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Materials and Methods 
Image acquisition from slides and immunohistochemistry 
Eight H&E slides from local institutional archives were deidentified, annonymized and scanned 
on an Aperio AT Turbo bright field scanner (Leica Biosystems, 40X magnification, 0.25 
micron/pixel). Since images cannot be traced back to patients and do not contain HIPAA 
sensitive information or any other information that can lead to patient identification, this research 
is considered non-subjects research by the institutional review board. Image tiles of 3,000 pixel2 
containing only high quality tumor tissue (no folded over or torn tissue, no over- or under-
staining), minimal stroma or connective tissue, and without hemorrhage red blood cells were 
extracted from each slide using Aperio ScanScope software (Leica Biosystems). 
 
H&E slides were decolorized and subsequently stained by immunohistochemistry (IHC) with 
antibodies reactive to CD31 (V-purple, endothelial cells), and CD45 (DAB, lymphocytes) (Fig. 
S1, S2). The IHC stained slides were digitized on the same slide scanner. Subsequently, image 
tiles matching those taken from H&E images were extracted from the corresponding IHC slides; 
the position of each IHC tile was matched to its brother H&E tile by an affine co-registration 
(MATLAB R2013b, Mathworks, Natick, MA, USA). Hematoxylin images digitally unmixed 
[22] from H&E and IHC tiles served as co-registration landmarks. Co-registered H&E and IHC 
tiles (n = 204) were used for development of image analysis algorithms.  
 
Hidden Markov Model to process IHC for annotation of H&E images 
The following analysis was performed using R. To identify individual cell types, the IHC images 
were processed by a custom Hidden Markov Model (HMM) classification system, HMMseg. To 
train the system, pixels of dark brown (DAB), dark purple (CD31), and deep blue (hematoxylin) 
color were manually collected from regions of IHC stained tissue. To obtain higher quality 
segmentation, three background states consisting of white (optical background), light blue 
(cytoplasm), and light brown (residual DAB) were also collected. To analyze IHC stained 
images, an HMM classifier was trained using the Viterbi algorithm (R package ‘Rhmm’). 
Ultimately, HMMseg produced binary images demarcating areas of positive IHC staining; these 
binary masks were regarded as ground truth annotation in the classification pipeline for IHC 
supervised classification of cell types and tumor vascular areas.  
 
Cellular classification 
Nuclear contours were identified by processing H&E images with the R package ‘CRImage’. In 
order to increase the stability of this method, the Hematoxylin component of the H&E was color 
separated, and pre-processed by median filtering (Fig. S3). Features of nuclear morphology and 
texture were assessed for each individual nucleus.  
To construct a dataset for morphological and texture based cellular classification, cellular 
identities from IHC were imposed upon individual nuclear contours in H&E images. Ground 
truth for cellular lineages was determined from the CD31 and CD45 masks outputted by 
HMMseg. This ground truth was dilated and superimposed onto the nuclear segmentations, and 
labels were imposed on nuclei that had greater than 50% overlap. A training set was gathered 
consisting of 14,000 cancer, 6,500 endothelial, and 1,500 inflammatory cells from 8 ccRCC 
slides (Table S1) and used to train a Support Vector Machine classifier. 
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Vascular Area Classification 

The following analysis was performed using MATLAB R2013b. A second classifier was 
designed to segment areas of vasculature and to generate vascular area masks (VAM) from H&E 
images. We observed vascular area as patterns of high eosin stain intensity proximal to 
endothelial nuclei. To translate the image into features, the locations of endothelial cells and the 
intensity of eosin staining were used as classification parameters. To leverage these images into a 
binary representation of vascular area, each pixel in the image tiles was characterized by EC 
distances (Fig. S5) and eosin intensity values (Fig. S6) in a small surrounding area through a 
sliding window method. Pixels within the vascular area were marked with reference to the CD31 
annotation mask. The binary mask resulting from application of this image processing technique 
was called the vascular area mask (VAM). VAMs were post-processed, yielding a representation 
we call the vascular skeleton (VS) and the constituent branch points (BP) and arm images.  
 

Vascular morphometry features 
A set of predetermined binary image features were extracted including object eccentricity, 
solidity, relative orientations of arms, density, the Euler-Poincare characteristic, the box-counting 
fractal dimension and sliding-box lacunarity (Fig. S8). Distributions of these image features were 
collected across all tiles per case. Image features were summarized by the mean, standard 
deviation, skewness and kurtosis of their distributions, yielding 88 vascular features (VFs) per 
case.  
 

Vascular Features predict Disease Free Survival 
Clinical data for the TCGA cases was accessed through CBioPortal [1,2], and H&E whole slide 
images were downloaded from the TCGA Data Portal. The discovery cohort was composed of 
64 cases from 2 institutions which possessed high quality H&E images. From each case, tiles 
containing maximal tumor area, uninterrupted by tearing, extravasated blood, necrosis, 
sarcomatoid differentiation or rhabdoid differentiation, was extracted from each whole slide 
image. To extract the complement of 88 VFs from these tiles we used pre-trained classifiers for 
endothelial cells and vascular areas. To reduce dimensionality, low variance features (std/mean < 
0.3) were excluded. To identify a subset of features with the highest predictive power, a 
stochastic backwards feature selection method [3] was applied with 1,500 iterations, with each 
iteration resulting in a set of best features. The results of all iterations were gathered into a final 
set of 9 VFs. Consensus clustering (R package ‘ConsensusClusterPlus’) was performed on 
expression levels of 9VFs in each case  and average silhouette width (R package ‘factoextra’) 
confirmed two groups of cases (Fig. S9) which were examined for DFS using a Kaplan-Meier 
plot.  
 

