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Supplementary Figure 1: An agent-based model for simulating 3D tumor growth, mutation accumu-
lation, and multi-region sequencing data under various evolutionary modes.

Tumor growth is simulated via the expansion of deme subpopulations (composed of 5-10k cells or 0.5-1k
cells) within a defined 3D cubic lattice according to explicit rules dictated by spatial constraints, where cells
within each deme are well-mixed and grow via a random branching (birth-death) process (Methods). The
acquisition of random mutations (neutral or beneficial) is simulated under different evolutionary modes (the
null neutral model (selection coefficient, s=0), neutral-CSC (s=0), and selection models with s=0.01, 0.02,
0.03, 0.05 or 0.1), and used to trace the genealogy of each cell as the tumor expands. Subsequently, the
virtual tumor is sampled and sequenced as is done experimentally after resection or biopsy. Using this
approach it is possible to evaluate differences in the SFS and tumor subclonal architecture under different
modes of selection and sampling strategies. Key parameters of the models are indicated in the Methods
(Supplementary Table 1).
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Supplementary Figure 2: Schematic overview of MRS analysis pipeline.

Short read data from in-house or publicly available MRS datasets were aligned to hg19 using BWA (0.7.12-
r1039) 1. The raw alignment files (BAMs) were then pre-processed following best practices, including indel
realignment, base recalibration and flagging of duplicated reads. MuTect (v1.1.4) 2 and Samtools (v 1.2)
3 were employed to scan for somatic SNVs (SSNV) and germline SNVs (GSNV), respectively. The raw
variant level data were then subject to analysis within a custom variant assurance pipeline (VAP) for MRS
to ensure balance between sensitivity and specificity (Methods and Supplementary Note). SSNVs were
determined by calculating the log odds (LOD) of the mutation at that site and the LOD of the normal being
the reference allele given the sequencing reads and base qualities, as previously described 2. To increase
sensitivity, a moderately low threshold for the tumor LOD was adopted and local errors were accounted
for to ensure the conservative treatment of base error rates. Additional filters were employed to exclude
germline variants or sequencing artifacts (see Supplementary Note). The VAF (unadjusted) was calculated
by dividing the number of reads carrying the variant by the total number of reads spanning that position.
Germline SNVs (GSNVs) initially detected by Samtools were subject to the same mapping feature filter to
retain high quality GSNVs. The read depth for alternative and reference alleles was calculated for heterozy-
gous SNVs found in the normal control. CNA calls and tumor purity/ploidy estimates were generated using
TitanCNA 4. To enable more reliable adjustment of VAF and subsequent calculation of statistics related to
the SFS, we set stringent QC requirements for the inclusion of tumor samples: 1) estimated purity >0.5;
2) median sequencing depth >50; 3) number of subclonal SSNVs >50. At least two primary tumor regions
were required to meet these specifications. The observed VAFs were then adjusted for estimated tumor
purity and local copy number as described elsewhere 5 (see Supplementary Note).
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Supplementary Figure 3: Pairwise SFS histograms for representative virtual tumors simulated un-
der different evolutionary modes.
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Supplementary Figure 3: Pairwise SFS histograms for representative virtual tumors simulated un-
der different evolutionary modes.



