (95% CrI)	NMA Odds Ratio (95% CrI) (95% PrI)
Language Delay (5 studies, 509 patients, 5 treatments)								
Valpro vs Control	1 (0.03)	173 (28.90) Ep	ilepsy	NR	L	Н	6.96 (1.14-37.03)	7.95 (1.50-49.13) (0.96-74.52)
Common between-study variance across treatment comparisons							0.15	0.16
Residual deviance: 12 Data points: 14 DIC: 23							(0.00-1.85)	(0.00-2.15) (NA)
Evaluation of consistency using the design-by-treatmentChi-square test: 2.33interaction modelDegrees of Freedom: 3						P- value: 0.50 Heterogeneity: 0		
ADHD (4 studies, 750 patients, 6 treatments)								
No statistically significant results								
Residual deviance: 12 Data points: 17 DIC: 22								
Abbreviations: ADHD - Attention Deficit Hyperactivity Disorder; CrI - Credible Interval; DIC - Deviance Information Criterion; H- high risk of bias; L - low risk of bias; MA - Meta-analysis; NA - Not applicable; NMA - Network Meta-analysis; NR- Not Reported; PrI - Predictive Interval								

Carbam = Carbamazepine; Clobaz = Clobazam; Clonaz = Clonazepam; Ethos = Ethosuximide; Gabap = Gabapentin; Lamot = Lamotrigine; Levet = Levetiracetam; Oxcar = Oxcarbazepine; Pheno = Phenobarbital; Pheny = Phenytoin; Pridmid = Primidone; Topir = Topiramate; Valpro = Valproate; Vigab = Viagabatrin

Appendix I. Rank-heat plot of cognitive developmental delay, autism/dyspraxia, psychomotor developmental delay, language delay, and attention deficit hyperactivity disorder outcomes*

Abbreviations: carbam - carbamazepine, clobaz - clobazam, clonaz - clonazepam, ethos - ethosuximide, gabap - gabapentin, lamot - lamotrigine, levet - levetiracetam, oxcar - oxcarbazepine, pheno - phenobarbital, pheny - phenytoin, primid - primidone, topir - topiramate, valpro - valproate, vigab - vigabatrin

*Rank-heat plot of cognitive developmental delay, autism/dyspraxia, psychomotor developmental delay, language delay, and attention deficit hyperactivity disorder outcomes (5 circles) and 25 treatments (25 radii). Each sector is coloured according to the surface under the cumulative ranking curve value of the corresponding treatment and outcome using the transformation of three colours red (0%), yellow (50%), and green (100%).

Total studies	Range of study arms	# of treatments	# of patients	# of direct treatment comparisons	# of NMA treatment comparisons	Statistically significant NMA treatment effects	# of studies with zero events in all arms	# of studies with ineligible outcome definition*
Cognitive Dev	elopmental	Delay	-		-		-	-
11	(2,8)	18	933	62	153	5	1	5
Autism/Dyspra	axia							
5	(4,6)	12	2551	34	66	8	0	4
Neonatal Seizure								
1	(2,2)	2	69	1	0	0	1	1
Psychomotor I	Developme	ntal Delay						
11	(2,8)	18	1145	74	153	6	0	5
Language Dela	ay							
5	(2,4)	5	509	7	10	1	0	3
ADHD								
5	(4,6)	7	816	20	21	0	0	0
Social Impairr	nent							
1	(4,4)	4	422	1	0	0	0	0
Abbussistions	Abbrariations ADUD Attantion Deficit Urnemostivity Disorder NMA Network Mate analysis							

Appendix J. Number of studies and treatments per outcome

Abbreviations: ADHD - Attention Deficit Hyperactivity Disorder; NMA - Network Meta-analysis