Identification of a surrogate gene signature from VFs 
The following analysis was performed using R. The VF outcome group classification was further 
used to train an mRNA expression based classifier. RNA expression data, as reads per kilobase 
of transcript per million mapped reads (RPKM), was downloaded via FireBrowse 
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(http://firebrowse.org). We identified a set of 14 genes correlative to the 9 VFs, and with positive 
Akaike information gain for VF outcome group classification. Two generalized linear models 
with elastic net regularization (GLMNET) were trained. One model (14VF) was trained on the 
VF-risk groups and applied to a 301 case validation cohort. The other model (14GT) was trained 
using 24-months disease free status as the ground truth, and applied to a 252 case validation 
cohort. Since 5 discovery cases, and 49 validation cohort cases were censored before 24 months, 
those cases were not included in 14GT training and validation. The DFS prediction by these two 
models was assessed with Kaplan-Meier plots. 

To assess risk group significance in the context of clinical stage (1,2 vs 3,4) and Fuhrman 
Nuclear Grade (1,2 vs 3,4), a series of multivariate Cox models were trained with differing 
combinations of bivariate predictors (Table S6). Of the 301 validation cohort cases, 254 also had 
annotation by a previously reported 34-gene signature (CC34). This overlapping cohort was used 
to compare the prediction by 14VF and 14GT with prediction by CC34.  
The significance of difference between outcome groups was calculated by the Wilcoxon rank-
sum test. 
 
Code Availability 
Source code developed for this work may be accessed through supplementary data files as noted 
in the text, or by request to the authors. 
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Expanded Materials & Methods 
Image acquisition 
Eight H&E slides from local institutional archives were scanned by an Aperio AT Turbo bright 
field scanner (Leica Biosystems, 40X magnification, 0.25 micron/pixel) (Fig. S1). H&E slides 
were decolorized and subsequently stained by immunohistochemistry (IHC) with antibodies 
reactive to CD31 (V-purple, endothelial cells), and CD45 (DAB, lymphocytes). The IHC stained 
slides were digitized on the same slide scanner.  
 
Information on the scanner make and models used at individual TCGA-contributing sites was 
unavailable. Whole slide image files in SVS format were downloaded through the TCGA data 
portal.  
 
Immunohistochemistry 
Antibodies were used in the sequence of CD45 à CD31 for staining of the same tissue section.  
For CD45, antigen retrieval occurred with Na/EDTA pH 8.0 for ~30 minutes @ 90˚C.  Tissues 
were blocked with animal-free protein blocking buffer (Vector Laboratories cat. # SP-5030) for 
15 minutes.  To quench the endogenous peroxide, the tissue was treated with H2O2 for 12 
minutes.  The anti-CD45 (Ventana Pre-Dilute, cat. # 790-2505) was applied for ~30 minutes @ 
37˚C in the DISCOVERY ULTRA automated slide stainer (Ventana cat. # 750-601).  Thereafter, 
the EnVision+ System – HRP labeled polymer goat anti-mouse secondary antibody (Dako cat. # 
K400011) was used for 20 minutes, followed by DAB (3,3’-diaminobenzidine, Vector 
Laboratories cat. # SK-4100) staining for 8 minutes.  
 
Next, slides were incubated with the denaturing buffer (citrate buffer pH 6) for 10 minutes @ 
110˚C, to remove the CD45 antibody.  Tissues were blocked with animal-free protein blocking 
buffer (Vector Laboratories cat. # SP-5030) for 16 minutes.  To quench the endogenous 
peroxide, the tissue was treated with H2O2 for 12 minutes.  The CD31 antibody (Cell Signaling, 
cat # 3528) was diluted at 1:1000 and applied for ~60 minutes @ 37˚C in the DISCOVERY 
ULTRA automated slide stainer (Ventana cat. # 750-601).  Thereafter, the EnVision+ System – 
HRP labeled polymer goat anti-mouse secondary antibody (Dako cat. # K400011) was used for 
32 minutes.  DISCOVERY Purple (Ventana, cat. # 253-4857) was applied as the chromogen to 
visualize CD31-antibody binding for 24 minutes. Slides were stained with Modified Mayer’s 
Hematoxylin (American MasterTech Scientific, cat. # HXMMPT) for 1.5 minutes and cover-
slipped. 
 
Annotation of IHC images by Hidden Markov Model 

IHC images were annotated for areas positive for CD31, CD45, or hematoxylin by an in-house 
Hidden Markov Model (HMM) classification system, HMMseg. Blank areas on slides were also 
annotated. HMMseg utilizes HMM series prediction (‘Rhmm’) [4] and Support Vector Machine 
(SVM; ‘e1071’) [5] classification to detect areas positive for each stain. To train the system, 
pixels of dark brown (DAB), dark purple (CD31), and deep blue (hematoxylin) color were 
manually collected from example regions of IHC stained tissue. To obtain higher quality 
segmentation, three background states consisting of white (optical background), light blue 
(cytoplasm), and light brown (residual DAB) were similarly collected. (In all 15,000 training 
pixels were collected.) To obtain the precursor probability and transition matrices for the HMM, 
a multi-class SVM was trained using the six colors, then applied to a small representative image 
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tile, thereby obtaining an estimate for proportion of each color. An HMM classifier was trained 
using the Viterbi algorithm (‘Rhmm’). The Viterbi algorithm predicted the state transitions for a 
vector of pixels in one dimension: across all rows or columns of the image. This resulted in two 
solutions per image. These solutions were compared, and points of disagreement were resolved 
by the previously trained SVM classifier. Each annotation that represented a positive stain was 
independently post processed to fill small holes (area < 75 pixels) and to remove small regions 
(area < 75 pixel). Boundaries were smoothed by morphological opening (diamond structuring 
element with a 3-pixel radius; ‘EBImage’) [6]. Ultimately, HMMseg produced binary images 
demarcating areas of positive IHC staining (Fig. S2); these binary masks were regarded as 
ground truth annotation in the following classification pipeline for IHC supervised classification 
of cell types and tumor vascular areas. 
 

