1	Chronic hepatitis C liver microenvironment: role of the Th17/Treg interplay related to fibrogenesis		
2	Daniela Alejandra Rios ^{a*¥} , Pamela Valva ^{a¥} , Paola Cecilia Casciato ^b , Silvia Frias ^c , María Soledad Caldirola ^d ,		
3	María Isabel Gaillard ^d , Liliana Bezrodnik ^d , Juan Bandi ^b , Omar Galdame ^b , Beatriz Ameigeiras ^c , Diana		
4	Krasniansky ^e , Carlos Brodersen ^e , Eduardo Mullen ^f , Elena Noemí De Matteo ^a , María Victoria Preciado ^a .		
5 6 7	[¥] Equally contributed		
8	^a Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP- CONICET-GCBA)		
9	Laboratorio de Biología Molecular, División Patología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330,		
10	C1425EFD, Buenos Aires, Argentina.		
11	^b Unidad de Hepatología, Hospital Italiano de Buenos Aires; Juan D Perón 4190, C1181ACH, Buenos Aires,		
12	Argentina.		
13	^c Unidad de Hepatología, Hospital Ramos Mejía; Urquiza 609, CP1221, Buenos Aires, Argentina.		
14	^d Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP- CONICET-GCBA),		
15	Departamento de Inmunología, Hospital de Niños Ricardo Gutiérrez; Gallo 1330 C1425EFD, Buenos Aires,		
16	Argentina.		
17	^e Unidad de Hepatología, Hospital General de Agudos "Carlos G. Durand"; Av Díaz Vélez 5044,		
18	C1405DCS, Buenos Aires, Argentina		
19	^f División Patología, Hospital Italiano de Buenos Aires; Juan D Perón 4190, C1181ACH, Buenos Aires,		
20	Argentina.		
21			

* Corresponding author: Daniela Alejandra Ríos; Instituto Multidisciplinario de Investigaciones en
 Patologías Pediátricas (IMIPP- CONICET-GCBA) Laboratorio de Biología Molecular, División Patología,
 Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD, Buenos Aires, Argentina. Fax: +54-11-4962 9138. E-mail: rios.daniela.89@gmail.com

Supplementary table S1: Primer sequences used in SybrGreen qRT-PCR

Target	Primer Sequences (5'-3')	Product Length (nt)	
	F GCTGTCATCGATTTCTTCCC	111	
112-10	R ACAAAGCCATGAGTGAGTTTGA	111	
II 17A	F AACGATGACTCCTGGGAAGAC	00	
1L-1/A	R CCTGGATTTCGTGGGATTGTG	77	
тсе р	F CTTCCAGCCGAGGTCCTT	02	
IGr-p	R CCCTGGACACCAACTATTGC	92	
щ	F AGTGAGGAACAAGCCAGAGC	00	
1L-0	R GTCAGGGGTGGTTATTGCAT	99	
	F GAGTGTGGAGACCATCAAGGA	107	
11 IN-Y	R GTATTGCTTTGCGTTGGACA	127	
TNE	F CTGCTGCACTTTGGAGTGAT	02	
INF-a	R AGATGATCTGACTGCCTGGG	95	
HDDT	F ATGGGAGGCCATCACATTGT	77	
HFKI	R ATGTAATCCAGCAGGTCAGCAA	11	
ß-actin	F CCACACTGTGCCCATCTACG	131	
p actili	R CCGTGGTGGTGAAGCTGTAG	101	
F: forward primer; R: reverse primer			

Supplementary Fig. 1 CD4⁺, CD8⁺, CD20⁺, Tbet⁺, Foxp3⁺, IL-17A⁺ lymphocytes immunostaining.
Panel 1 shows positive and isotype controls on tonsil sections. Panel 2 shows positive and isotype controls
on liver sections. a) CD4⁺, b) CD8⁺, c) CD20⁺, d) Tbet⁺, e) Foxp3⁺, and f) IL-17A⁺ lymphocytes. g), h), i),
j), k) and l) show the isotype controls for a), b), c), d), e) and f), respectively.

Supplementary Fig. 2 CD4⁺ and CD8⁺ lymphocytes distribution in P-P/I areas. A portal infiltrate
showing a) CD4⁺ lymphocytes in the centre and interface area b) CD8⁺ lymphocytes with peripheral
localization within the lymphoid aggregate and c) isotype control.