Treatment Comparison	NMA Odds Ratio	95% CrI	95% PrI
Cognitive Developmental Delay – Sensitivity A	Analysis - Epilepsy o	only (10 studies, 910 patien	ts, 17 treatments)
Carbamazepine vs Control	2.08	(0.79 - 5.82)	(0.47 - 9.34)
Carbamazepine+Phenobarbital vs Control	0.62	(0.00 - 15.31)	(0.00 - 19.29)
Carbamazepine+Phenobarbital+Phenytoin vs Control	4.75	(0.01 - 164.80)	(0.01 - 192.50)
Carbamazepine+Phenobarbital+Valproate vs Control	15.00	(1.00 - 367.10)	(0.82 - 426.90)
Carbamazepine+Phenytoin vs Control	9.84	(0.60 - 136.30)	(0.49 - 164.50)
Ethosuximide+Phenytoin vs Control	6.53	(0.02 - 216.00)	(0.02 - 251.30)
Gabapentin vs Control	1.43	(0.05 - 14.28)	(0.04 - 18.20)
Lamotrigine vs Control	0.79	(0.05 - 5.12)	(0.05 - 6.66)
Levetiracetam vs Control	3.46	(0.65 - 17.14)	(0.47 - 23.57)
Phenobarbital vs Control	0.55	(0.01 - 5.38)	(0.01 - 6.85)
Phenobarbital+Phenytoin vs Control	1.28	(0.00 - 36.18)	(0.00 - 44.03)
Phenytoin vs Control	2.47	(0.65 - 8.25)	(0.41 - 12.47)
Phenytoin+Valproate vs Control	3.68	(0.01 - 121.00)	(0.01 - 135.00)
Primidone vs Control	1.97	(0.25 - 12.16)	(0.19 - 16.25)
Topiramate vs Control	3.06	(0.42 - 17.51)	(0.32 - 23.57)
Valproate vs Control	7.48	(2.99 - 19.04)	(1.67 - 31.21)
Common within-network between-study variance	0.16	(0.00 - 1.36)	
Evaluation of inconsistency using the design-by-treatment	t interaction model	Chi-square test: 12.98	P-value: 0.53
Evaluation of inconsistency using the design by incument	micraction model	Degrees of Freedom: 14	Heterogeneity: 0.00
Cognitive Developmental Delay - Sensitivity Analys	is - First generation	AEDs only (6 studies, 480	patients, 13 treatments)
Carbamazepine vs Control	1.68	(0.37 - 7.82)	(0.19 - 14.98)
Carbamazepine+Phenytoin vs Control	8.98	(0.36 - 169.90)	(0.26 - 243.60)
Carbamazepine+Phenobarbital vs Control	0.46	(0.00 - 21.02)	(0.00 - 28.01)
Carbamazepine+Phenobarbital+Phenytoin vs Control	4.12	(0.01 - 180.10)	(0.00 - 236.30)
Carbamazepine+Phenobarbital+Valproate vs Control	12.84	(0.50 - 435.70)	(0.35 - 604.30)
Ethosuximide+Phenytoin vs Control	5.65	(0.01 - 219.00)	(0.01 - 291.50)

Appendix K. Sensitivity and network meta-regression analyses - Anti-epileptic drugs compared with Control

Treatment Comparison	NMA Odds Ratio	95% CrI	95% PrI					
Phenobarbital vs Control	0.64	(0.00 - 26.02)	(0.00 - 35.36)					
Phenobarbital+Phenytoin vs Control	1.06	(0.00 - 37.64)	(0.00 - 50.85)					
Phenytoin vs Control	2.08	(0.26 - 12.50)	(0.13 - 22.02)					
Phenytoin+Valproate vs Control	3.14	(0.00 - 135.80)	(0.00 - 178.90)					
Primidone vs Control	3.30	(0.18 - 43.76)	(0.12 - 68.72)					
Valproate vs Control	13.22	(3.20 - 64.06)	(1.50 - 128.40)					
Common within-network between-study variance	0.27	(0.00 - 2.97)						
Evaluation of inconsistency using the design-by-treatment	t interaction model	Chi-square test: 3.31 Degrees of Freedom: 3	P-value: 0.35 Heterogeneity: 0.00					
Cognitive Developmental Delay - Sensitivity Analysis - Maternal Alcohol or Tobacco use (3 studies, 504 patients, 7 treatments)								
Carbamazepine vs Control	1.97	(0.40 - 10.01)	(0.19 - 21.27)					
Gabapentin vs Control	1.47	(0.04 - 19.01)	(0.02 - 27.11)					
Lamotrigine vs Control	0.41	(0.00 - 10.09)	(0.00 - 13.61)					
Levetiracetam vs Control	3.55	(0.43 - 24.13)	(0.23 - 42.39)					
Topiramate vs Control	3.17	(0.30 - 24.07)	(0.18 - 44.87)					
Valproate vs Control	7.79	(1.84 - 29.60)	(0.84 - 62.77)					
Common within-network between-study variance	0.27	(0.00 - 3.29)						
Evaluation of inconsistency using the design-by-treatment	t interaction model	Chi-square test: 2.69 Degrees of Freedom: 2	P-value: 0.26 Heterogeneity: NA					
Cognitive Developmental Delay - Sensiti	vity Analysis - Low R	Risk of Bias: "Adequacy of the second s	of follow-up''					
(4 studies,	283 patients, 12 treat	tments)						
Carbamazepine vs Control	2.68	$(0.05 - 2.9 \times 10^3)$	$(0.03 - 4.3 \times 10^3)$					
Carbamazepine+Phenobarbital vs Control	0.67	$(0.00 - 2.2 \times 10^3)$	$(0.00 - 2.9 \times 10^3)$					
Carbamazepine+Phenobarbital+Phenytoin vs Control	5.23	$(0.01 - 7.2 \times 10^3)$	$(0.00 - 1.1 \times 10^4)$					
Carbamazepine+Phenobarbital+Valproate vs Control	22.18	$(0.10 - 4.8 \times 10^4)$	$(0.06 - 7.7 \times 10^4)$					
Carbamazepine+Phenytoin vs Control	11.45	$(0.13 - 1.2 \times 10^4)$	$(0.07 - 1.8 \times 10^4)$					
Ethosuximide+Phenytoin vs Control	6.45	$(0.01 - 8.3 \times 10^3)$	$(0.00 - 1.4 \times 10^4)$					
Lamotrigine vs Control	0.52	$(0.00 - 1.2 \times 10^3)$	$(0.00 - 1.9 \times 10^3)$					
Phenobarbital+Phenytoin vs Control	1.33	$(0.00 - 1.8 \times 10^3)$	$(0.00 - 2.7 \times 10^3)$					
Phenytoin vs Control	1.67	$(0.03 - 1.8 \times 10^3)$	$(0.01 - \overline{2.5 \times 10^3})$					