Automated annotation of segmented nuclei for training a cellular classifier 
A first classifier was trained to identify nuclei of different lineages in H&E images by their 
nuclear morphology and texture. Hematoxylin images were color-unmixed from H&E images 
and then preprocessed by a median filter to fill nuclear interiors and suppress background noise. 
Nuclei were then segmented by a seeded-watershed technique (‘CRImage’; maxShape = 300, 
minShape = 200, failureRegion = 7000, medianFilter = TRUE, edgeDetection = TRUE, 
speckleSize = 150, watershedTolerance = 0.9, postEdgeFill = TRUE, whiteHigh = 0.85, 
normalize = TRUE, numWindows = 20) (Fig. S1; Fig. S4), and each nucleus was parameterized 
by 63 features of morphology and texture (‘CRImage’; Table S1). Ground truth lineage of nuclei 
was determined from the CD31 and CD45 masks outputted by HMMseg. Each mask was first 
processed by morphological dilation (disk, radius of 11 pixels), then overlaid onto the mask with 
parametrized nuclear contours. Nuclei that had greater than 50% overlap were assigned to a 
specific lineage. By this method, 14,000 cancer, 6,500 endothelial, and 1,500 inflammatory cells 
from 8 locally archived ccRCC slides (Table S3) were labeled with reference to IHC annotation 
and included for classifier training. We used the same SVM classification method as in Yuan, et 
al. (2012) to perform nuclear classification using these labelled nuclei. To compensate for 
uneven class representation in the training set, the SVM (radial kernel, g = 0.0159) was created 
with retrospectively determined weights (tumor = 0.9, endothelial = 1.3, lymphocyte = 2). 
Accuracy of the classifier was assessed with a test set of 255,000 nuclei, notably with similar 
proportions to the training set (Table S3). This classifier was applied to classify de novo nuclei 
into the three classes of cellular lineage. 
 

Pixel-wise classification to delineate vascular areas in H&E images 
A second classifier was designed to segment areas of vasculature. The locations of endothelial 
cells and the intensity of eosin staining were used as classification parameters. The eosin image 
component was unmixed from H&E images and then normalized by histogram normalization. 
Sequential application of anisotropic diffusion filter [7] (25 iterations, edge threshold 20, ∆𝑡 = 
0.2, 𝜎 = 0.5), Sobel filter, image reconstruction and averaging filter (radius = 7) produced a 
smoothed image wherein eosinophilic areas were enhanced - made to be uniformly dark (Fig. 
S6). A distance transform on the binary mask of endothelial nuclei provided a numerical 
representation of distance between EC (Fig. S5). The distance transform image and the enhanced 
eosin image were used to find pixels of vascular tree through a pixel-wise classification. 
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To leverage these images into a vascular area representation, each pixel was characterized by EC 
distances and eosin intensity values in a small surrounding area from image tiles. Pixels of 
vasculature were marked with reference to the CD31 annotation mask. The mask was overlaid on 
the eosin intensity and EC distance transform images. Random Forrest classifiers were 
previously used by Gertych, et al. (2015) in a similar histopathological image segmentation, with 
analogous features. Image features of 6,000 pixels under the mask were extracted and used to 
train a Random Forrest classifier (MATLATB R2014b, Statistics & Machine Learning Toolbox). 
The classifier was then validated on approximately n = 5.0e10, test pixels from n = 210 tiles 
(Table S3). The mask resulting from application of this classification technique, in each image 
tile, was called the vascular area mask (VAM; Fig. 1B). VAMs were post-processed by small 
hole-filling (< 200 px), short bridge connection (iterative closings with a rotating linear 
structuring element, 15-pixel length) and midline transformation yielding a representation we 
call the vascular skeleton (VS). This VS consists of many intersecting single-pixel width splines 
(Fig. 1D). In the VS, points of intersection were defined as branching points (BP), and vascular 
arms were obtained by subtracting the BP from the VS. Together, the VAM, VS, BP and EC 
masks were used as the basis for characterization of the tumor vasculature. 

 
Vascular Feature extraction 

A set of predetermined binary image features were extracted including object eccentricity, 
solidity, relative orientations of arms, density (MATLAB, “regionprops” function), the Euler-
Poincare characteristic, the box-counting fractal dimension and sliding-box lacunarity (Fig. S8). 
Features were collected as distributions across all tiles per case in the following way. Let T be 
the set of all tiles in a single case, and O be all binary objects (i.e. endothelial cells) in a tile. 
Distribution 𝑫𝑓 is composed of feature values of feature 𝑓, for all O, in all T. In the case of 
features calculated on whole tiles, like fractal dimensions, the distribution 𝑫𝑓 is simply 
composed of values 𝑓 for all tiles T. Each 𝑫𝑓 was then summarized by its mean, standard 
deviation, skewness and kurtosis, also known as the histogram moments. All together each case 
was described by 88 vascular features (VF’s). The range of 𝑵 was from 3 to 74 tiles per case (𝜇 
≈ 25, 𝜎 ≈ 18) in the 64 case TCGA discovery cohort. 
 