c
s=0.01_89 A vs B

VAF

#
 o

f 
M

u
ta

ti
o
n
s

0 0.2 0.4 0.6 0.8 11
0
0

6
0

2
0

2
0

6
0

1
0
0

B , 258 SSNVs

A , 429 SSNVs

fHsub = 0.215
FST = 0.095
KSD = 0.183

Public (98)
Pvt−Shared
Rgn Specific

s=0.01_89 A vs C

VAF

#
 o

f 
M

u
ta

ti
o
n
s

0 0.2 0.4 0.6 0.8 11
0
0

6
0

2
0

2
0

6
0

1
0
0

C , 284 SSNVs

A , 438 SSNVs

fHsub = 0.115
FST = 0.09

KSD = 0.143

Public (98)
Pvt−Shared
Rgn Specific

s=0.01_89 A vs D

VAF

#
 o

f 
M

u
ta

ti
o
n
s

0 0.2 0.4 0.6 0.8 1

9
0

6
0

2
0

2
0

6
0

9
0

D , 240 SSNVs

A , 423 SSNVs

fHsub = 0.143
FST = 0.077
KSD = 0.112

Public (98)
Pvt−Shared
Rgn Specific

s=0.01_89 A vs E

VAF

#
 o

f 
M

u
ta

tio
n
s

0 0.2 0.4 0.6 0.8 1

9
0

6
0

2
0

2
0

6
0

9
0

E , 286 SSNVs

A , 419 SSNVs

fHsub = 0.13
FST = 0.083
KSD = 0.076

Public (98)
Pvt−Shared
Rgn Specific

s=0.01_89 A vs F

VAF

#
 o

f 
M

u
ta

ti
o
n
s

0 0.2 0.4 0.6 0.8 1

9
0

6
0

2
0

2
0

6
0

9
0

F , 182 SSNVs

A , 429 SSNVs

fHsub = 0.183
FST = 0.094
KSD = 0.221

Public (98)
Pvt−Shared
Rgn Specific

s=0.01_89 A vs G

VAF

#
 o

f 
M

u
ta

tio
n
s

0 0.2 0.4 0.6 0.8 1

9
0

6
0

2
0

2
0

6
0

9
0

G , 316 SSNVs

A , 430 SSNVs

fHsub = 0.14
FST = 0.085
KSD = 0.088

Public (98)
Pvt−Shared
Rgn Specific

s=0.01_89 A vs H

VAF

#
 o

f 
M

u
ta

tio
n
s

0 0.2 0.4 0.6 0.8 1

8
0

4
0

0
2
0

6
0

H , 315 SSNVs

A , 413 SSNVs

fHsub = 0.132
FST = 0.098
KSD = 0.134

Public (98)
Pvt−Shared
Rgn Specific

s=0.01_89 B vs C

VAF

#
 o

f 
M

u
ta

ti
o
n
s

0 0.2 0.4 0.6 0.8 1

9
0

6
0

2
0

2
0

6
0

9
0

C , 285 SSNVs

B , 261 SSNVs

fHsub = 0.209
FST = 0.059
KSD = 0.198

Public (98)
Pvt−Shared
Rgn Specific

s=0.01_89 B vs D

VAF

#
 o

f 
M

u
ta

ti
o
n
s

0 0.2 0.4 0.6 0.8 1

9
0

6
0

2
0

2
0

6
0

9
0

D , 243 SSNVs

B , 266 SSNVs

fHsub = 0.222
FST = 0.058
KSD = 0.146

Public (98)
Pvt−Shared
Rgn Specific

s=0.01_89 B vs E

VAF

#
 o

f 
M

u
ta

tio
n
s

0 0.2 0.4 0.6 0.8 1

9
0

6
0

2
0

2
0

6
0

9
0

E , 290 SSNVs

B , 257 SSNVs

fHsub = 0.219
FST = 0.058
KSD = 0.183

Public (98)
Pvt−Shared
Rgn Specific

s=0.01_89 B vs F

VAF

#
 o

f 
M

u
ta

ti
o
n
s

0 0.2 0.4 0.6 0.8 1

8
0

4
0

0
2
0

6
0

F , 192 SSNVs

B , 255 SSNVs

fHsub = 0.273
FST = 0.068
KSD = 0.175

Public (98)
Pvt−Shared
Rgn Specific

s=0.01_89 B vs G

VAF

#
 o

f 
M

u
ta

tio
n
s

0 0.2 0.4 0.6 0.8 1

11
0

6
0

2
0

2
0

6
0

1
0
0

G , 314 SSNVs

B , 258 SSNVs

fHsub = 0.222
FST = 0.049
KSD = 0.158

Public (98)
Pvt−Shared
Rgn Specific

s=0.01_89 B vs H

VAF

#
 o

f 
M

u
ta

tio
n
s

0 0.2 0.4 0.6 0.8 1

1
0
0

6
0

2
0

2
0

6
0

1
0
0

H , 308 SSNVs

B , 269 SSNVs

fHsub = 0.225
FST = 0.056
KSD = 0.164

Public (98)
Pvt−Shared
Rgn Specific

s=0.01_89 C vs D

VAF

#
 o

f 
M

u
ta

ti
o
n
s

0 0.2 0.4 0.6 0.8 1

9
0

6
0

2
0

2
0

6
0

9
0

D , 249 SSNVs

C , 282 SSNVs

fHsub = 0.132
FST = 0.064
KSD = 0.146

Public (98)
Pvt−Shared
Rgn Specific

s=0.01_89 C vs E

VAF

#
 o

f 
M

u
ta

tio
n
s

0 0.2 0.4 0.6 0.8 1

9
0

6
0

2
0

2
0

6
0

9
0

E , 295 SSNVs

C , 289 SSNVs

fHsub = 0.119
FST = 0.073
KSD = 0.151

Public (98)
Pvt−Shared
Rgn Specific

s=0.01_89 C vs F

VAF

#
 o

f 
M

u
ta

ti
o
n
s

0 0.2 0.4 0.6 0.8 1

9
0

6
0

2
0

2
0

6
0

9
0

F , 184 SSNVs

C , 289 SSNVs

fHsub = 0.173
FST = 0.079
KSD = 0.151

Public (98)
Pvt−Shared
Rgn Specific

s=0.01_89 C vs G

VAF

#
 o

f 
M

u
ta

tio
n
s

0 0.2 0.4 0.6 0.8 11
2
0

8
0

4
0

0
4
0

8
0

1
2
0

G , 316 SSNVs

C , 275 SSNVs

fHsub = 0.132
FST = 0.072
KSD = 0.153

Public (98)
Pvt−Shared
Rgn Specific

s=0.01_89 C vs H

VAF

#
 o

f 
M

u
ta

tio
n
s

0 0.2 0.4 0.6 0.8 11
0
0

6
0

2
0

2
0

6
0

1
0
0

H , 311 SSNVs

C , 281 SSNVs

fHsub = 0.125
FST = 0.073
KSD = 0.072

Public (98)
Pvt−Shared
Rgn Specific

s=0.01_89 D vs E

VAF

#
 o

f 
M

u
ta

tio
n
s

0 0.2 0.4 0.6 0.8 1

7
0

4
0

1
0

2
0

5
0

E , 287 SSNVs

D , 244 SSNVs

fHsub = 0.143
FST = 0.066
KSD = 0.083

Public (98)
Pvt−Shared
Rgn Specific

s=0.01_89 D vs F

VAF

#
 o

f 
M

u
ta

ti
o
n
s

0 0.2 0.4 0.6 0.8 1

8
0

4
0

0
4
0

8
0

F , 184 SSNVs

D , 241 SSNVs

fHsub = 0.192
FST = 0.07

KSD = 0.208

Public (98)
Pvt−Shared
Rgn Specific

s=0.01_89 D vs G

VAF

#
 o

f 
M

u
ta

tio
n
s

0 0.2 0.4 0.6 0.8 1

11
0

6
0

2
0

2
0

6
0

1
0
0

G , 312 SSNVs

D , 255 SSNVs

fHsub = 0.152
FST = 0.059
KSD = 0.088

Public (98)
Pvt−Shared
Rgn Specific

s=0.01_89 D vs H

VAF

#
 o

f 
M

u
ta

tio
n
s

0 0.2 0.4 0.6 0.8 1

1
0
0

6
0

2
0

2
0

6
0

1
0
0

H , 316 SSNVs

D , 252 SSNVs

fHsub = 0.144
FST = 0.067
KSD = 0.13

Public (98)
Pvt−Shared
Rgn Specific

s=0.01_89 E vs F

VAF

#
 o

f 
M

u
ta

ti
o
n
s

0 0.2 0.4 0.6 0.8 1

7
0

5
0

3
0

1
0

1
0

3
0

5
0

7
0

F , 179 SSNVs

E , 290 SSNVs

fHsub = 0.185
FST = 0.089
KSD = 0.245

Public (98)
Pvt−Shared
Rgn Specific

s=0.01_89 E vs G

VAF

#
 o

f 
M

u
ta

tio
n
s

0 0.2 0.4 0.6 0.8 111
0

6
0

2
0

2
0

6
0

1
0
0

G , 308 SSNVs

E , 296 SSNVs

fHsub = 0.142
FST = 0.064
KSD = 0.093

Public (98)
Pvt−Shared
Rgn Specific

s=0.01_89 E vs H

VAF

#
 o

f 
M

u
ta

tio
n
s

0 0.2 0.4 0.6 0.8 1

1
0
0

6
0

2
0

2
0

6
0

1
0
0

H , 311 SSNVs

E , 291 SSNVs

fHsub = 0.135
FST = 0.08
KSD = 0.12

Public (98)
Pvt−Shared
Rgn Specific

s=0.01_89 F vs G

VAF

#
 o

f 
M

u
ta

tio
n
s

0 0.2 0.4 0.6 0.8 111
0

6
0

2
0

2
0

6
0

1
0
0

G , 308 SSNVs

F , 177 SSNVs

fHsub = 0.198
FST = 0.061
KSD = 0.236

Public (98)
Pvt−Shared
Rgn Specific

s=0.01_89 F vs H

VAF

#
 o

f 
M

u
ta

tio
n
s

0 0.2 0.4 0.6 0.8 1

9
0

6
0

2
0

2
0

6
0

9
0

H , 312 SSNVs

F , 183 SSNVs

fHsub = 0.188
FST = 0.075
KSD = 0.186

Public (98)
Pvt−Shared
Rgn Specific

s=0.01_89 G vs H

VAF

#
 o

f 
M

u
ta

tio
n
s

0 0.2 0.4 0.6 0.8 1

9
0

6
0

2
0

2
0

6
0

9
0

H , 315 SSNVs

G , 320 SSNVs

fHsub = 0.144
FST = 0.066
KSD = 0.139

Public (98)
Pvt−Shared
Rgn Specific

Supplementary Figure 3: Pairwise SFS histograms for representative virtual tumors simulated un-
der different evolutionary modes.
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Supplementary Figure 3: Pairwise SFS histograms for representative virtual tumors simulated un-
der different evolutionary modes.
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Supplementary Figure 3: Pairwise SFS histograms for representative virtual tumors simulated un-
der different evolutionary modes.



