
A Supplementary Material545

A.1 Reference genomes546

Table S1. Accession numbers of full assemblies for the
chromosome of all extant Yersinia pestis and Yersinia
pseudotuberculosis reference genomes. In addition, the
number of IS annotations per reference is given.

Strain Accession no. IS annotations

Yersinia pestis
CO92 NC 003143.1 233
Antiqua NC 008150.1 293
Z176003 NC 014029.1 170
Nepal516 NC 008149.1 212
KIM10+ NC 004088.1 151
biovar Microtus 91001 NC 005810.1 168
Pestoides F NC 009381.1 190

Yersinia pseudotub.
IP 31758 NC 009708.1 -
YPIII NC 010465.1 -
PB1/+ NC 010634.1 -
IP32953 NC 006155.1 -

Yersinia pestis Antiqua

Yersinia pestis C092

Yersinia pestis Z176003

Yersinia pestis Nepal516

Yersinia pestis KIM10

Yersinia pestis biovar Microtus

Yersinia pestis Pestoides F

Yersinia pseudotuberculosis IP31758

Yersinia pseudotuberculosis YPIII

Yersinia pseudotuberculosis PB1

Yersinia pseudotuberculosis IP32953

Marseille OBS

London 8291

Figure S1. Yersinia pestis phylogeny, including
seven extant Yersinia pestis strains, four extant
Yersinia pseudotuberculosis strains and two ancient
Yersinia pestis strains from the London and Marseille
outbreak of the bubonic plague.

Table S2. IS families obtained from BASys annotations.

IS family Number of sequences

IS1328 6
IS150 71
IS200 568
IS21 8

IS257 13
IS3A 12
IS4 2

IS5376 343
IS911 15

IS911B 15
ISRM3 243 Length
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Figure S2. Lengths of all potential IS annotations in
all reference genomes.
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A.2 Ancient read data547

The read set for the London strain individual 8291 (Genbank accession SRA045745) consists of merged single-end548

reads obtained by array-based enrichment and Illumina sequencing3. The read set for the Marseille strain (European549

Nucleotide Archive under accession PRJEB12163) consists of five samples obtained by array-based enrichment and550

Illumina sequencing as well2. For this data set, we merged the paired-end reads according to the preprocessing described551

in the next section.552

553

Table S3. Read classification with kraken13 against a local copy of NCBI Nucleotide Database to obtain a taxonomic
classification for reads in both datasets. The table contains an extract of the report computed by kraken, with the two
most frequent genera in addition to the Yersinia classification.

London Marseille
Taxon # reads % of reads Taxon # reads % of reads

unclassified 2672978 27.21 unclassified 9,825,271 58.31
Bacteria 7138248 72.67 Bacteria 6,856,243 40.69
Yersinia 3772442 38.40 Yersinia 4,550,983 27.01
Y. pestis 375138 3.82 Y. pestis 726615 4.31
Y. pseudotuberculosis 3127 0.03 Y. pseudotuberculosis 7462 0.04
Y. enterocolitica 1574 0.02 Y. enterocolitica 2337 0.01

Rhodanobacter 9302 0.09 Mycoplasma 21049 0.12
Pusillimonas 8207 0.08 Burkholderia 12697 0.08
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Figure S3. Read length distribution for reads in datasets 8291 (London) and OBS116 (Marseille).
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A.3 Preprocessing of reads554

The raw reads of all OBS samples have been preprocessed and merged (as described in2):555

1) Trim adapters separately for R1 and R1, adapter sequence given556

# -a adapter sequence557

# -e maximum allowed error rate (no. of errors divided by the length558

# of the matching region)559

# -O minimum overlap length between read and adapter560

cutadapt -a AGATCGGAAGAGC -e 0.16 -O 1 $READS_R1 -o "${SAMPLE}_R1t.fastq"561

cutadapt -a AGATCGGAAGAGC -e 0.16 -O 1 $READS_R2 -o "${SAMPLE}_R2t.fastq"562

3) Merge trimmed reads563

# -m minimum required overlap length between two reads to provide a564

# confident overlap565

# -x maximum allowed ratio between the number of mismatched base pairs566

# and the overlap length567

flash "${SAMPLE}_R1t.fastq" "${SAMPLE}_R2t.fastq" -m 11 -x 0.15568

-o "${SAMPLE}_R12t.fastq"569

4) Concatenate merged reads and unmerged R1s and filter out reads570

shorter than 24 bases571

./min_length.py "${SAMPLE}_R121.fastq" "${SAMPLE}_R121_24.fastq"572

A.4 Contig assembly573

For both datasets, we assembled aDNA reads with minia4 with different values of the k-mer threshold k 2 {17,19,21}574