Treatment Comparison	NMA Odds Ratio	95% CrI	95% PrI
Phenytoin+Valproate vs Control	3.94	$(0.00 - 6.7 \times 10^3)$	$(0.00 - 8.8 \times 10^3)$
Valproate vs Control	5.9	$(0.06 - 9.7 \times 10^3)$	$(0.03 - 1.5 \times 10^4)$
Common within-network between-study variance	1.01	(0.01 - 5.85)	
Evaluation of inconsistency using the design-by-treatmen	t interaction model	Chi-square test: 5.07 Degrees of Freedom: 2	P-value: 0.08 Heterogeneity: 0.00
Cognitive Developmental Delay - Sensitiv	ity Analysis - Low Ri	sk of Bias: "Comparabili	ty of cohorts''
(3 studies	s, 366 patients, 7 treat	ments)	
Carbamazepine vs Control	1.46	(0.11 - 19.59)	(0.06 - 38.10)
Gabapentin vs Control	1.19	(0.03 - 22.80)	(0.02 - 39.35)
Lamotrigine vs Control	0.27	(0.00 - 11.80)	(0.00 - 19.37)
Levetiracetam vs Control	2.90	(0.30 - 32.81)	(0.15 - 62.97)
Topiramate vs Control	2.55	(0.22 - 29.21)	(0.11 - 64.23)
Valproate vs Control	5.79	(1.05 - 47.35)	(0.47 - 102.90)
Common within-network between-study variance	0.38	(0.00 - 4.14)	
Evaluation of inconsistency using the design-by-treatmen	t interaction model	Chi-square test: 1.47 Degrees of Freedom: 2	P-value: 0.48 Heterogeneity: NA
Cognitive Developmental	l Delay – Network Me	eta-regression Analysis	
(11 studies	s, 933 patients, 18 trea	tments)	
Carbamazepine vs Control	1.99	(0.64 - 6.18)	(0.40 - 9.77)
Carbamazepine+Levetiracetam vs Control	0.54	(0.00 - 16.36)	(0.00 - 19.87)
Carbamazepine+Phenobarbital vs Control	0.50	(0.00 - 16.10)	(0.00 - 19.36)
Carbamazepine+Phenobarbital+Phenytoin vs Control	4.36	(0.01 - 171.20)	(0.01 - 194.60)
Carbamazepine+Phenobarbital+Valproate vs Control	14.58	(0.90 - 413.20)	(0.74 - 488.90)
Carbamazepine+Phenytoin vs Control	9.44	(0.50 - 130.50)	(0.39 - 162.40)
Ethosuximide+Phenytoin vs Control	5.77	(0.01 - 234.70)	(0.01 - 268.10)
Gabapentin vs Control	1.37	(0.04 - 15.51)	(0.03 - 19.10)
Lamotrigine vs Control	0.87	(0.07 - 5.14)	(0.06 - 6.76)
Levetiracetam vs Control	3.43	(0.57 - 18.78)	(0.42 - 24.85)
Phenobarbital vs Control	1.16	(0.13 - 8.59)	(0.10 - 11.43)
Phenobarbital+Phenytoin vs Control	1.34	(0.00 - 39.21)	(0.00 - 49.39)
-			