Analysis of features for disease free survival 
We sought to assess VFs in the context of disease free survival (DFS) prediction. Clinical data 
for the TCGA cases was accessed through CBioPortal. Of the 537 ccRCC cases in the Cancer 
Genome Atlas (TCGA), 64 cases were selected that had both sufficient image quality, and 
complete disease free survival data (Table S2). Images were assessed visually using Aperio 
ScanScope (Leica Biosystems) software. Image tiles were selected that possessed uninterrupted 
tumor area of >9,000 px2 (at least 3 * 3,000 px2 tiles), < 10% area covered by extravasated red 
blood cells, near 0% necrosis, sarcomatoid, or rhabdoid differentiation. Additionally, cases with 
weak hematoxylin and eosin staining were excluded. The maximum area per case that fit the 
above criteria were gathered as tiles for VF extraction. 

The full complement of 88 VF’s were extracted from the 64 discovery cohort cases. To reduce 
dimensionality, low variance features (std/mean < 0.3) were excluded. To identify a subset of 
features with the highest predictive power, a backwards feature selection method was applied 
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with 1,500 iterations. Briefly, we first identified a baseline log-rank p-value by clustering 
(average correlation distance) a random 75% subset of the 64 cases into two groups by their 
expression of all VF’s. The resulting DFS curves were analyzed for significance by the Kaplan-
Meier method. Iteratively, the cases were re-clustered after removal of one VF. VF’s were 
excluded according to the most improvement in log-rank test p-value at each step. This process 
repeated until removal of additional VF’s would result in an increased p-value, i.e. worse 
separation. At this point, the remaining VF’s were tracked, and the process began again with the 
full VF complement. The remaining VF’s, from 1,500 such iterations, were tallied, and the top 9 
most frequently selected VF’s were selected for further analysis. Consensus clustering 
(‘ConsensusClusterPlus’ package) was performed on these 9 features and average silhouette 
width (‘factoextra’ package) confirmed two groups of cases (Fig. S9) which were examined for 
DFS by Kaplan-Meier analysis. Subsequently, the remaining 301 TCGA ccRCC samples were 
evaluated for image quality. Of the slide images available, 28 were of sufficient quality for VF 
analysis. To classify the 28 cases into good and poor outcome groups, we trained a Random 
Forest classifier (MATLAB, 30 trees, other settings default) on the VF signature from the 64 
case discovery cohort. 

 
Identification of a surrogate gene signature from VF’s 

The following analysis was performed using R version 3.3 [8]. Samples from the discovery set 
were assigned into 2 groups by hierarchical clustering using correlation distance and average 
agglomeration, with values of the 9 selected vascular image features (VF). This VF group 
classification was further used to train mRNA expression based classifier. RNA expression data, 
as reads per kilobase of transcript per million mapped reads (RPKM), was downloaded via 
FireBrowse (http://firebrowse.org). RPKM data was preprocessed by log-2 transform and 
quantile normalized. We chose a small subset of genes that are highly correlated (top 0.05 
percentile Pearson’s correlation coefficient) with each of the 9 selected image features. Thus a 
182 gene set was obtained (Table S3). As in Yu & Snyder, et al. (2016), the gene set was further 
refined by calculating the information gain ratio for each gene (‘FSelector’ package) [9]. 
Fourteen genes were identified with positive information gain and these were included in the 
final gene set (Table S5). 

The VF outcome group classification was further used to train an mRNA expression based 
classifier. RNA expression data, as reads per kilobase of transcript per million mapped reads 
(RPKM), was downloaded via FireBrowse (http://firebrowse.org). We identified a set of 14 
genes correlative to the 9 VFs, and with positive Akaike information gain for VF outcome group 
classification. Two generalized linear models with elastic net regularization (GLMNET) were 
trained. One model (14VF) was trained on the VF-risk groups and applied to a 301 case 
validation cohort. The other model (14GT) was trained using 24-months disease free status as the 
ground truth, and applied to a 252 case validation cohort. Since 5 discovery cases, and 49 
validation cohort cases were censored before 24 months, those cases were not included in 14GT 
training and validation. The DFS prediction by these two models was assessed with Kaplan-
Meier plots. 
To assess risk group significance in the context of clinical stage (1,2 vs 3,4) and Fuhrman 
Nuclear Grade (1,2 vs 3,4), a series of multivariate Cox models were trained with differing 
combinations of bivariate predictors (Table S6). 
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The significance of difference between outcome groups was calculated by the Wilcoxon rank-
sum test. 
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Supplementary Figures 

 
Fig. S1. Classification of endothelial nuclei. (A) Slides for classifier training. The top group 
shows H&E stained slides and the bottom group shows the exact same slides stained by 
immunohistochemistry with antibodies reactive with CD31 and CD45. (B+C) Integration of 
H&E and IHC data for classifier training. (B) Hidden Markov model: Visualization of results 
from hidden Markov model applied to IHC tile images, CD31 – purple, Hematoxylin – blue, 
CD45 (not shown) – red). (C) Nuclear mask: Nuclear contours as delineated from the 
hematoxylin portion of the H&E image. (D-F) Classifier testing (F) Example of cellular 
classification result: endothelial nuclei – blue, tumor nuclei – yellow, lymphocytes (not shown) 
– red. (E) Expression levels of extracted features used in the classification: Average expression 
(y-axis) of nuclear features (x-axis) separating endothelial cells (green), tumor cells (red) and 
lymphocytes (blue). (F) Classifier performance: Cellular classification accuracy assessed by 
receiver operating characteristic curves in a testing set of 255,000 nuclei annotated through 
immunohistochemistry (AUC: tumor - blue = 0.93, endothelial cells - green = 0.96, lymphocytes 
- red = 0.84). 
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Fig. S2. Color classification by Hidden Markov Model (HMM) to annotate IHC staining in 
whole slide images. (a) Six states were identified representing three stains (hematoxylin (blue), 
CD31 (purple), CD45 (brown)) and three background colors (white, grey and light brown). 
These states have a certain probability of transitioning between states, indicated by arrow weight. 
For example, it is very likely to transition from blue to white, and from white back to white. (b) 
A series of these states were predicted for each row and column in an image. Traversal of image 
data as whole rows and columns reduces the rate of single pixels, e.g. within a nucleus, with 
open chromatin conformation, being misclassified. 
 