and a minimal k-mer occurence of 3. We evaluated the total contigs length with regards to a minimal contig length575

threshold 2 {200,300,400,500}. The total contig length can indicate how much of the expected genome size the576

assembled contigs can cover, while a higher minimal contig threshold can provide a better base for defining markers.577

We found the best trade-off with k = 19 and a minimal contig length of 300bp for the 8291 dataset and k = 21 and a578

minimal contig length of 300bp for the OBS116 dataset. In addition, Bos et al3 describe a reference-based assembly of579

the London strain consisting of 2,134 contigs of length at least 500bp. It was obtained with the assembler Velvet14
580

using the extant strain Yersinia pestis CO92 as a reference. In order to assess the influence of the reference sequence581

in the assembly of the ancient genome, we compare our pipeline using this initial assembly to our results based on582

the de novo assembly. We will refer to the assembly by Bos et al. as reference-based in the following. As expected,583

the de novo assembly is more fragmented with 4,183 contigs of length at least 300bp that cover 2,631,422 bp. We584

compared both contig assemblies by aligning them with MUMmer7. Unaligned bases mostly belong to regions in the585

reference-based assembly that have not been assembled in the conservative de novo assembly, and only an extremely586

low amount of nucleotide variations can be observed (Table S4), and no observed genome rearrangement.587

Table S4. Comparison of contigs in reference-based and de novo assembly of the London data set.

reference-based assembly de novo assembly
Velvet3, 14 minia4

Length threshold L 500 bp 300 bp
Number of contigs > L 2134 4183

Total contig length 4,013,159 bp 2,631,422 bp

Aligned contigs 1,866 (87.44%) 3,885 (92.88%)
Aligned bases 2,414,881(60.17%) 2,380,757(90.47%)

Unaligned bases 1,598,278 (39.83%) 250,665 (9.53%)
Single Nucleotide InDels 14

SNPs 39
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Figure S4. Contig length distribution for (1) all contigs longer than 500bp in the reference-based assembly for the
London dataset and (2) all contigs longer than 300bp in the de novo assembly for the London dataset and (3) all contigs
longer than 500bp in the de novo assembly for Marseille dataset OBS116.
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Figure S5. Total length of contigs mapped to Yersinia
pestis CO92 greater than a minimum contig length for
Marseille samples.
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Figure S6. Comparison of contigs by mapping to
different reference sequences. While most of the
references are covered by at least one sample, only a small
part of the references is covered by all Marseille samples.

A.5 Ancestral marker adjacencies588

We define ancestral markers as described in10. Potential ancestral adjacencies are defined according to the Dollo589

parsimony criteria. We obtain 2,207 markers that cover 3,463,281 bp in total for the reference-based assembly. For the590

de novo assembly, we obtain 3,691 markers covering 2,215,596 bp in total. All markers for the de novo assembly are591

contained in or overlapping with markers from the reference-based assembly.592
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Figure S7. Defining the set of potential ancestral adjacencies, given extant adjacencies at the leaves of the phylogeny.
An adjacency is potentially ancestral if it is present in two extant leaves whose path in the tree contains the ancestor of
interest (red dot). In this example, the blue, green and orange adjacencies fulfill this criterion, while the grey adjacency
is not potentially ancestral. Note that the set of potential ancestral adjacencies is not consistent: The green and orange
adjacencies are conflicting as they share the same marker extremity Bh (see also Figure S8.)
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Figure S8. Example for conflicting adjacencies. Each marker a,b and c is depicted by its extremities in order to
decode its orientation in the genome. The two adjacencies {ah,bt} and {ah,ch} are conflicting and cannot be part of a
consistent reconstructed genome in the same time. See also S14 and S17 for conflicting adjacencies in both ancient
Yersinia pestis datasets.
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Figure S9. Length variation of extant gaps supporting potential ancestral adjacencies for the 8291 dataset: (a) for
markers based on the reference-based assembly, (b) for markers based on the de novo assembly.
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A.6 Read mapping593