f
s=0.05_3 A vs B

VAF

#
 o

f 
M

u
ta

ti
o
n
s

0 0.2 0.4 0.6 0.8 1

9
0

6
0

2
0

2
0

6
0

9
0

B , 475 SSNVs

A , 621 SSNVs

fHsub = 0.353
FST = 0.194
KSD = 0.293

Public (109)
Pvt−Shared
Rgn Specific

s=0.05_3 A vs C

VAF

#
 o

f 
M

u
ta

ti
o
n
s

0 0.2 0.4 0.6 0.8 1

9
0

6
0

2
0

2
0

6
0

9
0

C , 412 SSNVs

A , 615 SSNVs

fHsub = 0.504
FST = 0.198
KSD = 0.16

Public (109)
Pvt−Shared
Rgn Specific

s=0.05_3 A vs D

VAF

#
 o

f 
M

u
ta

ti
o
n
s

0 0.2 0.4 0.6 0.8 11
0
0

6
0

2
0

2
0

6
0

1
0
0

D , 339 SSNVs

A , 620 SSNVs

fHsub = 0.557
FST = 0.252
KSD = 0.451

Public (109)
Pvt−Shared
Rgn Specific

s=0.05_3 A vs E

VAF

#
 o

f 
M

u
ta

tio
n
s

0 0.2 0.4 0.6 0.8 1

9
0

6
0

2
0

2
0

6
0

9
0

E , 397 SSNVs

A , 624 SSNVs

fHsub = 0.527
FST = 0.262
KSD = 0.287

Public (109)
Pvt−Shared
Rgn Specific

s=0.05_3 A vs F

VAF

#
 o

f 
M

u
ta

ti
o
n
s

0 0.2 0.4 0.6 0.8 1

1
0
0

6
0

2
0

2
0

6
0

1
0
0

F , 354 SSNVs

A , 628 SSNVs

fHsub = 0.497
FST = 0.266
KSD = 0.323

Public (109)
Pvt−Shared
Rgn Specific

s=0.05_3 A vs G

VAF

#
 o

f 
M

u
ta

tio
n
s

0 0.2 0.4 0.6 0.8 1

9
0

6
0

2
0

2
0

6
0

9
0

G , 296 SSNVs

A , 620 SSNVs

fHsub = 0.501
FST = 0.212
KSD = 0.256

Public (109)
Pvt−Shared
Rgn Specific

s=0.05_3 A vs H

VAF

#
 o

f 
M

u
ta

tio
n
s

0 0.2 0.4 0.6 0.8 1

1
0
0

6
0

2
0

2
0

6
0

1
0
0

H , 425 SSNVs

A , 632 SSNVs

fHsub = 0.595
FST = 0.305
KSD = 0.505

Public (109)
Pvt−Shared
Rgn Specific

s=0.05_3 B vs C

VAF

#
 o

f 
M

u
ta

ti
o
n
s

0 0.2 0.4 0.6 0.8 1

8
0

4
0

0
2
0

6
0

C , 416 SSNVs

B , 458 SSNVs

fHsub = 0.386
FST = 0.086
KSD = 0.364

Public (109)
Pvt−Shared
Rgn Specific

s=0.05_3 B vs D

VAF

#
 o

f 
M

u
ta

ti
o
n
s

0 0.2 0.4 0.6 0.8 1

8
0

4
0

0
2
0

6
0

D , 334 SSNVs

B , 479 SSNVs

fHsub = 0.424
FST = 0.169
KSD = 0.518

Public (109)
Pvt−Shared
Rgn Specific

s=0.05_3 B vs E

VAF

#
 o

f 
M

u
ta

tio
n
s

0 0.2 0.4 0.6 0.8 1

8
0

4
0

0
2
0

6
0

E , 401 SSNVs

B , 468 SSNVs

fHsub = 0.406
FST = 0.241
KSD = 0.436

Public (109)
Pvt−Shared
Rgn Specific

s=0.05_3 B vs F

VAF

#
 o

f 
M

u
ta

ti
o
n
s

0 0.2 0.4 0.6 0.8 1

9
0

6
0

2
0

2
0

6
0

9
0

F , 359 SSNVs

B , 477 SSNVs

fHsub = 0.369
FST = 0.161
KSD = 0.408

Public (109)
Pvt−Shared
Rgn Specific

s=0.05_3 B vs G

VAF

#
 o

f 
M

u
ta

tio
n
s

0 0.2 0.4 0.6 0.8 1

8
0

4
0

0
2
0

6
0

G , 298 SSNVs

B , 468 SSNVs

fHsub = 0.384
FST = 0.128
KSD = 0.391

Public (109)
Pvt−Shared
Rgn Specific

s=0.05_3 B vs H

VAF

#
 o

f 
M

u
ta

tio
n
s

0 0.2 0.4 0.6 0.8 1

9
0

6
0

2
0

2
0

6
0

9
0

H , 420 SSNVs

B , 477 SSNVs

fHsub = 0.487
FST = 0.306
KSD = 0.62

Public (109)
Pvt−Shared
Rgn Specific

s=0.05_3 C vs D

VAF

#
 o

f 
M

u
ta

ti
o
n
s

0 0.2 0.4 0.6 0.8 1

8
0

4
0

0
2
0

6
0

D , 335 SSNVs

C , 419 SSNVs

fHsub = 0.577
FST = 0.192
KSD = 0.506

Public (109)
Pvt−Shared
Rgn Specific

s=0.05_3 C vs E

VAF

#
 o

f 
M

u
ta

tio
n
s

0 0.2 0.4 0.6 0.8 1

9
0

6
0

2
0

2
0

6
0

9
0

E , 406 SSNVs

C , 420 SSNVs

fHsub = 0.554
FST = 0.254
KSD = 0.391

Public (109)
Pvt−Shared
Rgn Specific

s=0.05_3 C vs F

VAF

#
 o

f 
M

u
ta

ti
o
n
s

0 0.2 0.4 0.6 0.8 1

8
0

4
0

0
4
0

8
0

F , 362 SSNVs

C , 416 SSNVs

fHsub = 0.517
FST = 0.143
KSD = 0.37

Public (109)
Pvt−Shared
Rgn Specific

s=0.05_3 C vs G

VAF

#
 o

f 
M

u
ta

tio
n
s

0 0.2 0.4 0.6 0.8 1

8
0

4
0

0
2
0

6
0

G , 295 SSNVs

C , 412 SSNVs

fHsub = 0.53
FST = 0.136
KSD = 0.336

Public (109)
Pvt−Shared
Rgn Specific

s=0.05_3 C vs H

VAF

#
 o

f 
M

u
ta

tio
n
s

0 0.2 0.4 0.6 0.8 1

1
0
0

6
0

2
0

2
0

6
0

1
0
0

H , 439 SSNVs

C , 406 SSNVs

fHsub = 0.629
FST = 0.316
KSD = 0.564

Public (109)
Pvt−Shared
Rgn Specific

s=0.05_3 D vs E

VAF

#
 o

f 
M

u
ta

tio
n
s

0 0.2 0.4 0.6 0.8 1

9
0

6
0

2
0

2
0

6
0

9
0

E , 408 SSNVs

D , 339 SSNVs

fHsub = 0.602
FST = 0.326
KSD = 0.308

Public (109)
Pvt−Shared
Rgn Specific

s=0.05_3 D vs F

VAF

#
 o

f 
M

u
ta

ti
o
n
s

0 0.2 0.4 0.6 0.8 1

7
0

5
0

3
0

1
0

1
0

3
0

5
0

7
0

F , 359 SSNVs

D , 336 SSNVs

fHsub = 0.57
FST = 0.343
KSD = 0.232

Public (109)
Pvt−Shared
Rgn Specific

s=0.05_3 D vs G

VAF

#
 o

f 
M

u
ta

tio
n
s

0 0.2 0.4 0.6 0.8 1

6
0

4
0

2
0

0
2
0

4
0

6
0

G , 296 SSNVs

D , 332 SSNVs

fHsub = 0.563
FST = 0.126
KSD = 0.252

Public (109)
Pvt−Shared
Rgn Specific

s=0.05_3 D vs H

VAF

#
 o

f 
M

u
ta

tio
n
s

0 0.2 0.4 0.6 0.8 1

9
0

6
0

2
0

2
0

6
0

9
0

H , 434 SSNVs

D , 340 SSNVs

fHsub = 0.676
FST = 0.394
KSD = 0.139

Public (109)
Pvt−Shared
Rgn Specific

s=0.05_3 E vs F

VAF

#
 o

f 
M

u
ta

ti
o
n
s

0 0.2 0.4 0.6 0.8 1

7
0

4
0

1
0

2
0

5
0

F , 348 SSNVs

E , 395 SSNVs

fHsub = 0.552
FST = 0.323
KSD = 0.125

Public (109)
Pvt−Shared
Rgn Specific

s=0.05_3 E vs G

VAF

#
 o

f 
M

u
ta

tio
n
s

0 0.2 0.4 0.6 0.8 1

8
0

4
0

0
4
0

8
0

G , 294 SSNVs

E , 405 SSNVs

fHsub = 0.562
FST = 0.291
KSD = 0.093

Public (109)
Pvt−Shared
Rgn Specific

s=0.05_3 E vs H

VAF

#
 o

f 
M

u
ta

tio
n
s

0 0.2 0.4 0.6 0.8 1

9
0

6
0

2
0

2
0

6
0

9
0

H , 429 SSNVs

E , 386 SSNVs

fHsub = 0.66
FST = 0.147
KSD = 0.272

Public (109)
Pvt−Shared
Rgn Specific

s=0.05_3 F vs G

VAF

#
 o

f 
M

u
ta

tio
n
s

0 0.2 0.4 0.6 0.8 1

7
0

5
0

3
0

1
0

1
0

3
0

5
0

7
0

G , 302 SSNVs

F , 359 SSNVs

fHsub = 0.515
FST = 0.298
KSD = 0.087

Public (109)
Pvt−Shared
Rgn Specific

s=0.05_3 F vs H

VAF

#
 o

f 
M

u
ta

tio
n
s

0 0.2 0.4 0.6 0.8 1

9
0

6
0

2
0

2
0

6
0

9
0

H , 427 SSNVs

F , 346 SSNVs

fHsub = 0.623
FST = 0.364
KSD = 0.218

Public (109)
Pvt−Shared
Rgn Specific

s=0.05_3 G vs H

VAF

#
 o

f 
M

u
ta

tio
n
s

0 0.2 0.4 0.6 0.8 1

1
0
0

6
0

2
0

2
0

6
0

1
0
0

H , 437 SSNVs

G , 295 SSNVs

fHsub = 0.637
FST = 0.362
KSD = 0.269

Public (109)
Pvt−Shared
Rgn Specific

Supplementary Figure 3: Pairwise SFS histograms for representative virtual tumors simulated un-
der different evolutionary modes.
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Supplementary Figure 3: Pairwise SFS histograms for representative virtual tumors simulated un-
der different evolutionary modes.

Representative pairwise SFS histograms derived from two spatially separated tumor regions (labeled as A
to H) within the same tumor are shown for tumors simulated under different evolutionary modes, namely: (a)
neutral model, (b) neutral (CSC), (c) selection with s=0.01, (d) s=0.02, (e) s=0.03, (f) s=0.05 and (g) s=0.1.



SSNVs were classified as Public (gray), Private (Pvt)-shared (green), or Pvt-region specific (blue) based
on their presence in the MRS data and each pairwise SFS comparisons (Methods). The total number of
SSNVs detected in each region, as well as several ITH metrics derived from the SFS are indicated, namely
fHsub, FST and KSD.
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Supplementary Figure 4: Schematic representation of the expected pairwise SFS arising under ef-
fectively neutral growth and stringent selection.

Muller plots (DOI:10.5281/zenodo.240589) were employed to illustrate tumor subclone composition under
effectively neutral growth (upper panel) or strong selection (bottom panel). Descendant genotypes emerge
within the parental clone, height corresponds to genotype frequency (or relative abundance) and the hor-
izontal axis indicates time (generations). Tumors arising under effectively neutral growth are expected to
exhibit similar SFS between regions with a public mutational cluster centered at 0.5 and a large right skewed
distribution of low VAF subclonal mutations that accrue as the tumor expands, where θ indicates the thresh-
old below which low frequency mutations cannot be reliably detected in bulk tumor samples. This can be
contrasted with the SFS expected under strong selection in which private SSNVs can attain high frequency
due to regional expansion of a clone occurring late (blue shading). These patterns highlight the need for
MRS to distinguish such private high frequency SSNVs, which could appear public in single-sample se-
quencing.
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Supplementary Figure 5: Pairwise comparisons of five ITH metrics derived from the SFS in virtual
tumors.
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Supplementary Figure 5: Pairwise comparisons of five ITH metrics derived from the SFS in virtual
tumors.
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Supplementary Figure 5: Pairwise comparisons of five ITH metrics derived from the SFS in virtual
tumors.

Pairwise scatterplots of the five ITH metrics (fHsub, fHrs, FST, KSD and rAUC) based on 200 virtual tumors
(80X coverage) for different evolutionary modes (color coded) are shown for (a) 4 regions (b) 2 regions and
(c) regions.
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Supplementary Figure 6: Cumulative SFS for tumors subject to single region sequencing or MRS.

Cumulative SFS of simulated tumors (100 for each mode, sequenced to 80X coverage) by pooling the VAF
across 1, 2, 4 or 8 regions. The cumulative fraction of mutations in the specified frequency (f) range is
shown. From left to right, seven different modes are shown, i.e., neutral, neutral (CSC), s=0.01, s=0.02,
s=0.03, s=0.05 and s=0.1. Colored lines correspond to simulated tumors, where the dashed line corre-
sponds to the average. The thick black line corresponds to the theoretical cumulative SFS under neutral
exponential growth in a well-mixed population. The ratio of the area under the cumulative SFS curve for
virtual tumors relative to the theoretical cumulative SFS curve (denoted by rAUC) is indicated, as well as the
mean of the rAUC and the mean rAUC 95% bootstrap confidence interval (based on the adjusted bootstrap
percentile method).



80X

160X

320X

640X

One Region
Increasing Depth

Theoretical Neutral AFS with exponential growth (1/f)      Mean AFS for 100 simulations    

Neutral

F
ra

ct
io

n
 S

N
V

s 
in

 [
f,
 f
m

a
x]

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

0
.2

2

0
.2

4
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 0.91

CI95 = 0.89−0.94

Neutral (CSC)

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

0
.2

2

0
.2

4
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 0.92

CI95 = 0.88−0.96

s=0.01

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

0
.2

2

0
.2

4
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 0.91

CI95 = 0.88−0.96

s=0.05

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

0
.2

2

0
.2

4
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 1.16

CI95 = 1.11−1.22

s=0.1

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

0
.2

2

0
.2

4
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 1.14

CI95 = 1.08−1.19

F
ra

ct
io

n
 S

N
V

s 
in

 [
f,
 f
m

a
x]

0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

0
.2

2

0
.2

4
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 0.77

CI95 = 0.75−0.8

0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

0
.2

2

0
.2

4
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 1

CI95 = 0.95−1.07

0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

0
.2

2

0
.2

4
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 0.87

CI95 = 0.82−0.92

0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

0
.2

2

0
.2

4
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 1.24

CI95 = 1.18−1.31

0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

0
.2

2

0
.2

4
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 1.2

CI95 = 1.12−1.28

F
ra

ct
io

n
 S

N
V

s 
in

 [
f,
 f
m

a
x]

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

0
.2

2

0
.2

4
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 0.68

CI95 = 0.66−0.69

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

0
.2

2

0
.2

4
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 1.21

CI95 = 1.14−1.3

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

0
.2

2

0
.2

4
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 0.81

CI95 = 0.77−0.87

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

0
.2

2

0
.2

4
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 1.29

CI95 = 1.21−1.36

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

0
.2

2

0
.2

4
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 1.15

CI95 = 1.06−1.25

f (pooled VAF)

F
ra

ct
io

n
 S

N
V

s 
in

 [
f,
 f
m

a
x]

0
.0

1

0
.0

3

0
.0

5

0
.0

7

0
.0

9

0
.1

1

0
.1

3

0
.1

5

0
.1

7

0
.1

9

0
.2

1

0
.2

3

0
.2

5
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 0.73

CI95 = 0.72−0.75

f (pooled VAF)

0
.0

1

0
.0

3

0
.0

5

0
.0

7

0
.0

9

0
.1

1

0
.1

3

0
.1

5

0
.1

7

0
.1

9

0
.2

1

0
.2

3

0
.2

5
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 1.57

CI95 = 1.48−1.69

f (pooled VAF)

0
.0

1

0
.0

3

0
.0

5

0
.0

7

0
.0

9

0
.1

1

0
.1

3

0
.1

5

0
.1

7

0
.1

9

0
.2

1

0
.2

3

0
.2

5
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 0.83

CI95 = 0.8−0.87

f (pooled VAF)

0
.0

1

0
.0

3

0
.0

5

0
.0

7

0
.0

9

0
.1

1

0
.1

3

0
.1

5

0
.1

7

0
.1

9

0
.2

1

0
.2

3

0
.2

5
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 1.31

CI95 = 1.24−1.4

f (pooled VAF)

0
.0

1

0
.0

3

0
.0

5

0
.0

7

0
.0

9

0
.1

1

0
.1

3

0
.1

5

0
.1

7

0
.1

9

0
.2

1

0
.2

3

0
.2

5
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 1.11

CI95 = 1.02−1.21

 Deme Size = 5-10k

Supplementary Figure 7: Cumulative SFS for increased sequencing depth of a single bulk tumor
sample.

The cumulative SFS is plotted as in Supplementary Figure 6 for increasing sequencing depth (80X, 160X,
320X and 640X) of a single bulk sample. Five evolutionary modes are shown, i.e., neutral, neutral (CSC),
s=0.01, s=0.05 and s=0.1.
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Supplementary Figure 8: MRS better distinguishes between effectively neutral growth and selection
than sequencing single sample bulk tumor.

Color shaded rAUC density curves are shown for each of five evolutionary modes (neutral, neutral CSC,
s=0.01, s=0.05 and s=0.1) for increasing sequencing depth for one sample (left column) or an increasing
number of regions (right column). Increasing the number of regions yields better discrimination between
effectively neutral growth (neutral, neutral CSC and s=0.01) and selection (s≥ 0.05) than is achieved by
simply sequencing a single sample to higher depth.
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Supplementary Figure 9: Performance to distinguish alternate evolutionary modes from the simu-
lated neutral model.

Receiver Operating Characteristic (ROC) curves illustrating the true positive versus false positive rate to
distinguish four alternate evolutionary models from the simulated neutral model based on comparisons of
the SFS derived from 1 tumor region (left panel) or 2 tumor regions (right panel) using the rAUC metric. The
inclusion of an additional tumor region results in improved performance relative to one region for s=0.05
and especially for more stringent selection (s=0.1) owing to the ability of MRS to capture subclonal variants
that are regionally fixed. In contrast, weak selection and the neutral (CSC) model cannot be robustly distin-
guished. (b) The power to distinguish individual alternate models (neutral-CSC, s=0.01, s=0.05 and s=0.1)
from the neutral model was evaluated using rAUC (applicable to both single sample and MRS) and fHsub
(specific to MRS). Power (at the 10% significance level) was computed empirically as the percentage of
virtual tumors under an alternate model with the statistic (rAUC or fHsub) greater than 95% quantile or less
than 5% quantile of the corresponding statistic in the neutral model (taking the larger percentage). The left
panel illustrates the impact of increasing sequencing depth (80-640x) for a single sample (based on rAUC),
whereas the two right panels illustrates the impact of increasing the number of tumor regions (n=1,2,4 and
8) for rAUC and fHsub (n=2,4 and 8), respectively. Of note, as deep sequencing generates accurate VAF
for localized subclonal mutations in the sampled region, the tight rAUC distribution (Supplementary Figure
8) in the neutral model leads to high sensitivity to detect selection for s≤ 0.05. However, when selection
increases to 0.1, deep sequencing of a single sample becomes less sensitive. This is due to the inability of
single sample sequencing to distinguish high frequency subclonal mutations, which can appear public.