 
Fig. S3. Example of HMM segmentation results. (a) Original image of CD31 (purple) and CD45 
(brown) stained tissue. Blue hematoxylin marked DNA in tumor cell nuclei.  (b) HMMseg output 
image. Each pixel was assigned to one of six classes, and artificially colored for visualization. All 
six colors (blue, grey, light brown, purple, brown and white) are visible in this example (arrows). 
This model was trained with ~15,000 training pixels taken from six small (~200 sq. px.) regions, 
and the posterior probabilities determined by SVM classification of an image 300 x 300 pixels 
large. 
 

a b

a b
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Fig S4. Nuclear segmentation from the unmixed hematoxylin image. (a) Original image of 
hematoxylin and eosin (H&E) stained tissue. (b) The hematoxylin stain component was isolated 
by numerical deconvolution, followed by median filtering to smoothen unevenly stained nuclei. 
Pre-processing reduced the frequency of under-segmentation of nuclei, and increased the quality 
of segmentation faithfully outlining the contour of each nucleus. (c) Nuclear contours, delineated 
by the ‘CRImage’ package.  
 

 
Fig. S5. Endothelial nuclei location preprocessing for vascular area classification. (a) All 
nuclei (endothelial, lymphocyte, and tumor) in the image are represented as a label image after 
classification by the cellular classifier. (b) Nuclei classified as endothelial cells were isolated 
from other nuclei. In this image, each dark spot represents an endothelial nucleus. (c) A distance 
transformation was applied to the image, encoding the distance from the nearest endothelial 
nucleus for all pixels. Dark represents a greater distance. For example, the blue arrows in (b) and 
(c) point at the same area. The image (c) is colored white to represent the presence, and 
proximity, of the endothelial nuclei. The thin gray lines throughout (c) are local maxima, and 
occur at the midpoint between neighboring nuclei. This pipeline provides information on the 
location of endothelial nuclei as a part of the vascular area classifier. 
 

a b c

a cb
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Fig. S6. Eosin intensity preprocessing for vascular area classification. (a) Original H&E 
image. (b) Color separated eosin stain intensity. Color deconvolution to isolate eosin intensity 
was performed by the same method as in nuclear segmentation. Target mean and standard 
deviation matrices were set as constants for all experiments. (c) Processed eosin image by 
hematoxylin subtraction, anisotropic diffusion filtering, sobel filtering, image reconstruction, and 
average filtering. See online methods for individual filter parameters. This pipeline provides 
information of perivascular tissue as a part of the vascular area classifier. 
 
 

 

 
Fig. S7. Box plot of features for vascular area classification. Features along the x-axis are bins 
of local intensity histograms from the endothelial cell distance image (Fig. S5) and the eosin 
intensity image (Fig. S6). The points centered over CD31-positive or CD31-negative areas, as 
defined by HMM annotation, are colored purple and green respectively. Values are ordered low 
to high from left to right. For example, low value of endothelial cell distance is significantly 
more expressed for CD31-positive areas, indicating close proximity of EC to the vasculature. 
Wilcoxon rank-sum test was used to test statistical difference between the two groups, ** = p < 
0.01.  
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Fig. S8. Binary vascular object features. Red denotes a parameter which is obtained from 
analyzing the whole image tile. These parameters measure the objects in the tile.  Blue denotes a 
parameter that is obtained for each object in an image. White marks a mask and feature 
combination that was not included. The total of Red plus Blue is 22 image analysis features. 
Multiple values are obtained for each feature and plotted as a distribution. Each distribution is 
characterized by 4 values (mean, STD, skewness and kurtosis), generating 88 VFs to numerically 
capture the organization of the vasculature.  
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Fig. S9. Consensus clustering of discovery cohort cases (n = 64) by 9 VFs. (a) Consensus 
matrix for k=2 clusters showing the frequency of co-clustering for each case over 100 iterations. 
(b) Cumulative distribution functions (CDF) for k = 2,3,4,5. (c) Change in the area under the 
CDF. The largest change observed with the transition from k=1 to k=2, with a still-significant 
increase with the transition from k=2 to k=3, and marked levelling off for k>3. (d) Tracking plot 
shows the consensus group assignments for each case (columns) as the number of clusters, k, 
increases. (e) Average silhouette width over 100 iterations demonstrates that 2 clusters optimally 
encompass the data. 
 