For mapping the reads to the template gap sequences, we used BWA8 with parameter -a to keep all alignments for each594

read and samtools rmdup to remove PCR-duplicates. In order to correctly identify breakpoints in the mappings, we also595

removed all clipped alignments.596

bwa mem -a ${GAP} ${READS}.fastq > ${GAP}.sam597

awk ’$6 !˜ /H|S/{print}’ ${GAP}.sam | samtools view -S -F 4 -b > ${GAP}.bam598

samtools sort ${GAP}.bam ${GAP}_mapped599

samtools rmdup -s ${GAP}_mapped.bam ${GAP}_mapped_d.bam600

A.7 Filling of gaps between adjacent markers601

For the reference-based assembly, we inferred 2,208 potential adjacencies: 1,991 are simple, 207 IS-annotated but602

non-conflicting, and 10 are conflicting. Among the conflicting adjacencies 8 are also IS-annotated, illustrating that most603

rearrangements in Yersinia pestis that can create ambiguous signal for comparative scaffolding, are associated with IS604

elements. We have 28 and 21 gaps in the reference-based and de novo assembly respectively whose lengths difference605

falls into the length range of potential annotated IS elements, thus raising the question of the presence of an IS within606

these adjacencies in the ancestral genome. We note a small number of potential ancestral adjacencies with strikingly607

large extant gap length differences (7 and 5 in the respective assemblies).608

For each filled gap, we computed the edit distance between the read-based gap sequence and the respective template609

for both assemblies (see Figure S11). Especially for IS-annotated gaps, this allows us to compare the filled gap sequence610

with the reconstructed gap sequence if IS annotations are ignored. One gap annotated with an IS elements in the611

reference-based assembly shows a larger distance of 1959 to the template, corresponding to the annotated length of612

the IS. While the template does not include the IS sequence, the mappings of the reads shows clear breakpoints at the613

respective gap for the non-IS template and provides full coverage for the IS template.

Table S5. Results of gap filling for both assemblies of the London dataset. If a gap is conflicting and IS-annotated, we
assign it to the conflicting group.

reference-based assembly de novo assembly

consistent conflicting IS consistent conflicting IS

gaps of length 0 48 29
gaps filled 1,162 2 109 2808 2 92
length (bp) 172,614 7,876 70,550 710,138 86,805
gaps partially filled 718 - 84 637 - 98
total length (bp) 319,633 - 240,085 862,307 - 505,856
coverage by reads (bp) 245,779 - 194,414 765,406 - 443,090
gaps not filled 63 8 14 9 5 11
length (bp) 7,154 172,689 25,777 18,249

total number of gaps 1,943 10 207 3454 7 201
total gap length (bp) 499,401 483,324 1,598,222 610,910

total assembly length 4,398,214 4,441,004
coverage by marker 3,463,281 (78,74 %) 2,215,596 (49.88 %)
coverage by reads 4,154,514 (94.46 %) 4,230,162 (95.25 %)

614
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Figure S10. Result of gap filling for the reference-based as well as the de novo assembly for the London data set.
Note that if a gap is conflicting and IS-annotated, we assign it to the conflicting group. We differentiate between gaps of
length 0 (i. e. both markers are directly adjacent), completely and partially filled gaps and not filled gaps.
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Figure S11. (a) Edit distance between reconstructed gap sequence and template sequence for all covered gaps in the
reconstruction for (a) the reference-based assembly, (b) the de novo assembly.

