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Figure S1: Schematic and pictorial representation of the hydrothermal synthesis of various 

titania nanostructures on the self-source Ti substrate under different KOH concentrations. 

Right-hand panel describes the relative dissolution, growth and precipitation rates of TiO2 on 

the Ti substrate as a function of KOH concentrations.  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S1: A comparison of the 2θ-values of different diffraction peaks observed in the XRD data 

(Fig. 2b) with the 1999 JCPDS-ICDD File. Also d-values of Rutile titania for (110) and (101) 

planes obtained from Fig. 3 and Fig. S2 are compared with 1999 JCPDS-ICDD File. 

 

Peak origin 
2 EXPT (deg.) 

(From Fig. 2b) 

2 JCPDS 

(1999 JCPDS-ICDD 

File) 

1999 

JCPDS File 

Card # 

TiO (110) 35.6 35.9 12-0754 

Rutile TiO2  
(101) 36.8 36.2 

78-1510 
(202) 76.6 76.7 

Anatase TiO2 

(200) 48.0 48.1 

84-1286 (105) 53.6 53.9 

(220) 70.7 70.3 

Ti 

40.1 40.2 

05-0682 63.2 63.0 

77.5 77.3 

K-Titanate 

11.6 11.5 

74-0275 
24.4 24.6 

25.5 25.6 

29.6 29.8 

Rutile TiO2 

(From TEM 

micrographs) 

d110|EXPT = 0.33 nm 

(from Fig. 3) 
d110|JCPDS = 0.324 nm 

78-1510 
d101|EXPT = 0.25 nm 

(from Fig. S2) 
d101|JCPDS = 0.248 nm 

 

 



5 nm 

d = 0.25 nm 

Rutile (101) 

5 nm 

d = 0.25 nm 

Figure S2: HRTEM micrographs of the interior of (a) titania platelet, (b) titania nanorods. 

The lattice spacing matches with the Rutile (101) planes with d-value around 0.25 nm.   
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Figure S3: EDX micrograph of titania nanostructures hydrothermally prepared at (a) 0.25 

M (2D platelets), (b) 0.5 M (2D platelets + 1D nanorods mixture), (c) 1.0 M (1D 

nanorods) and (d) 5.0 M KOH solutions (1D nanofibers). Insets represent the 

corresponding elemental composition.   
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Figure S4: Equivalent circuit representation of Ti-TiO2 nanostructured electrode. R: 

Resistance of the active medium (electrolyte), RE: Charge flow resistance across Ti-TiO2 

interface, Rct: Charge transfer resistance across TiO2-Electrolyte interface, CE: Capacitance of 

TiO2, including surface states and Helmholtz double layer, CPE: Constant Phase Element 

defined by CPE-T {electrostatic capacitance, (in Farad)} and CPE-P {a fitting parameter, α, 

indicating the degree of deviation from a certain state, (dimensionless)}. For α = 0, 1, -1, the 

CPE represents pure resistor, capacitor and inductor, respectively. For α ≈ 0.5, the CPE 

corresponds to Warburg impedance, W [1-3]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S2 EIS fitted data for all the samples according to the equivalent circuit shown in Fig. S4. 

Samples 
R 

(ohm) 

CE 

(F) 

RE 

(ohm) 
Rct 

(ohm) 

CPE 

(F) 
α 

0.25M-TO 

(2D platelets) 
2.11 66.5 753.1 9.56 6.99 0.62 

0.5M-TO 

(2D platelets + 1D 

nanorods) 

2.24 72.6 328.9 7.83 1.45 0.57 

1.0M-TO 

(1D nanorods) 
7.87 96.7 405.3 12.47 2.01 0.53 

5.0M-TO 

(1D nanofibers) 
4.63 208.7 676.6 12.09 2.96 0.50 
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