 
 

 
Fig. S10. F-test for inter-case versus intra-case feature variance. The features found 
important for survival prediction were tested for variance between the 64 discovery cohort cases, 
compared with the variance between tiles from the same cases. All features vary significantly 
more between cases than within case (p < 0.001). 
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Fig. S11. Hierarchical clustering of cases in the TCGA discovery cohort by 9 VFs into good 
(blue) and poor (red) outcomes groups. The heatmap is the same as shown in Fig. 2B with 
annotation of VFs below each column. The stage, Furman grade and recurrence status are 
indicated on the left of each case. See Table 2 for a short interpretation of each vascular feature. 
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Fig. S12. Heat map of expression values of the 14GC in the discovery cohort (n=64). Shades of 
red indicate high expression, and shades of blue indicate low expression after median centering. 
The red and blue label bar indicates cases assigned to good (blue) and poor (red) outcome groups 
by VF clustering. The sample rows in this heat map were ordered according to the outcomes 
prediction obtained with the 9 VF classifier.  Columns were arranged by hierarchical clustering 
(correlation distance). 
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Fig. S13. Visualization of expression levels of the 14GC in the discovery cohort (n = 64). (a) 
Multidimensional scaling plot (average correlation distance) of 9 VF depicting good (blue) and 
poor (red) prognosis groups. (b) Boxplot of median centered gene expression value in the 64 
discovery cohort cases, red (poor outcome) and blue (good outcome) groups determined by VF 
clustering. Wilcoxon rank-sum test p-value: * - p < 0.05, ** - p < 0.01. 
 

 
Fig. S14. Comparison of 6 prediction models fit with the 14GC to separate good and poor 
prognosis groups – as determined by the 9 VFs - in the discovery cohort. (a) Receiver operating 
characteristic curves for the performance of each classifier in the discovery cohort. (b) Summary 
of performance metrics of the 6 classifiers. Classifier abbreviations are: GLMNET - Generalized 
Linear Model with Elastic Net Regularization, SVM_r - radial kernel SVM, SVM_l - linear kernel 
SVM, TB - Tree Bagger, RF - Random Forest, CF - C-Forest. 
 
 
 
 
 
 

a b

Discovery	Cohort
Accuracy Kappa Sensitivity Specificity AUC

GLMNET 0.794 0.522 0.955 0.525 0.78

SVM_r 0.781 0.498 0.93 0.533 0.72

RF 0.772 0.478 0.92 0.525 0.79

CF 0.747 0.388 0.975 0.367 0.77

TB 0.738 0.425 0.83 0.583 0.74

SVM_l 0.712 0.316 0.925 0.358 0.68

ba
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Fig. S15. Kaplan-Meier plot of 14GC good and poor prognosis groups in the discovery cohort. 
A GLMNET classifier was trained with the 64 discovery cohort cases, and then applied to the 
same discovery cohort cases to separate them into good and poor survival groups. The survival 
times for these two groups was visualized in a Kaplan-Meier plot. 
  

 
Fig. S16. Visualization of expression levels of the 14GC in the validation cohort (n = 301). (a) 
Multidimensional scaling plot (average correlation distance) of cases colored by the GLMNET 
classification with the 14-gene panel (14GC). (b) The first two principle components of 14 genes 
in the validation cohort. Colors correspond to good (blue) and poor (red) prognosis group 
classified by 14GC. The first two principle components explain 39.8% of the variance.  (c) 
Boxplot of median centered gene expression value in the good (blue) and poor (red) outcomes 
groups determined by 14GC. Wilcoxon rank-sum test p-value: * - p < 0.05, ** -  p < 0.01 
 
 

a

b

c
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Supplementary Tables 
 
Table S1. List of nuclear morphology and texture features from CRImage (excel spreadsheet) 
 

Table	S2:	Image	Analysis	Performance	Metrics	

Computation	time	–	1	Tile	(3,000px2)	

Nuclear	Segmentation	 5	min	

Nuclear	Classification	 <1	min	

Vasculature	Area	Classification	 2	min	
Nuclear	classification	in	image	tiles	from	archival	cases	

(HMMSeg	annotated)	
	
	

	
Training	

	
Validation	

#	cases	 8	 8	

#	tumor	nuclei	 16,660	(70.8%)	 170,825	(67%)	

#	endothelial	nuclei	 6,224	(26.4%)	 75,058	(29.4%)	

#	inflammatory	nuclei	 669	(2.8%)	 9,317	(3.6%)	

Total	 23,553	 255,200	

Nuclear	classification	performance	

Tumor	cells	sensitivity/specificity	 0.933	/	0.87	
Endothelial	cells	

sensitivity/specificity	 0.87	/	0.9	

Vascular	area	classifier	performance	
Area	used	for	training	

(CD31	positive	+	negative)	
	 6,000	pixels	

CD31	positive	validation	area	 	 >5	x	108	pixels	

Overlap	Index	
𝐶𝐷31 ∪ 𝑉𝐴𝑀 	

min	( 𝐶𝐷31 , 𝑉𝐴𝑀 )
	 0.64	±	0.08	

Accuracy	
𝑅𝑎𝑤	𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡
#	𝑇𝑒𝑠𝑡𝑖𝑛𝑔	𝑝𝑜𝑖𝑛𝑡𝑠

	 0.74	±	0.03	

Area	under	ROC	curve	 	 0.79	

Table S2. Training and validation set metrics for nuclear and vascular area classifiers. 
Analysis was performed on a dual Intel Xeon (E5-2630 v2 @ 2.60GHz) workstation with 32GB 
RAM and running 64-bit Windows 7 Enterprise. GPU accelerated tasks, implemented by 
MATLAB’s gpuArray data type, were performed on an NVIDIA Quadro K4000. In application, 
the processing time for one tile was approximately 8 minutes after time consuming intermediates 
were pre-processed. Cellular feature extraction and eosin mask preprocessing added considerably 
to the processing time per tile.  
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Table S3. Clinical variables for patient cohorts. 380 cases had complete recurrence status and 
RNA-seq data. Of these, 12 had received neoadjuvant therapy. Three of the remaining were 
normal samples. The remainder were divided into the 64 case discovery and 301 case validation 
cohorts. Median time to recurrence was defined as the time point at which the right-censored 
Kaplan-Meier plot intersected the line survival rate = 0.5. Chi-square test confirmed there is no 
significant difference in the frequency of grade, stage, or recurrence of cases between discovery 
and validation set. 
 