Table S6. Gaps filled in the marseille dataset.

consistent conflicting IS

gaps of length 0 27
gaps filled 2610 4 157
length (bp) 751634 13231 222079

gaps partially filled 9 - 15
total length (bp) 15001 - 34223
covered by reads (bp) 6140 - 28650

gaps not filled 1 3 33
length (bp) 130 77125

total assembly length 4,350,872
covered by markers 3,143,627 (72.25 %)
covered by reads 4,165,361 (95.73 %)
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Figure S12. Overview over the pipeline based on the AGapEs method applied to all ancient data sets in this paper.
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Figure S13. Example for a mapping of ancient reads to an adjacency and a template gap sequence. The overlapping
set of reads depicted in green covers the gap template. The overlap indicated in red is represented by one edge in the
graph constructed by AGapEs, the non-overlapping suffix of the mapping is considered to weight the edge by the edit
distance.
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A.8 Comparison with gap2Seq615

The gap2Seq algorithm aims at closing gaps in assemblies as an exact path length problem on a de-bruijn graph of the616

given reads. We ran gap2Seq on the reference-based assembly gaps with k = 19. For the de novo assembly gaps, we617

could only get results for a higher k = 23, while the implementation could not finish for lower values of k.618

Table S7. Comparison of gap filling results for AGapEs and gap2Seq on the London dataset. For each assembly, we
divide all gaps into the three respective categories. We count gaps that are filled by both methods and gaps that are only
filled by one of both methods. The total value sums up the number of gaps filled by each method.

reference-based assembly de novo assembly

all AGapEs gap2Seq both all AGapEs gap2Seq both

consistent 1991 263 3 924 3483 1919 0 886
conflicting 10 3 0 0 7 3 0 0
IS 207 70 0 62 201 76 0 37

total 2208 1322 989 3691 2921 923
59,87% 44,79% 79,14% 25,01%

A.9 Conflicting components619

The conflicting components shown in S14 and S17 indicate potential points of genome rearrangements in the phylogeny.620

Including all these adjacencies prevents from building a linear or circular gene order. We used the aDNA mapping621

information to select ancestral adjacencies for linearization. Ideally, if one gap is covered by reads, we spot breakpoints622

in the read mappings to the other gaps in conflict. For the London data set, the first two components in both assemblies623

are matching, i. e. they coincide in the coordinates of their corresponding extant gaps. These components contain624

only one adjacency that is supported by the reads each, so we remove all other adjacencies from the set of ancestral625

adjacencies. For the additional third conflicting component in the reference-based assembly, no adjacency can be626

supported by the reads and hence all of them are removed in order to reconstruct a set of reliable CARs In the Marseille627

data set, the conflicting components correspond to the conflicts observed in the de novo assembly for the black death628

data set. However, in the first connected component, a different adjacency is supported by the reads than in the black629

death data. This indicates a potential rearrangement breakpoint, however further fragmentation in the set of CARs is630

preventing an explicit demonstration for that. In the second component, all adjacencies are supported by the reads.631

Hence, we remove all unsupported adjacencies in the first and all adjacencies in the second component. See Figure S15632

for the read coverage of discarded adjacencies.633

For the reference-based assembly, the set of ancestral adjacencies can then be ordered into seven Contiguous634

Ancestral Regions (CARs), while we obtain five CARs for the de novo assembly. We convert the reconstructed635

sequences of markers back to genome sequences by filling the gaps with the read sequences if possible and resorting to636

the template sequence otherwise.637
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Figure S14. Conflicting components in the set of potential adjacencies for the reference-based assembly and the de
novo assembly on the black death data set. Marker with both their extremities are indicated by the grey boxes, while
adjacencies are depicted by connecting lines between two extremities. Gaps containing IS sequences are labeled
accordingly. The color labels indicate the extant occurrences for each adjacency and hence its conservation in the tree.
All gaps that are fully covered by reads and do not contain breakpoints in the mappings are marked by the green stars.

