Neuron, Volume 96

Supplemental Information

Compulsivity Reveals a Novel Dissociation

between Action and Confidence

Matilde M. Vaghi, Fabrice Luyckx, Akeem Sule, Naomi A. Fineberg, Trevor W. Robbins, and Benedetto De Martino

Supplementary Material

	Controls	OCD Patients		
Gender (M:F)	13:12	13:11	$\chi^2_1 = 0.023$	p = 0.879
Age	40.68 (10.19)	41.33 (12.32)	t ₄₇ = -0.203	p = 0.840
Verbal IQ	117.92 (3.97)	116.32 (2.99)	t ₄₆ = 1.568	p = 0.124
MADRS	1.36 (2.02)	9.92 (4.36)	t ₄₇ = -8.870	p < 0.001
OCI-R	7.64 (6.37)	29.25 (11.87)	t ₄₇ = -7.984	p < 0.001
STAI-State	28.90 (7.06)	43.50 (10.72)	t ₄₇ = -5.496	p < 0.001
STAI-Trait	35.00 (7.01)	56.58 (7.91)	t ₄₇ = -10.120	p < 0.001
Y-BOCS Total	-	22.75 (4.32)		
Y-BOCS Obsessions	-	10.79 (2.41)		
Y-BOCS Compulsions	-	11.96 (2.23)		

Table S1. Demographic and Clinical Characteristics of the Participants Included in theStudy. Related to STAR Methods.

Mean values are reported and standard deviation in brackets.

Table S2. List of Quantiles	for Error Magn	itude and Values	of Learning	Rate for	Each
Quantile. Related to Figure	2B.				

	Boundaries	C	TL	OCD		
Quantile	quantiles	Mean	(SEM)	Mean	(SEM)	
1	[1-2)	0.000	(0.00)	0.088	(0.053)	
2	[2-3)	0.010	(0.017)	0.281	(0.082)	
3	[3-4)	0.038	(0.032)	0.357	(0.142)	
4	[4-5)	0.052	(0.034)	0.334	(0.114)	
5	[5-7)	0.075	(0.038)	0.342	(0.094)	
6	[7-8)	0.110	(0.049)	0.376	(0.097)	
7	[8-9)	0.106	(0.055)	0.334	(0.090)	
8	[9-11)	0.112	(0.034)	0.352	(0.083)	
9	[11-12)	0.121	(0.042)	0.366	(0.090)	
10	[12-13)	0.154	(0.055)	0.370	(0.087)	
11	[13-15)	0.184	(0.042)	0.420	(0.077)	
12	[15-17)	0.225	(0.049)	0.455	(0.077)	
13	[17-19)	0.288	(0.044)	0.506	(0.063)	

14	[19-22)	0.402	(0.043)	0.588	(0.047)
15	[22-25)	0.484	(0.044)	0.689	(0.041)
16	[25-29)	0.521	(0.043)	0.731	(0.036)
17	[29-37)	0.632	(0.045)	0.826	(0.040)
18	[37-66)	0.764	(0.037)	0.917	(0.035)
19	[66-125)	0.917	(0.020)	0.929	(0.019)
20	[125-180)	0.883	(0.021)	0.927	(0.019)

For values presented in Figure 2B the distribution of the values of the spatial prediction error (i.e., $\hat{\delta}_t = X_t$ -b_t Equation 2) was divided in 20 quantiles. The table displays boundaries of each quantile, and associated mean (and SEM in brackets) of the learning rate ($\hat{\alpha}$) for controls and OCD patients.

Figure S1. Comparison Between Human Participants and Model. Related to Figure 3B. Comparison was performed at the trial-by-trial level between subject's bucket position b_t computed in Equation 1 and model term B_t computed with Equation 3. Orange data points mark the location at which successive particles landed. The black dashed line marks the prediction of a quasi-optimal Bayesian model (i.e., B_t model belief update computed according to Equation 3, $B_{t+1} = B_t + \alpha_t \times \delta_t$). The brown dashed line marks the bucket's position (i.e., b_t in Equation 1 where participant positioned the bucket from one trial to the

next). Data are shown for one representative control subject. Each panel represents an experimental run of 75 trials.

