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Supplementary material and methods 

Motor tasks details 

Subjects were asked to execute pure planar reaching movements or to reach, grasp, 

and hold 16 different objects with four different grasp types: ulnar and pulp pinch 

(precision bidigital grasps), and five-finger pinch and cylindrical grasp (power 

multifinger grasps). Grasps and objects (a key, a coin, a small box, and a bottle) 

were chosen to mimic everyday life movements1. Additional nine objects were used 

to account for small, medium, and large grips: three coins (diameter: 0.02 m, 

thickness: 0.005 m, 0.01 m, and 0.015 m, respectively), three parallelepipeds (base: 

0.1x0.02 m, height: 0.02 m, 0.04 m, and 0.06 m, respectively), and three cylinders 

(height: 0.1 m, diameter: 0.02 m, 0.04 m, and 0.06 m, respectively). The different 

sizes were introduced to avoid habituation of the participants to the task. 

 
Temporal characteristics of EEG microstates 

To characterize and compare EEG microstates across different conditions, mean 

microstate duration, mean number of microstates per second, and percentage of the 

total analysis time covered by each microstate2 were computed. Values were 

calculated for each subject and epoch. Subject-specific values were obtained 

averaging across epochs and were compared between conditions using Wilcoxon 

rank sum test (α=0.05) Bonferroni corrected for the number of comparisons (i.e., 15 

for microstates A, B, C, and D, 10 for microstate E, and 6 for microstate F)3. 

 

Statistical quantification of EEG microstate dynamics during resting state 

We evaluated EEG microstate dynamics by computing EEG microstate occurrences. 



The latter was obtained by calculating the histogram of the most prevalent microstate 

within each temporal window (100ms) for each subject independently. In order to 

statistically quantify whether there was a modulation of EEG microstate dynamics 

over time, we divided the resting state period (i.e., one minute) in sliding windows of 

2 seconds. We calculated significant differences between consecutive windows. For 

each comparison (i.e., comparison between consecutive windows), the significance 

threshold was obtained from a null-distribution constructed randomly permuting the 

microstates occurrence values of the two temporal windows compared. The number 

of permutations was determined to have α=0.05. 

 

Additional LDA analysis 

In the manuscript, we employed a Bayesian classifier, specifically a Linear 

Discriminant Analysis (LDA)4, to reveal the unique correspondence between 

microstates occurrences and motor task performed. Here we extended this analysis. 

Specifically, we tested decoding accuracy i) when extracting microstates only in the 

training epochs, and ii) when using only movement execution phase as feature (in 

this case the dimension of the feature vector was 45, i.e., 9 time windows per 5 

microstates). For the second test, we used the EEG microstates extracted averaging 

the signal over all epochs (i.e., microstates reported in the main manuscript). 

For the first test, we selected a single repetition of the cross-validation procedure.  

We extracted microstates for each grasp and subject independently for the averaged 

signals over the training epochs (i.e., half of the epochs of each grasp randomly 

chosen). The extracted microstates were then used to evaluate EEG microstate 

occurrences for both dataset (i.e., testing and training). The testing dataset 

corresponded to the remaining epochs not used to extract the microstates. For each 

subject and grasp type independently, a four-class LDA classifier was built using the 

microstates occurrences of the training epochs, and it was tested using the 

microstates occurrences of the testing epochs. As previously, the feature vectors 



used for the LDA classifier consisted of the microstate occurrences over movement 

preparation.  

 

Supplementary results 

Temporal characteristics of the resting-state microstates are preserved  

We assessed differences across conditions by evaluating the microstates temporal 

characteristics (i.e., mean duration, mean number of microstates, and total time 

covered, Figure S1). 

The four resting-state EEG microstates showed a slightly lower mean duration than 

the ones of age-matched (25-30 years old) healthy subjects reported in literature2. 

However, the mean number of microstates and the total time covered were 

comparable with previous results for all microstates2.  

In general, during movement execution and holding phase, all the rest-specific 

microstates (i.e., A, B, C, and D) showed similar temporal characteristic compared to 

resting state. Only, microstate C, for pure-reaching movements and for power grasp 

(i.e., five-finger pinch and cylindrical grasp), and microstate D, for reaching-and-

grasping movements, showed a reduced frequency of occurrence during the 

movement phase (Wilcoxon test, p<0.003). In addition, microstates A and C had a 

significant shorter total time covered for pure-reaching during the movement phase 

(Wilcoxon test, p<0.003).  

No significant differences were found across motor tasks, grasp types, and between 

movement and holding phases, except for microstate C. 

Figure S1 around here 

 

Muscle synergies are consistent between L2-norm and KL divergence 

algorithm 

In the manuscript, for each subject and dataset independently, subject-specific 

muscle synergies were extracted by utilizing the L2-norm NNMF algorithm5. Here, we 



checked consistency of results when using the KL divergence NNMF algorithm. Also 

for KL divergence we found that five (4.88±0.29 across subjects and motor tasks) 

and four (4.03± 0.42 across subjects and motor tasks) muscle synergies were 

sufficient to reconstruct more than 98% of the variance in the original signals 

respectively for movement execution and holding phase (see Figure S2c). The 

muscle weights of the synergies were highly similar between the two algorithms 

(mean DOT=0.98 and DOT=0.94 for movement execution and holding phase, 

respectively). Also the matching across motor tasks was preserved when using the 

KL algorithm. Indeed, synergies Syn 1, 2, and 3 were common across motor tasks 

(mean DOT=0.89). The fourth synergy (Syn 4), instead, was grasping-specific (mean 

DOT=0.97 across grasp types and mean DOT=0.44 between pure-reaching and 

reaching-and-grasping). Surprisingly the fifth synergy (Syn 5), which represented the 

contribution of the finger flexors and was not present in the holding phase except in 

pure-reaching, was substituted in five-finger pinch by an additional synergy (Syn 6) 

for the control of the thumb (mean DOT=0.65).  