Multi Samples
80X Depth each

n=1
region

Theoretical Neutral AFS with exponential growth (1/f)      Mean AFS for 100 simulations    

n=2 
regions

n=4 
regions

n= 8
regions

Neutral

f (merged VAF)

F
ra

ct
io

n
 S

N
V

s 
in

 [
f,
 f
m

a
x]

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

0
.2

2

0
.2

4
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 0.96
[0.7, 1.34]

Neutral (CSC)

f (merged VAF)
F

ra
ct

io
n
 S

N
V

s 
in

 [
f,
 f
m

a
x]

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

0
.2

2

0
.2

4
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 0.89
[0.65, 1.37]

s=0.01

f (merged VAF)

F
ra

ct
io

n
 S

N
V

s 
in

 [
f,
 f
m

a
x]

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

0
.2

2

0
.2

4
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 0.92
[0.67, 1.2]

s=0.05

f (merged VAF)

F
ra

ct
io

n
 S

N
V

s 
in

 [
f,
 f
m

a
x]

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

0
.2

2

0
.2

4
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 1.07
[0.6, 2.01]

s=0.1

f (merged VAF)

F
ra

ct
io

n
 S

N
V

s 
in

 [
f,
 f
m

a
x]

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

0
.2

2

0
.2

4
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 1.11
[0.65, 2.12]

f (merged VAF)

F
ra

ct
io

n
 S

N
V

s 
in

 [
f,
 f
m

a
x]

0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

0
.2

2

0
.2

4
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 0.87
[0.61, 1.27]

f (merged VAF)

F
ra

ct
io

n
 S

N
V

s 
in

 [
f,
 f
m

a
x]

0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

0
.2

2

0
.2

4
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 0.75
[0.55, 1.03]

f (merged VAF)
F

ra
ct

io
n
 S

N
V

s 
in

 [
f,
 f
m

a
x]

0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

0
.2

2

0
.2

4
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 0.85
[0.58, 1.23]

f (merged VAF)

F
ra

ct
io

n
 S

N
V

s 
in

 [
f,
 f
m

a
x]

0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

0
.2

2

0
.2

4
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 1.2
[0.6, 2.03]

f (merged VAF)

F
ra

ct
io

n
 S

N
V

s 
in

 [
f,
 f
m

a
x]

0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

0
.2

2

0
.2

4
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 1.17
[0.62, 1.84]

f (merged VAF)

F
ra

ct
io

n
 S

N
V

s 
in

 [
f,
 f
m

a
x]

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

0
.2

2

0
.2

4
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 0.88
[0.65, 1.25]

f (merged VAF)

F
ra

ct
io

n
 S

N
V

s 
in

 [
f,
 f
m

a
x]

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

0
.2

2

0
.2

4
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 0.67
[0.56, 0.81]

f (merged VAF)

F
ra

ct
io

n
 S

N
V

s 
in

 [
f,
 f
m

a
x]

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

0
.2

2

0
.2

4
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 0.85
[0.6, 1.13]

f (merged VAF)
F

ra
ct

io
n
 S

N
V

s 
in

 [
f,
 f
m

a
x]

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

0
.2

2

0
.2

4
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 1.19
[0.65, 1.8]

f (merged VAF)

F
ra

ct
io

n
 S

N
V

s 
in

 [
f,
 f
m

a
x]

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

0
.2

2

0
.2

4
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 1.2
[0.7, 1.97]

f (pooled VAF)

F
ra

ct
io

n
 S

N
V

s 
in

 [
f,
 f
m

a
x
]

0
.0

1

0
.0

3

0
.0

5

0
.0

7

0
.0

9

0
.1

1

0
.1

3

0
.1

5

0
.1

7

0
.1

9

0
.2

1

0
.2

3

0
.2

5
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 0.96
[0.77, 1.19]

f (pooled VAF)

F
ra

ct
io

n
 S

N
V

s 
in

 [
f,
 f
m

a
x
]

0
.0

1

0
.0

3

0
.0

5

0
.0

7

0
.0

9

0
.1

1

0
.1

3

0
.1

5

0
.1

7

0
.1

9

0
.2

1

0
.2

3

0
.2

5
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 0.71
[0.62, 0.8]

f (pooled VAF)

F
ra

ct
io

n
 S

N
V

s 
in

 [
f,
 f
m

a
x
]

0
.0

1

0
.0

3

0
.0

5

0
.0

7

0
.0

9

0
.1

1

0
.1

3

0
.1

5

0
.1

7

0
.1

9

0
.2

1

0
.2

3

0
.2

5
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 0.91
[0.71, 1.12]

f (pooled VAF)

F
ra

ct
io

n
 S

N
V

s 
in

 [
f,
 f
m

a
x
]

0
.0

1

0
.0

3

0
.0

5

0
.0

7

0
.0

9

0
.1

1

0
.1

3

0
.1

5

0
.1

7

0
.1

9

0
.2

1

0
.2

3

0
.2

5
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 1.14
[0.81, 1.52]

f (pooled VAF)
F

ra
ct

io
n
 S

N
V

s 
in

 [
f,
 f
m

a
x
]

0
.0

1

0
.0

3

0
.0

5

0
.0

7

0
.0

9

0
.1

1

0
.1

3

0
.1

5

0
.1

7

0
.1

9

0
.2

1

0
.2

3

0
.2

5
0

.2
5

0
0

.2
0

.4
0

.6
0

.8
1

rAUCmean = 1.2
[0.85, 1.79]

Deme Size = 5-10k
-6
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Supplementary Figure 10: Cumulative SFS under different evolutionary modes for a small advanta-
geous mutation rate.

Tumor growth was simulated under a reduced selectively advantageous mutation rate (ub=10−6 per cell
division in the whole genome) in order to investigate a scenario where strong advantageous mutations are
rare or occur late during tumor growth. This reduced rate is one order of magnitude smaller than that used
elsewhere in the text (ub=10−5) and suggested previously 6. The cumulative SFS for simulated tumors (100
per mode) was obtained by pooling the VAF (total alternative allele divided by total read depth for pooled
regions) across 1, 2, 4 or 8 regions. The cumulative fraction of mutations within a particular frequency (f)
range and an upper cutoff of pooled VAF (0.25) are shown. From left to right, five evolutionary modes are
shown, i.e., Neutral, Neutral (CSC), s=0.01, s=0.05 and s=0.1. The cumulative SFS is plotted as in Sup-
plementary Figure 6.
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Supplementary Figure 11: Quality control assessment of MRS datasets and sample inclusion for
this study.
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this study.
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this study.
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this study.
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this study.
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Supplementary Figure 11: Quality control assessment of MRS datasets and sample inclusion for
this study.

Seven MRS datasets were evaluated. These include (a) An in-house COAD whole exome MRS dataset
(two spatially separated tumor regions (A and B) obtained from opposite sides of carcinomas: G, M, N,
O, U, W and an adenoma S) 7 and single gland WES for carcinomas O (OA1, OA2, OA3, OA4 and OB1)



and U (UAL and UBL). (b) An in-house xenograft whole exome MRS dataset in which single cell cultures
derived from the HCT116 and LoVo cell lines were injected into opposite flanks of a mouse and allowed to
form tumors. (c) WGS of esophageal adenocarcinomas (ESCA) and paired Barrett’s Esophagus (BE) from
a subset of patients 8 (European Genome-phenome Archive, or EGA ID: EGAD00001001394). Only cases
with MRS of ESCAs (Patient 4, 8, 14 and 15) were included in the analysis. (d) Whole exome MRS from
lung adenocarcinoma 9 (LUAD, EGA ID: EGAD00001000984). (e) Whole exome MRS from non-small-cell-
lung-cancer (NSCLC) and LUAD 10 (EGA ID: EGAD00001000900). (f) Whole exome MRS from low grade
glioma (GLM) with recurrent tumors after treatment 11 (EGA ID: EGAD00001000714). (g) Whole exome
MRS from glioblastoma (GBM) with post-treatment recurrences 12 (EGA ID: EGAD00001001113). Tumor
regions exhibiting hypermutation were excluded. For each dataset, the cumulative faction of targeted re-
gions (or else whole genome for the ESCA dataset) covered at or above a given read depth is shown on
the top-left panel. Sample IDs are labelled in order of decreasing fraction of covered targeted regions at
or above a depth of 30. The top-right panel illustrates the cumulative read consumption relative to the cu-
mulative fraction of covered regions (Lorenz curve of read consumption) and indicates non-uniform read
distributions, as expected in NGS data. The mean Gini coefficient (corresponding to the area between the
diagonal line and the Lorenz curve divided by the area under the diagonal) is reported. As expected, the
WGS ESCA dataset exhibited more uniform read distributions than the WES datasets. The middle-left panel
shows the median sequencing depth versus the overall read duplication rate for each sample. The middle-
right panel shows tumor purity relative to ploidy, where both values were estimated based on TitanCNA 4.
The insert size distribution for paired-end reads is shown in the bottom panel. For the xenograft samples in
(b), the proportion of reads mappable to the mouse genome is presented in the bottom-right panel. To en-
able the reliable adjustment of VAF and subsequent calculation of statistics from the SFS, we set stringent
QC requirements for the inclusion of tumor samples. 1) estimated purity >0.5; 2) median sequencing depth
>50; 3) number of subclonal SSNVs >50. We only inspected tumors for which multiple (≤ 2) tumor regions
were available and met the above three requirements.



a

b

Supplementary Figure 12: Sequencing depth of SSNVs in paired regions from representative tu-
mors.

Scatterplots show the read depth for SSNVs identified as public (gray), private but shared (Pvt-Shared



in green) and region-specific (blue) for two tumor regions from representative tumors, namely (a) LoVo
xenograft D (XA versus XB) and (b) COAD-M (MA versus MB). The depth (in both regions) at the genomic
coordinates for each SSNV is plotted against the adjusted VAF in the region in which it was detected (left
and middle panels). The depth at each SSNV for the two regions was also compared (right panel). These
plots illustrate several points: 1) for SSNVs with VAF below 0.2, the depth increases as the VAF decreases,
attributable to the LOD calculation in the variant assurance pipeline (VAP, Supplementary Note); 2) the
depth for region-specific SSNVs in the two tumor regions is comparable due to their conservative definition
(Methods); 3) the depth from two tumor regions is correlated, an intrinsic property of WES data, presumably
due to sequence dependent exon capture rates.



Source of Artifacts Short Read Features

Random Sequencing Error

Sequence Dependent Error
                    Inverted Repeats
                     GGC sequences
              Amplification Error in
mono/di-Nucleotide Repeats

                  Mis-alignment Error
      Rare copies absent in Ref. G.
Indel/SV breakpoint boundaries
                           Low Mappability
                Allelic mapping biases

Tail-Distance Bias

Strand Bias

Mapping Quality Bias

Multi-Mismatches in a Read

Elevated Local Error Rate

Low VAF for Multi Samples
(including Normal)

Contamination

Supplementary Figure 13: Features derived from short read alignments reflect sequencing artifacts.

Sequencing artifacts are reflected in the alignment features of short reads, providing a rationale for their
use in flagging false positive SSNVs.
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Supplementary Figure 14: Relationship between the adjusted VAF and the CCF.

The relationship between the adjusted VAF (V AFa) and CCF (cancer cell fraction) is illustrated with data
from several representative tumors. The V AFa can be than greater 0.5 due to the inherent noise associ-
ated with sequencing. The expected CCF, which assumes a background distribution such as a binomial,
collapses to 1 when V AFa is above 0.5, whereas V AFa is identical to a half the CCF for values under 0.5.
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Supplementary Figure 15: Illustration of VAF adjustment on colorectal tumors.