0 1000 2000 3000 4000 5000

0
40

80
14

0

gap 6496 − 7387

C
ov

er
ag

e

0 2000 4000 6000 8000

0
40

10
0

gap 27 − 6924

C
ov

er
ag

e

0 2000 4000 6000 8000 10000

0
50

15
0

gap 7095 − 8032

C
ov

er
ag

e

0 2000 4000 6000 8000

1
10

0

gap 27 − 30

C
ov

er
ag

e

0 1000 2000 3000 4000

0
40

80
14

0

gap 153 − 460

C
ov

er
ag

e

Figure S15. Read coverage for discarded adjacencies in conflicting components for the de novo reconstruction for the
London data set. The sequence is flanked by the marker, the gap borders are indicated in red.
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Figure S16. Larger gap between marker for the reconstruction of the London strain that has been removed from the
assembly due to insufficient read coverage.

X



152 406 5224 5877

KIM10/Nepal516
CO92/Z176003/Antiqua
PestoidesF/biovar Microtus str 91001
pseudotuberculosis

5613 633325235510

151 405 5223 5878

IS IS

IS IS IS

*

*
5509 24 26 5614 6334

**

Figure S17. Conflicting components in the set of potential adjacencies for the marseille dataset. Marker with both
their extremities are indicated by the grey boxes, while adjacencies are depicted by connecting lines between two
extremities. Gaps containing IS sequences are labeled accordingly. The color labels indicate the extant occurrences for
each adjacency and hence its conservation in the tree. All gaps that are fully covered by reads and do not contain
breakpoints in the mappings are marked by the green stars.
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Figure S18. Read coverage for discarded adjacencies in conflicting components for the de novo reconstruction for the
Marseille data set. The sequence is flanked by the marker, the gap borders are indicated in red.
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A.10 Comparison of improved assemblies for London dataset638

We compared the two sets of CARs obtained from both initial assemblies by aligning the resulting genome sequences639

using MUMmer7. As seen in Figure S19, we observe no rearrangements between both resulting sets of CARs, showing640

that, in terms of large-scale genome organization, the final result does not depend on the initial contig assembly.641

Figure S19. Comparison between the de novo assembly (left) and the reference-based assembly (right) for the
London data set. The inner links connect corresponding CARs in the reconstructions. The grey lines indicate
substitutions and InDels observed. The positions in both assemblies covered by markers are indicated in blue. All gaps
that have IS annotation in the extant genomes are shown in orange. In addition, gaps that are only partially filled or
have very unconserved extant gap lengths are indicated in red. Finally, the most outer ring shows the average read
coverage in windows of length 200bp in log-scale. Figure done with Circos6.

In total, only 85,578bp in the reference-based assembly and 88,529bp in the de novo assembly are not covered by642

any read; however most uncovered regions are rather short (see643

We achieve a high similarity between both sets of CARs. While the improved de novo assembly contains a larger644

amount of filled gap sequences, we align nearly all of both sequences and observe only a low number of SNPs and645

insertions and deletions between both assemblies (see Figure S19). The observed differences are often located in gaps646

with low read coverage regions. If short regions in the gaps are only covered by a single read, in order to find a shortest647

path in the mappings, this read has to be included at all costs and can cause corrections to the template that are not648

supported by any other read. Further re-sequencing of these regions could clear which variant is present in the ancient649

genome.650

In the improved reference-based assembly, 78.74% of the resulting sequence is defined by markers and hence651

directly adopted from the initial assembly, while for the improved de novo assembly only 49.88% of the improved652

assembly is based on marker sequences and a larger part is based on the filled gap sequences. Together with the gaps653

that have been filled by read sequences, we can say that for the reference-based assembly in total 94.46% and for the de654
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Table S8. Comparison of improved assemblies on nucleotide level. Both sets of CARs have been corrected with
PILON12, but only corrections of small InDels are kept.

reference-based de novo assembly

Aligned sequences 6 (85.71%) 5 (100%)
Total bases 4398441 4441094

Unaligned bases 13145(0.30%) 38702(0.87%)
InDels 216

Substitutions 389

L - reference-based L - de novo M - de novo
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Figure S20. Length distribution of uncovered parts after mapping all reads from both datasets back to the improved
reconstructed sequence.

novo assembly in total 95.25% are reconstructed using only the available aDNA reads.655