	0	D. t.			Within groups comparison			Between groups comparison		
	Group	Beta	SEM		Stat	р	z	Rank sum	р	
Action										
PE	CTL	0.264	0.077	t ₂₄ =	3.422	0.002	2 270	506	0.019	
	OCD	0.567	0.069	t ₂₃ =	8.197	<0.001	-2.370	506	0.018	
CPP	CTL	0.565	0.056	t ₂₄ =	10.076	<0.001	2 520	750	0.011	
	OCD	0.314	0.065	t ₂₃ =	4.856	<0.001	2.530	752	0.011	
MC	CTL	0.856	0.191	t ₂₄ =	4.479	<0.001	0	625	1	
	OCD	0.632	0.130	t ₂₃ =	4.859	<0.001	0			
Hit/Missed	CTL	-0.742	0.053	t ₂₄ =	-13.978	<0.001	1 650	709	0.009	
	OCD	-0.863	0.052	t ₂₃ =	-16.586	<0.001	1.000	708	0.096	
Confidence										
PE	CTL	-0.061	0.034	t ₂₄ =	-1.786	0.087	0.270	644	0.711	
	OCD	-0.060	0.039	t ₂₃ =	-1.538	0.138	0.370			
CPP	CTL	-0.205	0.059	t ₂₄ =	-3.478	0.002	1 170	566	0.242	
	OCD	-0.107	0.049	t ₂₃ =	-2.157	0.042	-1.170			
MC	CTL	-0.214	0.041	t ₂₄ =	-5.281	<0.001	1 0 0 0	563	0.219	
	OCD	-0.139	0.030	t ₂₃ =	-4.642	<0.001	-1.230			
Hit/Missed	CTL	0.204	0.030	t ₂₄ =	6.854	<0.001	0.000	0.000 000 0	0 744	
	OCD	0.213	0.027	t ₂₃ =	7.832	<0.001	-0.330	000	0.741	

Table S3. Summary of Parameters Obtained from the Regression Model for Activ	on
and Confidence ^a . Related to Figures 3C and 3F.	

^a PE, prediction error; CPP, change-point probability; MC, model confidence.

Figure S2. Bayesian Model Selection. Related to STAR Methods. (A) Posterior 'action regression' model probabilities after Bayesian model selection. The full and partial regression models predicting action were compared using the spm_BMS function (Stephan et al., 2009) from the SPM12 toolbox in Matlab (<u>http://www.fil.ion.ucl.ac.uk/spm/software/spm12/</u>). For both groups, the full regression model (Model 4, Table S4, Action) was deemed the most probable model. **(B)** Posterior 'confidence regression' model probabilities after Bayesian model selection. The best model to explain the data for both groups was again Model 4 (Table S4, Confidence), the full model with all four predictors included.

Models	Formulae
Action	
Model 1	Action ~ β_0 + β_1 [Prediction error] + ϵ
Model 2	Action ~ β_0 + β_1 [Prediction error] + β_2 [CPP*PE] + ϵ
Model 3	Action ~ β_0 + β_1 [Prediction error] + β_2 [CPP*PE] + β_3 [(1-CPP)*(1-MC)*PE] + ϵ
Model 4	Action ~ β_0 + β_1 [Prediction error] + β_2 [CPP*PE] + β_3 [(1-CPP)*(1-MC)*PE] + β_4 [Hit*PE] + ϵ
Confidence	
Model 1	Confidence ~ β_0 + β_1 [Prediction error] + ϵ
Model 2	Confidence ~ β_0 + β_1 [Prediction error] + β_2 [CPP] + ϵ
Model 3	Confidence ~ β_0 + β_1 [Prediction error] + β_2 [CPP] + β_3 [(1-CPP)*(1-MC)] + ϵ
Model 4	Confidence ~ β_0 + β_1 [Prediction error] + β_2 [CPP] + β_3 [(1-CPP)*(1-MC)] + β_4 [Hit] + ϵ

 Table S4. Formulae for Models Represented in Figure S2^a. Related to STAR Methods.

^aPE, prediction error; CPP, change-point probability; MC, model confidence.

Figure S3. Distribution of Fitted Hazard Rates for Each Group. Related to STAR Methods. Model fits were obtained after an exhaustive search for possible values between 0 and 1. Best fitting parameters were determined by minimum least-squares fits between subject and model choices on each trial. The distribution of model fits showed a clear bimodal distribution, with overall higher hazard rate fits for patients (median = .62) compared to controls (median = .32, Wilcoxon rank-sum test, p = .007). However, these results are not surprising, as hazard rate is highly correlated with learning rate (see Nassar et al., 2012). Furthermore, we did not include these fits in our main analyses as those focused on subjects' behavior compared to a benchmark Bayesian model.

Figure S4. Regression on Confidence for Model with Fitted Hazard Rate. Related to **STAR Methods.** We ran an identical regression model as Figure 3F, with one change: model regressors CPP and (1-CPP)*(1-MC) were no longer derived from the benchmark Bayesian model, but from the model with fitted hazard rate for each participant. Results showed that model confidence no longer predicted patients' confidence (MC: OCD, -0.06±0.07, t₁₉=0.79, p=0.44), and this was significantly higher compared to controls (CTL, -0.23±0.04; paired two-sided t-test, p=0.04). Error bars represent SEM. Note that four participants from the patient group were excluded from the analysis, as their hazard rate was close to 1, in which case the two model predictors are perfectly negatively correlated and the regression model cannot find good fits. This analysis provides a different way of showing the dissociation of action and confidence in the OCD group: when hazard rate is fitted to participants' action (i.e. bucket update) OCD behavior is fitted by higher hazard rate, in other words OCD actions were reflecting an increased perceived volatility in the environment. However, OCD confidence rating did not reflect this increased perceived volatility (estimated using the fitted model) but were more aligned with the actual level of volatility in the environment. This analysis might provide another indication that patients did indeed understand the properties of the environment, but failed to act upon them.