SUPPLEMENTARY DATA

Improved electrochemical properties of morphology-controlled titania/titanate nanostructures prepared by in-situ hydrothermal surface modification of self-source Ti substrate for highperformance supercapacitors

Arghya Narayan Banerjee¹, V C Anitha²*, Sang W Joo¹*

¹School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea

²Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 53002 Pardubice, Czech Republic

*Corresponding authors: <u>vc.anitha@gmail.com</u> (VCA); <u>swjoo@yu.ac.kr</u> (SWJ); Ph. +82-53-810-3239, Fax: +82-53-810-2062

Figure S1: Schematic and pictorial representation of the hydrothermal synthesis of various titania nanostructures on the self-source Ti substrate under different KOH concentrations. Right-hand panel describes the relative dissolution, growth and precipitation rates of TiO_2 on the Ti substrate as a function of KOH concentrations.

Table S1: A comparison of the 2θ -values of different diffraction peaks observed in the XRD data (Fig. 2b) with the 1999 JCPDS-ICDD File. Also *d*-values of Rutile titania for (110) and (101) planes obtained from Fig. 3 and Fig. S2 are compared with 1999 JCPDS-ICDD File.

Peak origin		2θ_{EXPT} (deg.) (From Fig. 2b)	2θ _{JCPDS} (1999 JCPDS-ICDD File)	1999 JCPDS File Card #	
TiO (110)		35.6	35.9	12-0754	
Rutile TiO ₂	(101)	36.8	36.2	78-1510	
	(202)	76.6	76.7		
Anatase TiO ₂	(200)	48.0	48.1	84-1286	
	(105)	53.6	53.9		
	(220)	70.7	70.3		
Ti		40.1	40.2	05-0682	
		63.2	63.0		
		77.5	77.3		
K-Titanate		11.6	11.5	74-0275	
		24.4	24.6		
		25.5	25.6		
		29.6	29.8		
Rutile TiO₂ (From TEM micrographs)		$d_{110} _{\text{EXPT}} = 0.33 \text{ nm}$ (from Fig. 3)	$d_{110} _{\rm JCPDS} = 0.324 \ \rm nm$	78-1510	
		$d_{101} _{\text{EXPT}} = 0.25 \text{ nm}$ (from Fig. S2)	$d_{101} _{\rm JCPDS} = 0.248 \ \rm nm$		

Figure S2: HRTEM micrographs of the interior of (a) titania platelet, (b) titania nanorods. The lattice spacing matches with the Rutile (101) planes with *d*-value around 0.25 nm.

Figure S3: EDX micrograph of titania nanostructures hydrothermally prepared at (a) 0.25 M (2D platelets), (b) 0.5 M (2D platelets + 1D nanorods mixture), (c) 1.0 M (1D nanorods) and (d) 5.0 M KOH solutions (1D nanofibers). Insets represent the corresponding elemental composition.

Figure S4: Equivalent circuit representation of Ti-TiO₂ nanostructured electrode. R_{Ω} : Resistance of the active medium (electrolyte), R_E : Charge flow resistance across Ti-TiO₂ interface, R_{ct} : Charge transfer resistance across TiO₂-Electrolyte interface, C_E : Capacitance of TiO₂, including surface states and Helmholtz double layer, *CPE*: Constant Phase Element defined by *CPE-T* {electrostatic capacitance, (in Farad)} and *CPE-P* {a fitting parameter, α , indicating the degree of deviation from a certain state, (dimensionless)}. For $\alpha = 0, 1, -1$, the *CPE* represents pure resistor, capacitor and inductor, respectively. For $\alpha \approx 0.5$, the CPE corresponds to Warburg impedance, W [1-3].

Samples	<i>R</i> Ω (ohm)	C_E (μ F)	R _E (ohm)	R _{ct} (ohm)	<i>СРЕ</i> (µF)	α
0.25M-TO (2D platelets)	2.11	66.5	753.1	9.56	6.99	0.62
0.5M-TO (2D platelets + 1D nanorods)	2.24	72.6	328.9	7.83	1.45	0.57
1.0M-TO (1D nanorods)	7.87	96.7	405.3	12.47	2.01	0.53
5.0M-TO (1D nanofibers)	4.63	208.7	676.6	12.09	2.96	0.50

Table S2 EIS fitted data for all the samples according to the equivalent circuit shown in Fig. S4.

References

- M. Salari, S.H. Aboutalebi, A.T. Chidembo, I.P. Nevirkovets, K. Konstantinov and H. K. Liu, *Phys. Chem. Chem. Phys.*, 2012, 14, 4770–4779.
- 2. P. Xiao et al. Sensors and Actuators B 134 (2008) 367-372
- 3. Y. Xie, L. Zhou, J. Lu, J Mater Sci (2009) 44:2907–2915.