We used BWA8 to align all reads again to the assembly to assess the amount of uncovered regions in the reconstructed656

sequences. We keep all optimal mappings for each read. In total, 85578bp in the reference-based assembly and 88529bp657

in the de novo assembly are not covered by any read. In addition, Figure S20 shows that most uncovered regions are658

short.659

A.11 DCJ distance660

The DCJ distance of two genomes A and B represented as sequences of markers is the number of double cut or join661

operations on adjacencies in A and B. It can be computed based on the adjacency graph AG(A,B), whose vertices662

display adjacencies and telomeres (marker extremities not contained in any adjacency) of A and B, and there is an edge663

between vertices that share the same marker extremity. Then the DCJ distance is664

dDCJ(A,B) = N � (C+ I/2) (1)

with N being the number of markers, C being the number of cycles and I being the number of odd paths in AG(A,B)1.665
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A.12 Assembly validation666

Table S9. Software parameters for assembly tools

Software parameters

SPAdes Multi-cell mode, single reads, read error correction,
k automatically selected based on read length

Minia -abundance-min 3, -kmer-size 21 for Marseille,
-kmer-size 19 for London dataset

Ragout -s sibelia for synteny block decomposition
Medusa -d to estimate contig distances

Gap2Seq -k 21

The following table is an extension of Table 1 and describes the assembly statistics for all combinations of SPAdes,667

minia, ragout and MeDuSa as well as the reference-based assembly with AGapEs described in the appendix.668

Table S10. Extended Assembly statistics for both data sets, based on contigs with a minimal length of 500bp. The
LAP and CGAL likelihoods have been computed based on all reads mapping to any of the reference sequences.

Assembly # contigs total length # N’s N50 LAP5 CGAL9

London

SPAdes 2,555 3,792,691 bp 0 1,888 -11.01048 -6.90196e+08
Minia 4,183 2,631,422 bp 0 930 -15.69016 -7.98656e+08

SPAdes-Ragout 1 4,068,385 bp 776,139 - -12.52232 -4.8192e+08
Minia-Ragout 2 4,504,786 bp 2020160 4,487,995 -15.72228 -7.86108e+08

SPAdes-MeDuSa 77 4,333,801 bp 1,917 700,415 -7.97066 -5.00106e+08
Minia-MeDuSa 9 2,626,626 bp 2074 2,574,520 -15.67916 -7.7175e+08

ref-AGapEs 6 4,398,314 bp 0 3,147,154 -7.29586 -3.67341e+08
Minia-AGapEs 5 4,441,104 bp 0 3,511,710 -7.26576 -3.55155e+08

Marseille

SPAdes 3,201 6,072,375 bp 0 4,592 -11.03336 -6.0411e+08
Minia 3089 3,636,663 bp 0 1,368 -15.05058 -8.71446e+08

SPAdes-Ragout 2 4,564,323 bp 542,013 4,530,296 -13.34526 -5.84186e+08
Minia-Ragout 1 3,886,827 bp 1,965,259 - -16.41699 -9.69013e+08

SPAdes-MeDuSa 2155 6,052,372 bp 618 1,643,585 -10.88342 -6.12532e+08
Minia-MeDuSa 125 3,638,125 bp 1462 2,695,392 -15.03495 -8.42249e+08
Minia-AGapEs 6 4,350,872 bp 0 3,459,919 -8.05526 -4.32647e+08

Table S11. Gene predictions for London strain and Yersinia pestis CO92 computed with prokka11.

Minia SPAdes Bos Minia CO92
+AGapEs +Ragout

+Gap2Seq

CDS 3943 4027 3376 2023 4090
rRNA 16 0 1 0 19
tRNA 71 18 30 0 69

tmRNA 1 1 0 0 1
repeat region 3 1 0 0 3

XIV



Table S12. Gene predictions for Marseille strain and Yersinia pestis CO92 computed with prokka11.

Minia SPAdes Minia CO92
+AGapEs +Ragout

+Gap2Seq

CDS 3876 3924 2997 4090
rRNA 15 0 0 19
tRNA 68 51 4 69

tmRNA 1 1 0 1
repeat region 3 1 0 3
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