 
 

Table	S3:	Characteristics	of	patient	cohorts	
	 Local	
Development	

TCGA	Discovery	 TCGA		
Validation	

P	
(Chi-

square)	
	
Number	of	cases	

	 8	 64	 301	 -	
	
Fuhrman	Grade	
1	 0	 3	(4.7%)	 4	(1.3%)	 0.192	
2	 5	 32	(50%)	 129	(43%)	
3	 3	 23	(35.9%)	 121	(40.3%)	
4	 0	 6	(9.4%)	 42	(14%)	
N/A	 0	 NA	 4	(1.3%)	
	
Median	Age	(min	–	max)	
	 n/a	 60	(33	-	86)	 59	(29	-	86)	 -	
	
AJCCC	Stage	
Stage	I	 n/a	 33	(51.6%)	 153	(50.8%)	 0.244	
Stage	II	 n/a	 12	(18.8%)	 37	(12.3%)	
Stage	III	 n/a	 18	(28.1%)	 110	(36.5%)	
Stage	IV	 n/a	 1	(1.6%)	 1	(0.3%)	
N/A	 n/a	 NA	 NA	
	
Number	recurred	
	 n/a	 27	(42.2%)	 87	(28.9%)	 0.185	
	
Median	Time	to	Recurrence	(months)	
	 n/a	 89.8	 123.7	 -	
	
Tiles	analyzed	(@	750	um^2	/	tile)	
	 204	 2,714	 0	 -	
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Table S4. 182 unique genes correlated with vascular features. (excel spreadsheet) 
 

Table S5 Gene name Activity Disease association REF 

CMYA5 Cardiomyopathy-
associated 5 

Desmin binding 
Vesicular transport 

Cardiomyopathy 
schizophrenia 17, 18 

STAT3 
Signal transducer 
and activator of 
transcription 3 

Signal transduction 
Gene transcription 

Angiogenesis  
Vascular leakage 

19, 20  
 

ADH5 alcohol 
dehydrogenase 5 

Opposes NO signaling, 
protein denitrosylation 

Impaired 
cardiovascular function 21 

NLRC4 
NLR family 
CARD domain 
containing 4 

Innate immunity 
inflammosome 

Inflammatory disease, 
infantile enterocolitis 22, 23  

RPL36A Ribosomal 
protein L36 

60S ribosomal subunit 
Translational regulation 

Hepatocellular 
carcinoma 24 

RPLP2 
ribosomal protein 
lateral stalk 
subunit P2 

Phosphoprotein involved in 
protein elongation 

Upregulated in many 
cancers 25, 26 

SLC16A4 
Solute carrier 
family 16 
member 4 

Monocarboxylate transporter 
for pH and energy 
homeostasis 

Prognostic biomarker 
in ccRCC 27  

TNFSF8 

tumor necrosis 
factor 
superfamily 
member 8 

CD30 ligand Inflammation 28  

ZNF16 zinc finger 
protein 16 Transcription factor 

Erythroid and 
megakaryocyte 
differentiation 

29  

IFNA13 interferon alpha 
13 

Inflammatory/reproductive 
cytokine 

Downregulated in 
dilated cardiomyopathy 30  

SGCB Sarcoglycan beta Dystrophin complex, 
sarcoglycan transport 

Limb-girdle muscular 
dystrophy 
cardiomyopathy 

31 

KCNJ12 

potassium 
voltage-gated 
channel 
subfamily J 
member 12 

Repolarization of cardiac 
muscle 

Dilated 
cardiomyopathy 32 

MED10 mediator complex 
subunit 10 

RNA Pol-II transcriptional 
regulation 

Heart valve 
development 33 

GOSR2 
golgi SNAP 
receptor complex 
member 2 

Vesicular trafficking Familial essential 
hypertension 34, 35 

Prognostic renal cancer 
biomarker 

Association with vascular or heart biology 
 

Cancer 
association 

Table S5. Functional annotation of genes in 14 gene classifier (14GC). Annotation was 
performed manually through PubMed. 
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Name Grade Stage Gene34 14VF 14GT ScoreTest RatioTest AIC C-Index
2 Grade 1.71 1.16 1.17 478.96 0.58
3 Grade	+	CC34 1.38 2.66 3.21 3.12 469.96 0.67
4 Grade	+	14VF 1.75 3.53 5.22 4.27 464.68 0.65
5 Grade	+	14GT 1.32 4.26 5.84 3.68 467.39 0.64
6 Stage 4.00 6.62 5.83 459.14 0.70
7 Stage	+	CC34 3.34 2.18 7.35 6.54 454.22 0.75
8 Stage	+	14VF 3.97 3.47 10.10 8.44 445.46 0.74
9 Stage	+	14GT 3.51 3.65 10.28 7.51 449.72 0.74
10 Grade	+	Stage 1.19 3.81 5.86 5.10 460.82 0.70
11 Grade	+	Stage	+	CC34 0.96 3.38 2.20 6.68 5.89 456.20 0.76
12 Grade	+	Stage	+	14VF 1.16 3.79 3.46 9.45 7.78 447.23 0.73
13 Grade	+	Stage	+	14GT 1.00 3.50 3.65 9.54 6.83 451.72 0.73