Treatment Comparison	NMA Odds Ratio	95% CrI	95% PrI				
Phenytoin vs Control	2.43	(0.55 - 9.14)	(0.36 - 13.45)				
Phenytoin+Valproate vs Control	3.58	(0.01 - 134.20)	(0.01 - 161.70)				
Primidone vs Control	2.03	(0.21 - 16.49)	(0.16 - 21.39)				
Topiramate vs Control	2.93	(0.41 - 16.34)	(0.31 - 22.91)				
Valproate vs Control	7.03	(2.26 - 20.02)	(1.41 - 30.92)				
Common within-network between-study variance	0.16	(0.00 - 1.27)					
Regression Coefficient	1.01	(0.76 - 1.56)					
Evaluation of inconsistency using the design-by-treatment	nt interaction model	Chi-square test: 14.15 Degrees of Freedom: 17	P-value: 0.66 Heterogeneity: 0.00				
Autism/Dyspraxia - Sensitivity Analysis - Large cohort (>300 patients) - (1 study, 2,551 patients, 5 treatments)**							
Clonazepam vs Carbamazepine	1.08	(0.24 - 4.85)	-				
Lamotrigine vs Carbamazepine	1.20	(0.36 - 4.00)	-				
Oxcarbazepine vs Carbamazepine	2.13	(0.62 - 7.35)	-				
Valproate vs Carbamazepine	3.05	(0.97 - 9.52)	-				
Common within-network between-study variance	NA	NA					
Evaluation of inconsistency using the design-by-treatment	t interaction model	NA	NA				
Autism/Dyspraxia - Sensitivity Analys	is - Epilepsy only (4 s	tudies, 540 patients, 10 tro	eatments)				
Carbamazepine vs Control	5.20	(0.54 - 90.53)	(0.33 - 133.00)				
Carbamazepine+Clonazepam vs Control	7.90	(0.01 - 653.30)	(0.01 - 881.00)				
Carbamazepine+Lamotrigine vs Control	4.25	(0.01 - 333.60)	(0.01 - 446.90)				
Carbamazepine+Phenytoin vs Control	9.03	(0.01 - 666.30)	(0.01 - 893.00)				
Lamotrigine vs Control	10.24	(1.25 - 171.40)	(0.67 - 248.50)				
Lamotrigine+Valproate vs Control	120.20	$(5.25 - 4.5 \times 10^3)$	$(3.51 - 6.0 \times 10^3)$				
Levetiracetam vs Control	3.52	(0.00 - 272.20)	(0.00 - 364.30)				
Phenytoin vs Control	8.10	(0.01 - 577.50)	(0.01 - 754.60)				
Valproate vs Control	14.41	(1.66 - 252.10)	(0.88 - 378.00)				
Common within-network between-study variance	0.31	(0.00 - 3.04)					
Evaluation of inconsistency using the design-by-treatment	t interaction model	Chi-square test: 2.9 Degrees of Freedom: 3	P-value: 0.41 Heterogeneity: 0.00				

