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Materials and Instruments: All chemicals were purchased from commercial 

suppliers unless otherwise noted and used without further purification. All reactions 

were performed under a nitrogen atmosphere. Diethyl ether, tetrahydrofuran and 

toluene were distilled from sodium benzophenone. Intermediate PDI-CC was 

synthesized according to the reported procedures,
[1]

 and DMTPA-3I was synthesized 

with slight modification to the reported method.
[2]

 



Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker 

Ultrashield 400 Plus NMR spectrometer. Thermogravimetric analyses (TGA) were 

conducted on a TA Instruments Q5000IR at a heating rate of 20 °C min
−1

under 

nitrogen gas flow. UV-vis spectra were recorded on a PerkinElmer Lambda 20 

UV-vis spectrophotometer. Cyclic voltammentry (CV) measurements were carried 

out in a deoxygenated anhydrous acetonitrile solution on a CHI600 electrochemical 

workstation. Pt disk was used as the working electrode, Ag/AgNO3 as the reference 

electrode, Pt wire as the counter electrode, and 0.1 M tetrabutylammonium 

hexafluorophosphate as the supporting electrolyte, and the measurements were 

calibrated with ferrocene (Fc) as the internal standard. AFM measurements were 

performed by using a Scanning Probe Microscope Dimension 3100 in tapping mode. 

All film samples were spin-casted onto ITO/ZnO substrates. XRD was carried out on 

a Bruker D8 Discovery with General Area Detector Diffraction System with a Cu Kα 

radiation excited at 40 kV and 40 mA. The incoming X-ray was scanned at the 

grazing angle between 0.5-2.5 degree. 

Theoretical Calculation: Theoretical calculations for DMTPA-PDI3 were 

performed by Gaussian 09 program
[3]

 using Density Functional Theory (DFT). To 

simplify computations and enhance computational efficiency, the N-hexylheptyl 

group of DMTPA-PDI3 was replaced with a simple N-methyl group, and geometric 

structural optimization was performed at the B3LYP/6-31G* level, yielding optimized 

geometric structures to obtain the corresponding electron density. 



Hole- and Electron-only Devices: The electron and hole mobilities were 

evaluated using space charge limited current (SCLC) method using electron- and 

hole-only devices with respective device architectures of 

ITO/PEDOT:PSS/PTB7-Th:DMTPA-PDI3 (140 nm) /MoO3/Ag and 

ITO/ZnO/PTB7-Th:DMTPA-PDI3 (140 nm)/ZnO/Ag. The current-voltage curves 

were obtained and fitted to a space charge limited form described by: 

 

J = (8/9) εrε0μ (V
2
/L

3
)        (1) 

 

where ε0 is the permittivity of free space, εr is the relative permittivity of the material, 

μ is the electron mobility, V is the voltage drop across the device and L is the 

thickness of the film. For most polymers, εr is around 3. 

 

 

 

 

 

 

Figure S1. TGA plot of DMTPA-PDI3 at a heating rate of 20 °C min
-1

 under N2 

atmosphere. 

 

 
 

 



Figure S2. X-ray diffraction pattern of active layer PTB7-Th:DMTPA-PDI3 (1.5:1 

weight ratio, 3% CN). 

 

 

 

 

 

 

Figure S3. X-ray diffraction pattern of acceptor DMTPA-PDI3. 

 

 

 

 

 

Figure S4. X-ray diffraction pattern of donor PTB7-Th. 

 

 



Figure S5. J1/2-V characteristics of the hole and electron-only devices 

 

 

 

 

 

 

 

 

Figure S6. 
1
H NMR of compound DMTPA-PDI3 
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Figure S7. 
13

C NMR of compound DMTPA-PDI3  
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Figure S8. HR-MS (MALDI-TOF) mass spectrum of DMTPA-PDI3 
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