Supplementary information for:

The Bacteroidales produce an *N*-acylated derivative of glycine with both cholesterolsolubilising and hemolytic activity.

Alli Lynch^{1,2}, Elaine Crowley², Eoghan Casey², Rafael Cano³, Rachel Shanahan³, Ger McGlacken³, Julian R. Marchesi⁴, David J. Clarke^{1,2*} ¹School of Microbiology, ²APC Microbiome Institute, ³Department of Chemistry, University College Cork, Ireland; ⁴School of Biosciences, Cardiff University, Museum Avenue, Cardiff

CF10 3AX, UK and Centre for Digestive and Gut Health, Imperial College London, London W2

*Corresponding author

Email: <u>david.clarke@ucc.ie</u> Phone:+353 (0)21 4903624

Supplementary Figure S1. Purified ChoA protein does not produce a halo on a LBC agar plate. An aliquot of 50μ l of 0.5mg ml⁻¹ purified N-terminal His-tagged ChoA protein (25ug protein in total) and 50μ l of a PBS control, was added to a well in a LBC agar plate. The agar plate was sealed with parafilm and incubated for 24h at 37°C.

Supplementary Figure S2. Mass spectroscopy of cell-free culture supernatants from *E. coli* EPI300 with pTRC-*choA*. Bacterial cultures were grown, and induced with 20µM IPTG, for 24 h at 37°C and the cells were removed by centrifugation at 1500g, 15 min at room temperature. An equal volume of ethyl acetate (Sigma-Aldrich) was added to the cell-free culture supernatant and the solution was mixed thoroughly before the organic fraction was collected, and dried under vacuum. The samples were resuspended in acetonitrile and high resolution precise mass spectra (HRMS) were recorded on a Waters LCT Premier Tof LC-MS instrument in electrospray ionisation (ESI) mode using 50% acetonitrile-water containing 0.1% (v/v) formic acid as eluent. Compounds with a molecular mass very similar to the predicted mass of commendamide were detected in the supernatants from *E. coli* cells carrying pTRC-*choA* (as indicated) and were not observed in supernatants from *E. coli* cells carrying the pTRC99a vector (inset). The analysis was repeated with biological triplicate samples with identical results.

Supplementary Figure S3. Genomic context of *choA* in the different bacteria used in this study. Orthologues of *choA* (red) were always located immediately downstream from a gene encoding a protein with predicted LPLAT activity (blue). The ChoA orthologue in *V. harveyi* (VIBHAR_RS03955) appears to be a fusion of these proteins with predicted homology as indicated.

Supplementary Table S1. Primers used in this study.

Primer	Sequence 5'-3'	Use in study		
FwchoA.Nco1		Cloning choA from B. vulgatus		
	CIGCIGCCATGGAAGAAATTATTGCACCGATTAGC	ATCC 8482		
RvchoA.Xba1		Cloning choA from B. vulgatus		
	ctgctgTCTAGATTATTTGGTCAGTATGGGATGA	ATCC 8482		
		Cloning <i>choA</i> from <i>B</i> .		
FwThet.Nco1	ctgctgCCATGGAAGAGATTATTAAACCGGTGAG	thetaiotaomicron VPI-5482		
	ctgctgTCTAGATTAATGGCAACAGCCTTCCTG	Cloning <i>choA</i> from <i>B</i> .		
RvThet.Xba1		thetaiotaomicron VPI-5482		
FwPrev.Sacl		Cloping choA from Prevotella		
	ctgctgGAGCTCATGGAACAAGAGATTATTCAACC	oralis ATCC 33269		
RvPrev.Xbal		Cloning choA from Brouotalla		
	ctgctgTCTAGATTACTTTTCCTTGTAGATTACATTA			
		Oralis ATCC 33269		
FwB.intest.Ncol	ctgctgCCATGGAAGAGATTATTGAACCTATAAGTA	Cloning <i>choA</i> from <i>B</i> .		
		intestinalis_DSM 17393		
RvB.intest.Xbal	ctgctgTCTAGATCATCTACTTGGAAAGAAAACTT	Cloning <i>choA</i> from <i>B</i> .		
		intestinalis_DSM 17393		
FwPara.Sacl	ctgctgGAGCTCATGCAAGACATTATCAAACCGATT	Cloning <i>choA</i> from		
		Parabacteroides johnsonii DSM		
		18315		
	ctgctgTCTAGATTAGATGTCGGTCTTGCGTATC	Cloning <i>choA</i> from		
RvPara.Xbal		Parabacteroides johnsonii DSM		
		18315		
FwPor.EcoRI	ctgctgGAATTCATGTACACCACACCCATCATC	Cloning <i>choA</i> from		
		Porphyromonas catoniae ATCC		
		51270		
		Cloning <i>choA</i> from		
RvPor.Xbal	ctgctgTCTAGACTAGCTCTTCACCAATCGTAC	Porphyromonas catoniae ATCC		
		51270		
		Cloning choA from Alistipes		
FwAlis.Ncol	ctgctgCCATGGAACCCATCATAGAGCCTGTAA	putredinis DSM 17216		
RvAlis.Xbal		Cloning choA from Alistines		
	ctgctgTCTAGACTACACTTCCCATCTTTTCCC	nutredinis DSM 17216		
FwVIBhemo		Cloning from Vibrio		
	ctgctgccATGGATAGTTCGACCCCTTTTCG			
		Cloping from Vibrio		
RvVIBhemo	ctgctggtcgacTTACTTATGGTTGCTATGTGC			
		Site Directed		
FMutChoA(R-A)	CGGTGGAGTTGGGAGCCTCATTTGTTACATTG	Site Directed		
		Mutagenesis (R139A)		
RMutChoA(R-A)	CAATGTAACAAATGAGGCTCCCAACTCCACCG	Site Directed		
		Mutagenesis (R139A)		
FMutChoA(E-A)	CCTTACACGGTGGCGTTGGGACGCTC	Site Directed		
		Mutagenesis (E136A)		
RMutChoA(E-A)	GAGEGTEEEAACGE	Site Directed		
		Mutagenesis (E136A)		

	ChoA	NasY1	NasW	NasP	NasR	
ChoA	100.00	19.91	16.76	19.73	17.13	
NasY1	19.91	100.00	11.76	9.95	17.91	
NasW	16.76	11.76	100.00	23.27	22.50	
NasP	19.73	9.95	23.27	100.00	23.12	
NasR	17.13	17.91	22.50	23.12	100.00	

Supplementary Table S2. Percent identity matrix of ChoA, NasY1, NasW, NasP and NasR