Figure S2 around here 

 

Microstates prediction of motor task is preserved when using only part of the 

data to extract them 

In both tests (i.e., microstate extractions for training epochs and movement execution 

phase prediction), the decoding accuracy obtained (70% and 62% for the first and 

second test, respectively) was comparable to the one attained when extracting 

microstates in averaged signals containing both training and testing epochs during 

movement preparation.  

Figure S5 around here 

 
Figures  



 

Figure S1. Temporal characterization of EEG microstates. To characterize and 

compare EEG microstates across different conditions, mean microstate duration (left, 

top row), mean number of microstates per second (left, middle row), and percentage 

of the total analysis time covered (left, bottom row) were computed for each 

microstate, subject, and epoch. Subject-specific values were obtained averaging 

across epochs. For each condition and microstate, the rectangles are proportional to 

average value ± standard error across subjects, and they are centered on the 

average values. Subject-specific values were compared across conditions with a 

Wilcoxon rank sum test (α=0.05) Bonferroni corrected for the number of 

comparisons. Red lines indicate significant differences across conditions. Right: 

Schematic summary of the results. Line thickness codes the number of motor tasks 

presenting that specific behavior. Arrows pointing down represent a decrease in 

value between two conditions (i.e., resting state (R), movement phase (M), and 

holding phase (H)), while arrows pointing up represent an increase in value between 

two conditions. Black and red lines code non-significant and significant differences 

(Wilcoxon rank sum test, significant level α=0.05, Bonferroni corrected) between two 

conditions, respectively. 

 



 

 

Figure S2. Muscle synergies. (a) VAF curves averaged over subjects and motor 

tasks for L2-norm NNMF algorithm. (b) For each synergy, bar plots indicate average 

(over subjects and conditions) Pearson correlation of the activation coefficients of 

each motor task with the other motor tasks. (c) VAF curves averaged over subjects 

and motor tasks for KL divergence NNMF algorithm. (d) Subject-specific muscle 

synergies were extracted using the KL divergence NNMF algorithm for each subject 

and motor task independently. Muscle synergies were matched among subjects and 

conditions according to their similarity with a set of reference synergies. Left panels: 

muscle weights vectors for each reference synergy during movement phase. Right 

panels: muscle weights vectors for each reference synergy during holding phase. For 

synergies common across motor tasks (i.e., Syn 1, 2, 3, and 5), blue and yellow bars 

show the weight coefficients for each grasp type (blue bars) and for pure-reaching 

(yellow bar). Black bar profiles indicate means across motor tasks. For grasping-

specific synergies (i.e., Syn 4 and 6), blue bars show the weight coefficients for each 

grasp type and blue bar profiles indicate means across grasp types. The numbers in 

 



bold are the mean DOT values between muscle synergies found with the L2-norm 

NNMF algorithm and those obtained with the KL divergence algorithm. DOT values 

across motor tasks are reported for each synergy using red levels: RM-GM and RH-

GH are the DOT products between pure-reaching and reaching-and-grasping during 

movement and holding phase, respectively. GM and GH are the average DOT 

products across grasp types during movement and holding phase, respectively; RM-

RH and GM-GH are the DOT products between movement and holding phase for 

pure-reaching and reaching-and-grasping, respectively. RM indicates pure-reaching 

during movement phase; GM indicates reaching-and-grasping during movement 

phase; RH indicates pure-reaching during holding phase; GH indicates reaching-and-

grasping during holding phase. Grey squares code “DOT product not available" (e.g., 

for Syn 4 comparisons between reaching-and-grasping and pure-reaching is not 

possible because Syn 4 was not present during pure-reaching). 

 

Figure S3. Time-frequency analysis. Time frequency spectra were calculated for 

each subject, epoch, and motor task from 1.5 second before movement onset (MO) 

to 1.5 second after object grasp (i.e., holding onset, HO). The plots display 

topographical maps (grand average across subjects and epochs) of the beta power 

spectra (20Hz) expressed in percentages compared to the average spectrum (0%) 

as a function of time for each motor task. 

 



 

Figure S4. EEG microstates dynamics. We evaluated EEG microstate dynamics 

by computing EEG microstates occurrences for each subject independently. (a) 

Average (across subjects) EEG microstates occurrences for pure-reaching and each 

grasp type separately are coded in red (range [0 1]). The values of the histogram are 

normalized over time and microstates. Black dashed lines code movement (MO) and 

holding onset (HO). (b) The EEG microstates occurrence for 5 seconds resting state 

averaged over subjects is coded in red (range [0 1]). The values of the histogram are 

normalized over time and microstates. (c) Statistical quantification of microstates 

occurrences over time windows of 2 seconds for one-minute of resting state. White 

rectangles code time windows in which the microstate occurrences were significantly 

different from the previous time window. Microstates occurrences were significantly 

different between consecutive time windows only in few cases (7% of the cases). 

Therefore, we can conclude that the presence of microstates was not modulated 

over time during resting state. 

 



Figure S5. Additional LDA results. We tested the decoding accuracy when 

extracting the EEG microstates using only the training epochs (a). Confusion 

matrices for the four grasp types were averaged over subjects. Grey levels ([0 

100%]) code the decoding accuracy values. We then tested the decoding accuracy 

when using only movement execution phase as feature (b). Confusion matrices for 

the four grasp types were averaged over subjects and cross-validation repetitions. 
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