44 Supplementary Fig. 3 Correlation among cytokine expression levels, intrahepatic lymphocyte frequency, clinical, and virological parameters of CHC patients. a) Correlation between IL-17A⁺ 45 lymphocyte frequency and TGF-β/IL-6 ratio; b) Correlation between IL-17A⁺/Foxp3⁺ lymphocytes ratio and 46 TGF- β /IL-6 ratio, c-e) correlation among TNF- α , IFN- γ and TGF- β expression level; f- i) correlation 47 between transaminase level and CD8⁺ lymphocyte frequency, IL-17A⁺ lymphocyte frequency and IL-48 $17A^+/Foxp3^+$ lymphocytes ratio, respectively; j-l) correlation between viral load and TGF- β , IFN- γ , and IL-49 50 17A⁺ lymphocyte frequency, respectively. Frequencies were calculated as immunostained P-P/I lymphocytes/ total P-P/I lymphocytes in all portal tracts of the tissue section (400×). FC: fold change. 51 Spearman's nonparametric correlation (a, d-l) and Pearson's correlation coefficient (b and c) were used to 52 measure the degree of association between the studied parameters. 53

54

Supplementary Fig. 4 Intrahepatic Th subsets frequency related to histological liver damage 55 56 **parameters.** Tbet⁺, Foxp3⁺, IL-17A⁺ lymphocyte frequency as well as IL-17A⁺/Foxp3⁺ratio related to a) 57 hepatitis severity, b) significant and c) advanced fibrosis. Hepatitis severity (min: minimal; mod: moderate, sev: severe) according to HAI. Significant (F \geq 2) and advanced (F \geq 3) fibrosis according to METAVIR. The 58 59 results are depicted in box plots. Horizontal lines within boxes indicate medians. Horizontal lines outside the boxes represent the 5 and 95 percentiles. Mean is indicated as +. Frequencies were calculated as 60 immunostained P-P/I lymphocytes/ total P-P/I lymphocytes in all portal tracts of the tissue section (400×). 61 The Mann-Whitney U-test and unpaired t-test were used to compare sets of data.. 62

64 Supplementary Fig. 5 Cytokine expression levels in the liver milieu of CHC patients related to liver 65 damage. a) IL-10, b) TGF-β, c) IFN-γ, d) TNF-α, and e) IL-6 expression levels related to hepatitis severity, 66 significant and advanced fibrosis. Hepatitis severity (min: minimal; mod: moderate, sev: severe) according 67 to HAI. Significant (F ≥2) and advanced (F ≥3) fibrosis according to METAVIR. The results are depicted in 68 box plots. Horizontal lines within boxes indicate medians. Horizontal lines outside the boxes represent the 5 69 and 95 percentiles. Mean is indicated as +. FC: fold change. The Mann-Whitney U-test and unpaired t-test 70 were used to compare sets of data.

Supplementary Fig. 6 Peripheral lymphocyte populations in CHC patients. a)Th, CTLs and B
lymphocytes frequency for each patient, b) Th1, Treg and Th17 lymphocytes frequency for each patient.

Supplementary Fig. 7 Gating strategies for flow cytometry analysis. Panel 1: B lymphocytes, CTLs and 78 Th frequency on fresh heparinized blood. Lymphocyte selection by a) SSC-A and FSC-A, and b) CD45 79 expression. Lymphocyte characterization by c) CD3-CD19⁺ (B lymphocytes), d) CD3⁺CD8⁺ (CTL) and e) 80 CD3⁺CD4⁺ (Th cells). The percentage of each population is indicated. Panel 2: Th subpopulations on 81 PBMCs sample. a) lymphocyte selection by SSC-A and FSC-A, b) CD4⁺ lymphocytes selection for Treg 82 83 characterization, c) CD4⁺CD25hiFoxp3⁺ (Treg) cells identification (blue) (isotype control staining is also shown in red), d) CD4⁺ lymphocytes selection for Th1 and Th17 characterization; e) CD4⁺/ IFN- γ^+ (Th1) 84 lymphocytes and f) CD4⁺/IL-17A⁺ (Th17) lymphocytes identification after anti-CD3/IL-2 stimulation (blue) 85 (unstimulated PBMCs are also shown in red). The percentage of each population is indicated. 86