Treatment Comparison	NMA Odds Ratio	95% CrI	95% PrI				
Autism/Dyspraxia - Sensitivity Analysis -	Maternal Tobacco Us	e (4 studies, 540 patients,	10 treatments)				
Carbamazepine vs Control	2.51	(0.05 - 154.30)	(0.04 - 254.50)				
Lamotrigine vs Control	24.84	$(2.14 - 1.2 \times 10^3)$	$(1.23 - 2.2 \times 10^3)$				
Valproate vs Control	33.40	$(2.60 - 1.7 \times 10^3)$	$(1.45 - 2.9 \times 10^3)$				
Common within-network between-study variance	0.39	(0.00 - 4.47)					
Evaluation of inconsistency using the design-by-treatment	nt interaction model	NA - all closed loops are fo	rmed from a multi-arm study				
Autism/Dyspraxia - Sensitivity Analysis - Maternal Alcohol Use (1 study, 156 patients, 4 treatments)							
Carbamazenine vs Control	Excluded due to	_	_				
	zero events						
Lamotrigine vs Control	4.65	(0.21 - 100.00)	-				
Valproate vs Control	7.75	(0.42 - 142.86)	-				
Common within-network between-study variance	1.91	(0.36 - 10.13)					
Evaluation of inconsistency using the design-by-treatment	nt interaction model	NA	NA				
Autism/Dyspraxia - Sensitivity A	nalysis - Low Risk of I	Bias: "Adequacy of Follow	w-up''				
(3 studies,	2,244 patients, 10 trea	atments)					
Carbamazepine vs Control	3.97	$(0.17 - 2.4 \times 10^3)$	$(0.11 - 3.0 \times 10^3)$				
Carbamazepine+Clonazepam vs Control	7.48	$(0.01 - 7.8 \times 10^3)$	$(0.01 - 9.0 \times 10^3)$				
Carbamazepine+Lamotrigine vs Control	4.47	$(0.00 - 5.0 \times 10^3)$	$(0.00 - 5.7 \times 10^3)$				
Carbamazepine+Phenytoin vs Control	7.23	$(0.01 - 6.6 \times 10^3)$	$(0.01 - 8.2 \times 10^3)$				
Clonazepam vs Control	4.88	$(0.12 - 3.2 \times 10^3)$	$(0.09 - 3.8 \times 10^3)$				
Lamotrigine vs Control	6.55	$(0.30 - 4.4 \times 10^3)$	$(0.21 - 4.7 \times 10^3)$				
Lamotrigine+Valproate vs Control	113.50	$(2.33 - 7.8 \times 10^4)$	$(1.62 - 8.9 \times 10^4)$				
Oxcarbazepine vs Control	10.23	$(0.36 - 6.8 \times 10^3)$	$(0.26 - 7.5 \times 10^3)$				
Valproate vs Control	13.97	$(0.68 - 8.4 \times 10^3)$	(0.47 - 1.0 x 10 ⁴)				
Common within-network between-study variance	0.23	(0.00 - 2.88)					
Evaluation of inconsistency using the design-by-treatment	nt interaction model	Chi-square test: 2.17 Degrees of Freedom: 3	P-value: 0.54 Heterogeneity: 0.00				

Treatment Comparison	NMA Odds Ratio	95% CrI	95% PrI
Autism/Dyspraxia - Sensitivity Ana	lysis - Low Risk of B	Bias: "Comparability of Co	ohorts''
(4 studies, 1	2,395 patients, 12 tre	atments)	
Carbamazepine vs Control	9.55	(0.90 - 246.20)	(0.61 - 329.40)
Carbamazepine+Clonazepam vs Control	13.58	$(0.01 - 1.3 \times 10^3)$	$(0.01 - 1.6 \times 10^3)$
Carbamazepine+Lamotrigine vs Control	7.11	(0.01 - 614.20)	(0.01 - 717.60)
Carbamazepine+Phenytoin vs Control	10.97	$(0.01 - 1.1 \times 10^3)$	$(0.01 - 1.4 \times 10^3)$
Clonazepam vs Control	8.33	(0.45 - 263.10)	(0.33 - 353.70)
Lamotrigine vs Control	10.98	(1.07 - 283.50)	(0.71 - 358.20)
Lamotrigine+Valproate vs Control	194.10	$(8.06 - 8.4 \times 10^3)$	$(6.28 - 1.0 \times 10^4)$
Levetiracetam vs Control	4.25	(0.00 - 390.90)	(0.00 - 485.30)
Oxcarbazepine vs Control	17.60	(1.22 - 552.20)	(0.86 - 727.40)
Phenytoin vs Control	9.76	(0.01 - 861.60)	$(0.01 - 1.0 \times 10^3)$
Valproate vs Control	21.06	(1.86 - 525.40)	(1.25 - 681.90)
Common within-network between-study variance	0.19	(0.00 - 2.43)	
Evaluation of inconsistency using the design-by-treatmen	t interaction model	Chi-square test: 3.36 Degrees of Freedom: 5	P-value: 0.64 Heterogeneity: 0.00
Autism/Dyspraxia - Sensitivity Analy	vsis - Maternal IQ (1	study, 77 patients, 6 treat	ments)**
Carbamazepine+Clonazepam vs Carbamazepine	1.86	(0.07 - 47.62)	_
Carbamazepine+Lamotrigine vs Carbamazepine	1.18	(0.05 - 27.78)	-
Carbamazepine+Phenytoin vs Carbamazepine	1.86	(0.07 - 47.62)	-
Lamotrigine+Valproate vs Carbamazepine	15.87	(1.87 - 142.86)	-
Valproate vs Carbamazepine	1.33	(0.18 - 10.20)	-
Common within-network between-study variance	NA	NA	
Evaluation of inconsistency using the design-by-treatmen	t interaction model	NA	NA

Abbreviations: NMA – Network Meta-analysis; OR – odds ratio; CrI – Credible Interval; PrI – Predictive Interval ** Network did not include a control arm, comparison with Carbamazepine is reported instead