1

2

3
4

5

6

7
89

10

11

12

1
3

1
4

1
5

1
6

17
18

19
20

21 22
x

1 2 3 4 5 6

Total CN (Nt)

Minor CN (Nb)
0 1 2 3

M
A

B

Nb
Nt

Nb
Nt

0.80

0.90

Observed VAF

Adjusted VAF

+

pu*

2
.1

2
.1pl*

COAD M unadjusted

VAF

#
 o

f 
M

u
ta

ti
o

n
s

0 0.1 0.3 0.5 0.7 0.9 1

3
6

0
2

1
0

7
0

7
0

2
1

0
3

5
0

MB , 1183 SSNVs

MA , 1250 SSNVs

fHsub = 0.092
FST = 0.122
KSD = 0.079

Public (398)
Pvt−Shared
Pvt−Rgn Specific

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

COAD M unadjusted

VAF MA

V
A

F
 M

B

CDH1

TP53

PIK3CA

APC

BRAF

Public
Pvt−Shared
Pvt−Rgn Specific

1
51
100
150
200
1
2
3

1
3
4
6
7

#
 s

S
N

V

COAD M

VAF

#
 o

f 
M

u
ta

tio
n

s

0 0.1 0.3 0.5 0.7 0.9 1

4
0

0
2

4
0

8
0

0
8

0
2

4
0

4
0

0

MB , 1183 SSNVs

MA , 1250 SSNVs

fHsub = 0.092
FST = 0.122
KSD = 0.079

Public (398)
Pvt−Shared
Pvt−Rgn Specific

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

COAD M

VAF MA

V
A

F
 M

B

CDH1

TP53PIK3CA

APC

BRAF

Public
Pvt−Shared
Pvt−Rgn Specific

1
50
100
150
200
1
2
3

1
3
4
6
7

#
 s

S
N

V

b

Supplementary Figure 15: Illustration of VAF adjustment on colorectal tumors.
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Supplementary Figure 15: Illustration of VAF adjustment on colorectal tumors.
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Supplementary Figure 15: Illustration of VAF adjustment on colorectal tumors.
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Supplementary Figure 15: Illustration of VAF adjustment on colorectal tumors.

Histograms and two-way scatter plots are shown for each COAD before (upper panel) and after (lower
panel) adjusting the VAF estimates for tumor purity and local copy numbers (Supplementary Note). The
circos plot (right panel) summarizes the CNA profiles across tumor regions. In the pairwise histograms, the
number of SSNVs detected at a given VAF for the two tumor regions is shown above and below the x-axis
to enable visual comparisons. Mutations are grouped into Public (gray bars), Private (Pvt)-shared (green)
and Private-region specific (blue) events (Methods). A scatterplot of the pairwise VAF is shown in the mid-
dle panel to enable comparisons of the SSNVs present in each lesion at a given VAF. The color scale bar
indicates the number of SSNVs in a square (0.02 on a side) region centered on each SSNV for each group
of alteration. Nonsilent SSNVs including both known and predicted COAD drivers (IntOgen version 2016.5)
are indicated by red circles with known drivers labeled. The circos plot illustrates the predicted absolute total
CN (Nt) and minor allele CN (Nb) for each tumor region. Wild-type diploid segments are indicated by white
for Nt (two copy) and Nb (one copy), whereas segments with copy number gain and loss are shown in red
and blue, respectively. Purity and ploidy estimates are labeled in the corresponding concentric rings. The
shift in the public mutation cluster below 0.5 due to impurity is particularly evident in near diploid tumors (a)
COAD-W, (b) COAD-M and (c) COAD-G and (g) CRA-S (colorectal adenoma), whereas in triploid tumors:
(d) COAD-N; (e) COAD-U; (f) COAD-O, public mutations exhibit a greater range of values. However, in both
cases robust adjustment is achieved by accounting for purity and local copy number.
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Supplementary Figure 16: The SFS histogram in HCT116 xenografts.

HCT116 cells were expanded in vitro and two single cells (S1 and S3) from this population were cloned and
expanded prior to transplantation into the right and left flanks of two NSG mice, as illustrated in the schema.
Xenografted tumors were allowed to develop to a size of ∼1 billion cells (1 cm3) prior to sampling them and
subjecting them to WES. Polyclonal tissue culture of the starting HCT116 cell line was employed as a con-
trol for copy number analysis and somatic mutation calling. A summary of the copy number profiles across
samples is shown in a circos plot. WES of the two tumors (XA and XB) from each of two single cell (S1 and
S3) cultures consistently resulted in a bimodal SFS histogram that lacked enrichment for high frequency
private SSNVs (primary comparisons of interest shown in boxes). In contrast, two single cells cultures had
distinct lineages with completely different clonal SSNVs (S1 versus S3, bottom panel). In addition, tissue
culture (TC) of cells sampled at the time of injection had similar patterns to their corresponding xenografts



(xeno versus TC, middle panel), suggesting a lack of stringent selection in the expansion of the xenografted
tumors.
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Supplementary Figure 17: The SFS histogram in LoVo xenografts.

LoVo cells were expanded in vitro and a single cell from this population was cloned and expanded prior
to transplantation into the right and left flanks of a SCID mouse, as illustrated in the schema. WES of the
two tumors resulted in a bimodal SFS histogram that lacked enrichment for high frequency private SSNVs
(primary comparisons of interest shown in boxes). Replicate xenografts from the same single cell LoVo
culture showed similar patterns in the left and right tumors (XD versus XDL, XC versus XCL) from a given
mouse as well as between mice (XD/L versus XC/L). Circos plot summarizing the CNA profiles from differ-
ent samples is shown. Of note, SSNVS in the low VAF range were mostly unique to each injection in the
HCT116 xenografts, whereas for the LoVo xenografts, the fraction of shared private SSNVs was larger. This
may be due to a greater reduction in the initial population size during HCT116 xenograft initiation leading to
fewer shared private mutations.
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Supplementary Figure 18: Targeted deep sequencing of single glands reveals spatial constraints
amongst region-specific SSNVs in bulk tumor samples.



WES was performed on each of two bulk regions (sampled from opposite tumor sides >3cm apart) per
tumor, followed by targeted deep sequencing of a custom mutational panel in single glands. The VAF for
region-specific SSNVs that were included in the targeted panel is shown and color-coded according to the
tumor region (A - orange, B - purple). All such region specific mutations found in the bulk region sample
were only detected in the single glands from that region, consistent with the spatial constraints observed
in the single gland WES of Tumor O (Figure 4) and U (Supplementary Figure 20). The depth for single
glands from regions A and B were not significantly different (p = 0.67, Wilcoxon rank sum test, mean depth
>900 for both tumor sides).
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Supplementary Figure 19: Representative phylogeny for virtual tumors simulated under different
evolutionary modes.

8 bulk virtual tumor regions (each composed of ∼106 cells) sampled respectively from the 8 quadrants of
a virtual tumor (∼109 cells) were evaluated for each of the five evolutionary modes (neutral, neutral CSC,
s=0.01, s=0.05 and s=0.1). The parameters used in the simulation are detailed in Supplementary Figure 1,
Supplementary Table 1 and the Methods. Mutations were called if they had ≥ 15X sequencing depth and
≥ 3 variant reads. The neighbor-joining method 13 was used to reconstruct the phylogenetic relationship
amongst the 8 regions of each tumor based on mutational presence/absence. The resulting representative
phylogenetic trees highlight the expected star-like phylogenies under effectively neutral growth. They also
highlight the challenges in constructing an accurate tree from a single bulk sample.
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Supplementary Figure 20: Single-gland sequencing in COAD-U reveals spatial constraints amongst
subclonal SSNVs.

(a) Pairwise histograms and scatterplots of the SFS for SSNVs found in two bulk regions from tumor COAD-
U (UA and UB). (b) CNA profiles for the bulk samples and two single glands (UAL and UBL) are shown in
circos plot. Purity (Pu) and Ploidy (Pl) estimates for each sample are labeled on the corresponding con-
centric rings. (c) Intersection plot based on the UpSetR package14 for SSNVs found in bulk and single
glands includes mutations that are i) covered by at least 20 reads in each of the samples; ii) with a VAF
above 1.5% in the bulk sample or above 15% in the single-glands and iii) not from regions with varying LOH
patterns among samples. Gray, green and blue bars/points are for those mutations classified as public,
private-shared and region-specific in the comparison between two bulk samples (Methods). Orange and
purple bars/shades in the matrix indicate single glands from tumor sides A and B, respectively. (d) SSNV
presence/absence tree constructed using LICHeE. The bulk sample and single glands from the same tu-
mor side are in the same lineage, suggesting the presence of spatial constraints during tumor expansion.
SSNVs in known driver genes are labeled in red.
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(Summary of Supplementary Fig. 21-23)
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c

Supplementary Figure 21: VAF clusters do not correspond to unique subclones (COAD-O).

SciClone 15 (default settings) was employed to cluster VAF values for COAD-O, taking as input the pooled
VAF from two regions (OA, OB), which served as a composite for clustering (n=1). (a) In the composite
one sample setting, two VAF clusters were identified (a and b; left panel). However, the low VAF cluster b
separated into 4 distinct clusters when two regions were included in the clustering (scatterplots, VAF shown
on log2 scale). SSNVs in the green clonal VAF cluster centered at 0.5 remain clustered (persisted) when
two regions were included. Only SSNVs with depth >30 across all regions and VAF >0.05 in the detected
regions were considered. (b) The number of distinct VAF clusters (containing >5% of SSNVs in cluster X
inferred from n regions) when an additional region was included for clustering (n+1) was used to determine
the number of “cluster splits”. A cluster split of 4 was observed for the orange cluster b, indicating that the
VAF cluster observed for n=1 sample does not correspond to a unique subclone. (c) Summary of the Sci-
Clone 15 analysis. Subclonal clusters derived from ‘n’ regions separate into additional clusters (with more
than 5% SSNVs in the original cluster) when sequencing data from ‘n+1’ tumor regions are employed in
analysis. Whereas clonal clusters were persistent (SSNVs remained grouped) upon the inclusion of data
from another region, subclonal clusters generally did not and this difference was significant across tumors
(p<0.001, Fisher’s exact test). Of note, one tumor (ESCA-8, Figure 5b, Supplementary Figure 23) has
a group of subclonal mutations approaching fixation in two out of the three regions, and appeared ‘clonal’
using the pooled VAF, but split upon the introduction of a third tumor region in the analysis.
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Supplementary Figure 22: VAF clusters do not correspond to unique subclones (LUAD-4990).

As in Supplementary Figure 21, SciClone 15 was employed to cluster the VAF values for LUAD-4990,
taking as input the pooled VAF from four regions (P1, P2, P3 and P4), which served as a composite for
clustering (n=1). (a) In the composite one sample setting, three VAF clusters were identified (a, b, c; left
panel). The impact of including additional regions was evaluated for two regions (P1 and P3, n=2), three
regions (P1, P2 and P3, n=3) and four regions (P1, P2, P3 and P4, n=4). SSNVs in the green clonal VAF
cluster centered at 0.5 remain clustered (persisted) when additional regions were included. In contrast, the
low VAF cluster identified using n regions almost always separated into distinct clusters when n+1 regions
were used for clustering (scatterplots, VAF shown on log2 scale). Only SSNVs with depth >30 across all



regions and VAF >0.05 in the detected regions were included. (b) The number of distinct VAF clusters
(containing >5% of SSNVs in cluster X inferred from n regions) when an additional region was included for
clustering (n+1) was used to determine the number of “cluster splits”. The observation that cluster splits
were common for low VAF clusters suggest that they do not correspond to unique subclones. Of note, it is
theoretically possible to identify persistent VAF clusters across multiple regions (such as the majority of the
orange cluster), which could represent subclones that arose under selection.
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Supplementary Figure 23: VAF clusters do not correspond to unique subclones (ESCA-8).