 
Table S6. Multivariate Cox regression models for disease free survival. Performance of uni- 
and multivariate Cox regression models in a 207 case validation cohort of TCGA cases. Grade 
and stage were converted to bivariate predictors (1,2 vs 3,4 for both). CC34 is group designation 
by Clear Code 34 gene expression. 14VF is group designation by a GLMNET gene classifier 
trained on VF-risk groups. 14GT is group designation by a GLMNET gene classifier trained on 
24-months disease free status. The model variables are listed in the first column. Grade, Stage, 
CC34, 14VF and 14GT indicate the individual hazard ratios from each multivariate model (blue 
bars). Each of the multivariate models was also assessed for goodness of fit by the Score Test, C-
Index, Ratio Test, and Akaike’s Information Criterion (AIC).  
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Table	S7:	Description	of	9	VFs		

1.	EC	Density	(Kurtosis)	
Endothelial	cell	density	was	measured	as	the	area	of	endothelial	nuclei	divided	by	the	tile	area,	
in	pixels.	The	kurtosis	describes	how	outlier-prone	the	distribution	is.	Expression	of	this	feature	
was	increased	in	good	relative	to	poor	outcome	cases.	

Gene	 CMYA5	 STAT3	
	

Correlation	 0.405	 0.410	

2.	Arm	Orientation	SD	(Stdv)	

Orientation	of	the	arms	were	measured	in	each	tile	relative	to	a	horizontal	line.	For	each	tile	the	
standard	deviation	was	calculated.	A	distribution	of	binned	standard	deviations	was	analyzed	for	
each	case.	Standard	deviations	of	these	case-level	distributions	were	higher	for	poor	than	good	
outcomes	cases.	This	suggests	greater	disorganization	of	vascular	arms	in	poor	outcomes	cases.				

Gene	 ADH5	 NLRC4	 RPL36A	 RPLP2	 SLC16A4	 TNFSF8	 ZNF16	

Correlation	 -0.424	 -0.427	 0.426	 0.467	 -0.455	 -0.428	 0.463	

3.	Arm	Number	(Kurtosis)	
Kurtosis	of	the	distribution	of	the	number	of	arms	from	each	tile.	Case	level	distributions	had	
higher	kurtosis	in	the	good	prognosis	relative	to	poor	prognosis	cases.	This	suggests	less	
variability	in	the	number	of	arms	per	tile	in	the	good	prognosis	cases.	

	

4.	Arm	Number	(Skewness)	

Skewness	of	the	distribution	of	the	number	of	arms	from	each	tile.	Case	level	distributions	had	
higher	skewness	in	the	good	prognosis	relative	to	poor	prognosis	cases.	This	suggests	
asymmetry	in	the	distribution,	where	a	positive	value	indicates	a	greater	frequency	of	tiles	with	
larger	numbers	of	arms.		

Gene	 IFNA13	
	

Correlation	 -0.328	

5.	BP	Lacunarity	(Stdv)	 Standard	deviation	of	the	lacunarity	of	branching	points.	Higher	lacunarity,	or	more	“gappiness”	
in	the	branching	point	organization,	was	associated	with	poor	outcomes.	

Gene	 SGCB	
	

Correlation	 -0.402	

6.	EC	Lacunarity	(Stdv)	 Standard	deviation	of	the	lacunarity	of	endothelial	cells.		Higher	lacunarity,	or	more	“gappiness”	
in	the	endothelial	cell	organization,	was	associated	with	poor	outcomes.	

	

7.	Arm	Lacunarity	(Kurtosis)	
Kurtosis	of	the	lacunarity	of	vascular	arms.	Higher	lacunarity,	or	more	“gappiness”	in	the	arm	
organization,	was	associated	with	the	good	outcome	group.	This	suggests	that	some	cases	in	the	
good	prognosis	group	have	large	areas	without	vasculature.		

Gene	 KCNJ12	 MED10	
	

Correlation	 0.417	 -0.318	

8.	EC	Density	(Stdv)	
Endothelial	cell	density	was	measured	as	the	area	of	endothelial	cell	nuclei	divided	by	the	tile	
area,	in	pixels.	Greater	variability	in	endothelial	cell	density	was	observed	in	the	poor	outcome	
relative	to	good	outcome	group.	

Gene	 GOSR2	
	

Correlation	 -0.465	

9.	EC	Density	(Skewness)	
Endothelial	cell	density	was	measured	as	the	area	of	endothelial	cell	nuclei	divided	by	the	tile	
area,	in	pixels.	Skewness	of	the	endothelial	cell	density	to	the	right	of	the	normal	distribution	
was	greater	in	the	good	prognosis	relative	to	poor	prognosis	group.			
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Table S7. Nine VFs used in case stratification in the discovery cohort. To the right of each VF 
are conceptual summaries. The entries underneath each bold-faced VF title indicate the 
correlated genes that were selected by information gain, and their respective correlation 
coefficients (Spearman’s rho). An entry of ‘None’ indicates that no genes correlated with that 
gene were selected for final gene signature classification. 
 

Supplementary Data Files: 
Data file S1. Demonstration code for Hidden Markov Model segmentation in IHC images. 
Included is an example data set, example images, and instructions to install and run the scripts. 
The demonstration implementation is in R. 

Data file S2. Demonstration code for Vascular Area Mask segmentation from H&E images. 
Included is an example data set and a minimal working script with the method self-contained. 
The demonstration implementation is in Matlab. 
Data file S3. Vascular features and disease free survival groups of cases in the TCGA discovery 
and validation cohorts. 
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