As in Supplementary Figure 21, SciClone 15 was employed to cluster the VAF values for ESCA-8 (for which
WGS was available) taking as input the pooled VAF from three regions (P1, P2 and P3), which served as
a composite sample for clustering (n=1). (a) In the composite one sample setting, three VAF clusters were
identified (a, b, c; left panel). The impact of including additional regions was evaluated for two regions
(P1 and P2, n=2) and three regions (P1, P2 and P3, n=3). Similar to COAD-O and LUAD-4990, SSNVs
in the green clonal VAF cluster centered at 0.5 remain clustered (persisted) when additional regions were
included. In contrast, low VAF clusters found in n regions always separate into distinct clusters when n+1
regions were used for clustering. Only SSNVs with depth >30 across all regions and VAF >0.05 in the de-



tected regions were included. (b) The number of distinct VAF clusters (containing >5% of SSNVs in cluster
X inferred from n regions) when an additional region was included for clustering (n+1) was used to deter-
mine the number of “cluster splits”. The observation that cluster splits were common for the low VAF cluster
suggest that they do not correspond to unique subclones. Of note, an apparent clonal cluster (VAF centered
at 0.5) was separated into the true clonal cluster and additional clusters containing subclonal SSNVs that
reached fixation in regions P2 and P3 but not in P1 (presumably due to strong selection; green cluster in
the scatterplot for n=2, see also Figure 5b) as these SSNVs appeared clonal in a single composite sample.
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Supplementary Figure 24: Cumulative SFS of virtual tumors simulated under smaller deme size 0.5-
1k.

The cumulative SFS (or pooled SFS for multiple regions) is shown for virtual tumors (100 per scenario) from
which 1, 2, 4 or 8 regions were sampled, corresponding to the cumulative fraction of SSNVs with VAFs in
the range f_min – 0.25. Seven models (neutral, neutral CSC, s=0.01, 0.02, 0.03, 0.05, 0.1) were simulated
for a much smaller deme size (0.5-1k cells per deme). The cumulative SFS is plotted as in Supplementary
Figure 6.
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Supplementary Figure 25: Power of fHsub to distinguish selection from the neutral model under
different deme sizes (5-10k versus 0.5-1k).

The power to distinguish an alternate model (with s=0.01, 0.02, 0.03, 0.05 and 0.1) from the neutral model
using one of the ITH metrics, namely fHsub, are shown for models under two different deme size ranges
(5-10k on the left and 0.5-1k on the right). Power (at the 10% significance level) was computed empiri-
cally as the percentage of virtual tumors under an alternate model with the statistic (fHsub) greater than
95% quantile or less than 5% quantile of the corresponding statistic in the neutral model (taking the larger
percentage). Reduced deme size results in decreased sensitivity to distinguish selective models from neu-
trality, due to increased spatial constraints.
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Supplementary Figure 26: Performance to distinguish alternate evolutionary models from a null
neutral model based on the SVM classifier and single ITH metrics

The Receiver Operating Characteristic (ROC) curves for distinguishing alternate models from neutral by
using single ITH metrics, rAUC (left), fHsub (middle) and SVM by two IC components (right). The ROC
curves comparing the true positive versus false positive rate for using two tumor regions are also shown.
For single metrics, ROC is generated using frequency based calculations. For the SVM, the ROC curve
corresponds to the median auROC amongst 20 SVMs trained on 100 randomly chosen virtual tumors (for
each of the alternate models and null neutral model) and tested on the remaining 100 virtual tumors.
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Supplementary Figure 27: ROC based on SVM classification of various combinations of five ITH
metrics.

To evaluate the relative importance of different combinations of the five ITH metrics for classification, SVMs
were run 20 times for each of 26 possible combinations of the five metrics with the same seed for random
splitting. A total of 1120 simulated tumors were used for training and 280 for testing. The resulting auROCs
were compared for (a) 2 regions, (b) 4 regions and (c) 8 regions. Blue stars indicate SVMs trained using
all five metrics. Red stars indicate SVMs trained with various combinations of the five metrics that have
significantly smaller auROCs than the SVM trained with all five metrics (Wilcoxon rank sum test).
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Supplementary Figure 28: Projection of patient tumors onto distinct evolutionary modes based on
ITH metrics derived from the SFS (2 virtual tumor regions).

(a) Violin plots for each of the five ITH metrics, namely, fHsub, fHrs, Fst, KSD and rAUC. Colored violin
plots correspond to virtual tumors simulated under different evolutionary modes, whereas the white violins
correspond to clinical samples. Paired pre-treatment primary and post-treatment recurrent brain tumors are
denoted by “Tx” and serve as a positive control for selection. (b) Independent component analysis (ICA)
of virtual and real tumors based on the five aforementioned metrics. The two independent components
(IC) clearly separate the simulated tumors under effectively (e) neutral growth (neutral, neutral-CSC and
s=0.01) versus positive selection (s≥ 0.02). The decision boundaries for an SVM trained on the two IC
components based on the simulated tumors is indicated by the dashed line. Large transparent colored
circles represent values from virtual tumors simulated under different models (200 tumors from each of the
seven models are shown). Small filled circles corresponding to clinical samples are labeled by their sam-
ple ID and color-coded according to the nature of the sample. COAD: colorectal adenocarcinoma; CRA:
colorectal adenoma; ESCA: esophageal adenocarcinoma; BE: Barrett’s esophagus; LUAD: lung adeno-
carcinoma; NSCLC: non-small-cell lung cancer; GLM: glioma; GBM: glioblastoma; Xeno: COAD cell line
xenografts.



fHsub

0.00

0.25

0.50

0.75

1.00

Colo
n

Eso
ph

ag
us

Brai
n
Lu

ng
Tx(+

)

Neu
tra

l
CSC

s=
0.0

1

s=
0.0

2

s=
0.0

3

s=
0.0

5
s=

0.1

fHrs

0.00

0.25

0.50

0.75

1.00

Colo
n

Eso
ph

ag
us

Brai
n
Lu

ng
Tx(+

)

Neu
tra

l

CSC
s=

0.0
1

s=
0.0

2

s=
0.0

3

s=
0.0

5
s=

0.1

FST

0.0

0.1

0.2

0.3

0.4

0.5

Colo
n

Eso
ph

ag
us

Brai
n
Lu

ng
Tx(+

)

Neu
tra

l
CSC

s=
0.0

1

s=
0.0

2

s=
0.0

3

s=
0.0

5
s=

0.1

KSD

0.00

0.25

0.50

0.75

1.00

Colo
n

Eso
ph

ag
us

Brai
n
Lu

ng
Tx(+

)

Neu
tra

l

CSC
s=

0.0
1

s=
0.0

2

s=
0.0

3

s=
0.0

5
s=

0.1

rAUC

1

2

3

Colo
n

Eso
ph

ag
us

Brai
n
Lu

ng
Tx(+

)

Neu
tra

l
CSC

s=
0.0

1

s=
0.0

2

s=
0.0

3

s=
0.0

5
s=

0.1

a

b

e-neutral

selection

Independent Component (IC) 1

In
de

pe
nd

en
t C

om
po

ne
nt

 (I
C

) 2

0 0.2 0.4 0.6 0.8 1

0
0.

2
0.

4
0.

6
0.

8
1

Neutral
Neutral (CSC)
s=0.01
s=0.02
s=0.03
s=0.05
s=0.1

CO

CO

CO

COCO
CO

OV

OV

exon

exon

exon

exon

exon

exonrimary umors

Supplementary Figure 29: Projection of patient tumors onto distinct evolutionary modes based on
ITH metrics derived from the SFS (8 virtual tumor regions).

The legend is the same as for Supplementary Figure 28.
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Supplementary Figure 30: The shape of the SFS histograms derived from whole-genome sequenc-
ing versus down-sampled exonic regions is comparable.
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Supplementary Figure 30: The shape of the SFS histograms derived from whole-genome sequenc-
ing versus down-sampled exonic regions is comparable.

Despite the much larger number of SSNVs observed in the WGS, the overall shape of SFS is comparable
for down sampled SSNVs residing in exonic region (UTRs included) for three ESCA patients: (a) ESCA-4;
(b) ESCA-8 and (c) ESCA-14. For ESCA-4 and ESCA-14, the Barrett’s esophageal (BE) lesions from the



same patient were also compared with their matched carcinomas (ESCA), where strong genetic divergence
(indicating selection) was observed. A marginal signal of selection was observed in the comparison of BE1
and BE2, as can be seen in WGS data from ESCA-4. Whereas the reduced number of SSNVs in the ex-
onic regions dilutes the signal slightly, genetic diversity between BE1 and BE2 measured by down-sampled
exonic data is still mapped onto selection space (Figure 6b). This highlights the utility of WES to capture
tumor dynamics. The non-proportional decrease in exonic SSNVs as compared to whole genome SSNVs
is potentially due to negative selection for more functional sites.
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Supplementary Figure 31: Independent component (IC) analysis for models with deme sizes of 5-
10k and 0.5-1k, respectively.

The five ITH metrics calculated under models with deme sizes of 5-10k (upper panel) and 0.5-1k (lower
panel) were used in an independent component (IC) analysis (4 tumor regions). For the 5-10k deme size,
the ICs clearly separate tumors simulated under effectively (e) neutral growth (neutral, neutral-CSC and
s=0.01) versus positive selection (s≥ 0.02). The decision boundary for a SVM trained on the virtual tumors
based on the two ICs is indicated by dashed lines as are the 95% CIs for classification of virtual tumors into
effectively neutral (e-neutral) versus positive selection modes. Transparent colored circles represent values
from virtual tumors simulated under different models (200 virtual tumors from each of the seven models
are shown). In contrast, under a deme size an order of magnitude smaller, stronger spatial constraints
blur the distinction between effective neutrality and positive selection (100 virtual tumors from each model).
Although general trends between selection and the levels of detectable between-region genetic divergence
were observed, we note that specific patterns could be model dependent.
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Supplementary Figure 32: Tumors enriched for SSNVs in public driver genes are associated with
effectively neutral growth.

A significant negative correlation was observed between two ITH metrics (fHsub and rAUC) and the fold
enrichment of non-silent public SSNVs in tumor type specific driver genes based on IntOGen. Driver fold
enrichment was determined based on the number of driver genes in the corresponding tumor type harbor-
ing non-silent coding SSNVs out of the total number of genes with non-silent coding SSNVs. The resulting
metric was normalized by the fraction of tumor type specific driver genes out of all genes. Only invasive
primary tumors with >30 non-silent coding public SSNVs were included.
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Supplementary Figure 33: Mixing of NA12878 and NA18489 sequencing data to generate virtual tu-
mor samples.

BAM files for two individual whole exome sequencing from 1,000 genome project were downloaded and
mixed to generate the following mixture concentrations of NA12878 (as tumor): 10%, 16%, 20%, 30%, 40%
and 100%, resulting in an expected VAF of heterozygous SNVs of NA12878 at 5%, 8%, 10%, 15%, 20%
and 50% in the mixed sequencing data. The VAF density curves for variants detected in the virtual tumor
samples (using NA18489 as normal control), which are also heterozygous SNVs in the gold standard vari-
ant list provided by GIAB-NIST for NA12878, indicate that the mixing was as intended.
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Supplementary Figure 34: Sensitivity of VAP and MuTect based on a virtual tumor samples dilution
series.

Heterozygous SNVs in the gold standard list for NA12878 were divided into 10 groups with equal size
according to the sequencing depth in each virtual tumor samples. The detection sensitivity for VAP and
MuTect for each group of gold standard variants are shown against the group’s median depth. Each panel
shows a virtual tumor with an intended VAF obtained via in silico mixing.
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Supplementary Figure 35: False Positive Rate per million base pairs for VAP and MuTect for virtual
tumor samples.

False positive calls aggregated across the virtual tumors were divided into 10 groups with equal size accord-
ing to sequencing depth. The false positive rate (FPR) per million base pairs for VAP and MuTect in each
depth group were generated by dividing the FP within each group to the total bases designed in SureSelect
protocol that are covered with the same range of depth as for the FPs. FPR were then plotted against the
group’s median depth.
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Supplementary Figure 36: Impact of VAF cutoffs on the sensitivity of fHsub to detect selection and
the identification of public mutations.

(a) The sensitivity to distinguishing selection (s=0.1) from neutrality using fHsub calculated using various
“high” VAF cutoffs (0.1-0.4). A plateau is apparent where the highest sensitivity is achieved for VAFs be-
tween 0.2 and 0.25. We selected a cutoff of 0.2 to ensure a sufficient number of mutations (counts) for the
nominator when considering the variability in real sequencing data. (b) The performance to identify public
mutations was evaluated when considering different cutoffs for the third criterion (i.e. at least one region
has adjusted VAF <the cutoff, Methods). Here 100 virtual tumors subject to multi-region sampling (n=4 re-
gions) were used for evaluation. The F1 score (harmonic mean of precision and recall) is shown for cutoffs
ranging from 0.1 to 0.5. The mean F1 is the blue line and the gray shade indicates the 95% quantile of the
F1 scores for 100 tumors under each cutoff. A plateau is apparent with the highest performance obtained
between 0.25 and 0.3. 0.25 was chosen as the cutoff considering the noise in real sequencing data where
public mutations can have an adjusted VAF as low as 0.25.
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Supplementary Tables 
 
Supplementary Table 1. Parameters in the deme model of spatial tumor growth. 
 

Parameters Values Justifications/Remarks 

Final tumor size, N N~109 cells There are ~109 or more cells in a typical solid tumor.  
   

Deme size, K 
K= 5–10k cells or 

0.5–1k cells 

The demes recapitulate the glandular structure often 
found in epithelial tumors such as colorectal cancer 
in which the gland size is approximated at 2,000-
10,000 cells 16. The deme size models the degree of 
spatial constraints and clone mixing during tumor 
growth. For instance, small deme size imposes 
stringent spatial constraints and reduces subclone 
mixing, thereby hindering the efficacy of selection. In 
contrast, large deme sizes result in relaxed spatial 
constraints and elevated subclone mixing. 

   
The birth and death 
probabilities for each cell at 
each time step during deme 
expansion, p and q, 
respectively 

p=0.55 and q=0.45 
The death-birth rate ratio h=q/p=0.82 falls between 
that reported for rapidly growing colorectal cancer 
metastases (h=0.72) 17 and early tumors (h=0.99) 17. 

   

Neutral point mutation rate per 
cell division in the whole 
exonic region, u 

u=1.2 

The point mutation rate per cell division in the exonic 
region (u) can be variable among tumors 18. Given 
the genomic instability due to inactivation of DNA 
repair mechanisms in many tumors, the per-cell 
division mutation rate for cancer is assumed to be 
significantly higher than somatic normal cells which is 
on the order of 10-9 per base pair per cell division 19. 
We assume a mutation rate u=1.2 per cell division for 
the 60M exonic region of diploid human genome 
(equivalent to 2×10-8 /base pair/division) for the 
simulations, giving rise to 100-1000 subclonal SNVs 
(VAF >0.08) in each bulk sample, which is 
comparable to that observed in clinical samples in 
the current study. 

   

Driver mutation rate per cell 
division in the genome, ub 

ua=10-5 or 10-6 

The driver mutation rate is also unknown, although it 
is assumed that there are ~3-7 drivers per tumor 20. 
Bozic et al. 21 estimated ub to be 10-5 per cell division 
in the genome. Smaller ub can result in rarer or later 
occurrence of driver mutations and weaker sweeps 
even when the selection coefficient is large. 

   

Selection coefficient, s 
s=0, 0.01, 0.02, 
0.03, 0.05 or 0.1 

We explored variable selection coefficients, where 
s=0 is equivalent to a neutral (null) model. 
Experimental estimates of selection coefficients 
during human tumorigenesis and post transformation 
are lacking. 

 
 
 
 



 

Supplementary Table 2. Terminology and Descriptions 
 

Term Description 

MRS Multi-Region Sequencing 

WES Whole-Exome Sequencing 

WGS Whole-Genome Sequencing 

Sample/Region Refers to a region or sample of a tumor 

ITH (Intra Tumor Heterogeneity) Between region subclonal genetic divergence based on MRS 

Public/Clonal Mutations Mutations predicted to be present in all tumor cells 

Private/Subclonal Mutations Mutations predicted to be present only in a part of tumor cells 

Region-Specific Mutations Mutations predicted to be only present in one of two regions  

VAF (Variant Allele Frequency) Variant Allele Frequency adjusted for local copy number and tumor purity 

SFS Site Frequency Spectrum or VAF distribution 

Cumulative SFS Cumulative distribution of Site Frequency Spectrum  
Pooled VAF/SFS For MRS, reads are pooled across regions for computing the VAF/SFS  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Supplementary Table 3. Summary of the multi-region sequencing (MRS) datasets 
included in this study, including the study accession ID, tumor type, sample ID, 
and sample types. 
 

Tumor 
Type Database Accession Code Tumors passed QC Sample IDs Sample Type 

COAD7 ArrayExpress E-MTAB-2247 

COAD-W WA, WB Primary 

COAD-M MA, MB Primary 

COAD-G GA, GB Primary 

COAD-N NA, NB Primary 

COAD-U UA, UB Primary 

COAD-O OA, OB Primary 

CRA-S SA, SB Primary 

COAD  
Xenografts 

ArrayExpress E-MTAB-5547 

Xeno-HCT116-S1 S1_XA, S1_XB Xenograft 

Xeno-HCT116-S3 S3_XA, S3_XB Xenograft 

Xeno-LoVo-D XD, XDL Xenograft 

Xeno-LoVo-C XC, XCL Xenograft 

ESCA8 EGA EGAD00001001394 

BE-4 BE1, BE2 Preneoplasia 

ESCA-4 P1, P2 Primary 

ESCA-8 P1, P2, P3 Primary 

ESCA-14 BE2, P1, P2, P3 Primary 

Glioma11 EGA EGAD00001000714 

GLM-18P P1, P2, P3 Primary 

GLM-26P P1, P2 Primary 

GLM-26R  R1, R2 Tx 

GLM-27R  R1, R2 Tx 

NSCLC10 EGA EGAD00001000900 
LUAD-001 P1, P2 Primary 

NSCLC-004 P1, P2, P3, P4 Primary 

LUAD9 EGA EGAD00001000984 

LUAD-270 P1, P2, P3 Primary 

LUAD-292 P1, P2, P3 Primary 

LUAD-4990 P1, P2, P3, P4 Primary 

GBM12 EGA EGAD00001001113 

GBM-0125P P1, P2 Primary 

GBM-0125R R1, R2 Tx 

GBM-0221P P1, P2 Primary 

GBM-0221R R1, R2 Tx 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

Supplementary Table 4. SFS derived ITH metrics for virtual tumors. 
Five ITH metrics (fHsub, fHrs, FST, KSD and rAUC) based on pairwise comparisons of 
the SFS for subclonal variants in different tumor regions are shown for each virtual 
tumor. Statistics derived from MRS of 2, 4 and 8 tumor regions are indicated in separate 
tabs. 
 
 
Supplementary Table 5. SFS derived ITH metrics and SVM based classification of 
patient samples.  
Five ITH metrics (fHsub, fHrs, FST, KSD and rAUC) based on pairwise comparisons of 
the SFS for subclonal SSNVs in different tumor regions were calculated for each 
patient’s tumor. The classification probabilities for the SVM trained on virtual tumors 
with MRS from four regions is shown for i) the SVM based on five statistics or ii) the two 
primary independent components (IC) derived from these five statistics. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Supplementary Note 

 
 

Somatic SNV calling 
 

Short-reads produced by WES (or WGS) on the Illumina platform were aligned to 
hg19 using BWA (version 0.7.12-r1039)1. The raw alignment files (BAMs) were then 
pre-processed through indel realignment, base recalibration and flagging of duplicated 
reads. Raw SSNV calls were made using MuTect (v1.1.4) 2 and VCF files were 
annotated using Annovar 22. Nonsilent SSNVs in predicted and known ‘driver’ genes 
were annotated with IntOGen (v.2016.5) 23. To facilitate quantitative comparisons of the 
SFS, we devised a unified variant assurance (filtering and rescuing) pipeline (VAP, 
manuscript in preparation) to achieve a balance in sensitivity and specificity when MRS 
is available such that information can be borrowed across regions. False positive calls 
due to misalignments or other technical artefacts tend to exhibit suggestive local 
mapping features where manual inspection is often used to ensure the quality of calls. 
On the other hand, variants can also be missed due to limited sensitivity 24 in the face of 
non-uniform read/quality distribution in different samples. Thus, for each raw variant call 
(unfiltered), the sequencing data from all samples was re-inspected to assess the 
confidence (in detected samples) and evidence (in un-detected samples) for the 
alternative allele. We removed variant calls supported by reads (in the detected sample) 
having (a) strong strand bias (one strand only unless the same bias is seen for the 
reference allele), (b) overall low mapping quality (60% or above with less than MAQ 30), 
(c) tail-distance bias (90% or above are within 15 bp from the read-ends), (d) equal or 
better mapping quality to alternative locations by another mapper 25 and (e) multiple 
mismatches and indels (n ≥ 3 on average). These summarized biases are associated 
with different types of artefacts (Supplementary Figure 13). Of note, segmental 
duplications or misalignments often lead to consistent mismatched clusters in the same 
read captured by the multi-mismatch filter. Variants were rescued for high-quality reads 
(n ≥ 3) supporting the alternative allele in initially undetected samples with none of the 
aforementioned biases. 

SSNVs were called by requiring (a) the tumor LOD score (log odds probability of the 
tumor having the SSNV) exceeds 4.3 and the normal LOD score (log odds for the 
absence of germline variants in the normal) exceeds 2.3, where the scores were 
calculated as previously described 2. The base error rates were set to the maximum of 
the corresponding Phred base-error or a local error rate computed from the number of 
non-consensus mismatches26; (b) read depth above eight for normal control; (c) a 
Fisher’s exact p value < 0.05 in comparing alternative allele presence between normal 
and tumor samples and VAF for normal is less than 0.05 (d) not a known SNP found in 
multiple individuals, some of which can be regarded as germline variants. The VAF 
(unadjusted) was calculated by dividing the number of reads carrying the variant by the 
total number of reads spanning that position. Benchmarking (section “Benchmarking of 
Variant Assurance Pipeline” in this Supplementary Note) shows that our pipeline 
achieves better sensitivity at moderate read depth (<100x) for SSNVs with VAF 
between 5-20% than the MuTect default setting with a comparable false positive rate 
(Supplementary Figure 33-35). 

For the xenograft samples, a combined human (hg19) and mouse (mm10) 
reference genome was adopted for read alignment. Reads that mapped to the mouse 
genome with equal or better quality than to the human genome were removed (less 
than 5% of the total reads, Supplementary Figure 11b). As matched normal cell lines 



 

do not exist, for both the LoVo and HCT116 xenograft studies, an ancestral polyclonal 
tumor cell mixture (taken prior to the single cell expansion) was used as a reference. 
This ancestral population harbors many shared public somatic SSNVs with the 
descendent cells, which are therefore removed in a tumor-normal comparison, such that 
the remaining public SSNVs arose after the imposed population bottleneck. 

The enrichment of subclonal region-specific mutations in the low VAF range is 
unlikely to be fully explained by coverage bias since: 1) the lower the VAF, the higher 
the depth required to achieve the same LOD (log-likelihood odds ratio for calling); 2) for 
region-specific SSNVs, the variant absent region is required to have sufficient depth to 
achieve a binomial probability of missing variant reads less than 0.05 given the 
observed VAF; 3) depth from different tumor regions is typically correlated 
(Supplementary Figure 12).  
 
 

CNA detection and VAF adjustment 
   

Copy number and tumor purity (𝑝) were estimated with TitanCNA 27 (version 1.8.0) 
in exome-seq mode (except for the ESCA dataset where WGS was available). The one 
clone solution was generally the best fit to the data, with the exception of case LUAD-
4990 for which the two clones model was a better fit. Germline heterozygous SNVs 
used as input to TitanCNA were identified using Samtools 28 (version 1.2) and subject to 
the same filtering strategy as was applied to SSNVs. Homozygous SNVs were 
specifically retained for germline LOH regions in the starting HCT116 and LoVo cell 
lines for the xenograft experiments to enable the recovery of such events. Read depth 
controls were obtained from the paired normal except for the ESCA cohort as the paired 
normal samples exhibited highly variable depth that was not seen in the tumors. The 
Barrett’s esophageal lesion from patient 8 (BE-8) was adopted instead as a depth 
control as it appears to be polyclonal and diploid. For xenograft experiments, germline 
LOH or copy number gains present in the starting cell lines were identified by 
segmenting homozygous SNPs and corresponding normalized read depth using 
HMMcopy 27. The read depth files for the starting cell lines were set to diploid for 
regions with copy number gains (chromosomes 7,12 and 15 for LoVo and 8q, 10q, 16q 
and 17q for HCT116) to enable the recall of these events in xenograft samples. 

The observed VAF, 𝑉𝐴𝐹𝑜, was adjusted as previously described 29 in order to map 
the 𝑉𝐴𝐹𝑜  to a pure/diploid state to enable comparisons of SFS between 
samples/tumors. In brief, for an SSNV residing in a genomic segment with a total copy 

number of 𝑁𝑡, minor allele copy number of 𝑁𝑏 and cellular prevalence 𝑃𝐶𝑁𝐴 of the CNA 

in the tumor content, the adjusted variant allele frequency (𝑉𝐴𝐹𝑎) is half of the point 
estimate of cancer cell fraction (𝐶𝐶𝐹𝑒𝑠𝑡) given 𝑉𝐴𝐹𝑜 is true:   

𝑉𝐴𝐹𝑎 = 
𝐶𝐶𝐹𝑒𝑠𝑡
2

, 𝐶𝐶𝐹𝑒𝑠𝑡 =

{
  
 

  
 𝑁𝑐 ×

𝑉𝐴𝐹𝑜
𝑝′

− 𝑃𝐶𝑁𝐴 × (𝑁𝑡 − 𝑁𝑏 − 1)             𝐸𝑎𝑟𝑙𝑦 𝑀𝑎𝑗𝑜𝑟

𝑁𝑐 ×
𝑉𝐴𝐹𝑜
𝑝′

− 𝑃𝐶𝑁𝐴 × (𝑁𝑏 − 1)                       𝐸𝑎𝑟𝑙𝑦 𝑀𝑖𝑛𝑜𝑟

𝑁𝑐 ×
𝑉𝐴𝐹𝑜
𝑝′

                                                     𝐿𝑎𝑡𝑒/𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡

 

where 𝑁𝑐 = 𝑁𝑡 × 𝑃𝐶𝑁𝐴 + 2 × (1 − 𝑃𝐶𝑁𝐴) and the effective purity 𝑝′ =
𝑁𝑡×𝑝

𝑁𝑡×𝑝+2×(1−𝑝)
 (𝑝 is the 

estimated tumor purity). Point estimates of 𝑉𝐴𝐹𝑎  can be greater than 0.5 due to the 
inherent variability associated with sampling the observed 𝑉𝐴𝐹𝑜. The 𝑉𝐴𝐹𝑎 is equivalent 

to half the expected CCF for values below 0.5, which collapses to 1 when 𝑉𝐴𝐹𝑎 is above 



 

0.5 (Supplementary Figure 14). We used 𝑉𝐴𝐹𝑎  in keeping with the use of allele 
frequencies in population genetics and to enable visualization of the public mutation 
cluster centered at 0.5 (public mutations are not informative for the quantification of 
ITH). The temporal ordering and background composition of SSNVs and SCNAs was 
inferred by comparing the conditional probabilities of the observed number of mutant 

reads out of total reads, under each scenario and CNA configuration (𝑁𝑡 , 𝑁𝑏 , 𝑃𝐶𝑁𝐴) as 
follows: Early Major or Minor: SSNV in the major or minor allele occurred before the 
CNA; Late: SSNV occurred after the CNA; Independent: the SSNV and CNA occurred 
in independent lineages 29. Region-specific variants were assumed to have occurred 

after clonal CNAs (𝑃𝐶𝑁𝐴 > 0.9 for all regions). 
 
 

Benchmarking of Variant Assurance Pipeline 
 
Dataset 
The Variant Assurance Pipeline (VAP) is described within aims to: (1) achieve higher 
sensitivity than existing tools such as MuTect2 (with default setting), for moderate to low 
(5%-20%) VAF at moderate sequencing depth (30-100x) which represents the bulk of 
current multi-region sequencing (MRS) data (Supplementary Figure 11); (2) exploit 
variants that are confidently called in one MRS sample to salvage high quality 
alternative reads for samples where the corresponding variant was initially not called; 
(3) control the false positive rate (FPR) by considering patterns of artefactual calls in the 
sequence alignment. To evaluate the performance of the VAP, we generated in silico 
tumor-normal WES data by mixing WES data for two individuals (NA12878 and 
NA18489) from the 1,000 Genome Project30 generated using the Agilent SureSelect V2 
capture kit, as was employed for many samples in this study. NA12878 was treated as 
the “in silico tumor” for which GIAB-NIST has generated a gold standard variant list 
(version 3.3.2 downloadable through GIAB-NIST ftp server addressed as ftp://ftp-
trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/latest/GRCh37/), NA18489 
was used as the matched in silico normal sample. Fully processed read alignment files 
(using BWA against GRCh37) in BAM format were downloaded from 1,000 Genome 
FTP site (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/). The BAM files for 
NA12878 and NA18489 contain 209 and 202 million aligned reads, respectively and 
were post-processed with the same steps as adopted in our pipeline, namely, indel 
realignment, base quality recalibration and flagging of duplicated reads. Subsequently, 
the two BAM files were randomly down-sampled using Picard tool 
(http://broadinstitute.github.io/picard/) to achieve the following mixture concentrations of 
NA12878 (in silico tumor): 10%, 16%, 20%, 30%, 40% and 100%, resulting in an 
expected VAF of heterozygous SNVs of NA12878 at 5%, 8%, 10%, 15%, 20% and 
50%, respectively in the mixed sequencing data (Supplementary Figure 33). This 
dilution series also can serve as a source of multiple non-independent samples with 
varying “purity” to evaluate the VAP read salvaging strategy. 
 
Sensitivity 
VAP was applied to the in silico “tumor-normal” WES pairs, with read salvaging 
employed across multiple samples from the dilution series, with the same settings that 
were employed for the actual tumor sequencing data. MuTect (version 1.1.4) was run 
with the default setting. The resultant somatic SSNVs calls marked as “KEEP” were 
retained except for those with less than 3 alternate reads. Gold standard variants 
covered by at least 8 reads in each tumor sample, but NOT found in the normal sample 

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/latest/GRCh37/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/latest/GRCh37/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/
http://broadinstitute.github.io/picard/


 

(VAF > 0.15 in NA18489) were used as true positives, where sensitivity was calculated 

as follows: 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
. VAP exhibited greater sensitivity than MuTect default for 

all six in silico tumor samples with increasing median VAF. The improvement is 
particularly evident for variants in the range of 5%, 8% and 10% (Supplementary 
Figure 34), where sensitivity depends on read depth. While MuTect is sufficiently 
sensitive for highly covered variants (e.g., >100x), it failed to call 40% of true positives 
at 8% VAF with depth 50x. In contrast, VAP failed to call 18% of true positives under the 
same condition. The higher sensitivity is due to both the lowered threshold for, as well 
as the read salvaging process implemented in VAP.  
 
False Positive Rate 
To evaluate the FPR per million base pairs, we counted all targeted bases (based on 
Agilent SureSelect V2) covered at different depths in the in silico tumor samples. By 
dividing the number of false positives by the total number of bases at a range of depths, 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
× 106, MuTect and VAP achieved a median FPR per megabase of 2.82 

and 2.29, respectively (Supplementary Figure 35) which is considered low31. Although 
the FPR is similar between VAP and MuTect for depths ranging from 50-100x, MuTect 
yielded a greater number of FPs than VAP for depths < 50x and >100x (above which 
the FPR is positively correlated with depth). The FPR for the VAP is controlled across 
varying depths by requiring clean read alignment patterns which have been broadly 
adopted for selecting “gold standard calls” 32. It should be noted that in many 
sequencing applications, customized filters are often adopted to filter FPs after applying 
callers such as MuTect. However, simply adopting this strategy does not achieve 
comparable sensitivity to VAP. 
 
 

General statistical analysis 
 
R version 3.2.4 (2016-03-16 r70336) was used for all statistical analyses. A binomial 
test was performed using the R function pbinom (lower tail) with a 5% significance level 
to evaluate whether a SSNVs is region-specific where the null model that the same VAF 
is in the variant-missing region (given the sequencing depth). A Fisher’s exact test was 
constructed to evaluate the association between mutational presence and spatial 
information (region) in bulk sequencing and single gland sequencing data using the R 
function fisher.test (two.sided, Figure 4b). Fisher’s exact test was also used to evaluate 
the imbalance of cluster splits between clonal clusters and subclonal clusters 
(Supplementary Figures 21-23). The significance of Pearsons correlation between ITH 
metrics and the dMF/dLF of subclonal mutations, or between ITH metrics and driver fold 
enrichment of public mutations was assessed using the R function cor.test (two-tailed, 
Figure 6c, Supplementary Figure 32). The Wilcoxon rank sum test was used to 
evaluate whether two groups of values have the same mean for comparison of the 
fraction of shared subclonal SSNVs between patient tumors and virtual tumors with 
small deme size (0.5-1k), as well as comparisons of the auROC from SVMs trained with 
different combinations of the five ITH metrics (Supplementary Figure 27) using R 
function wilcox.test (two sided). 
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