@.PLOS | sumissioN

Supporting Information

Fig A

A 1.10

1.051

1.00

GreedyL / DOCKS
set size

0.95 A

B 10000 A

1000

100 1

runtime

10

GreedyL / DOCKS

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
L - sequence length

-5
)
-7
=+ 8
=9
10

GreedyL / DOCKS ()
max memory

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
L - sequence length

-5
6
-7
+8
=9
10

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
L - sequence length

Performance of the greedy algorithm compared to DOCKS. The graphs show

the ratio between the greedy algorithm and DOCKS in terms of (A) the k-mer set size

generated; (B) the runtime used; (C) the max memory used.

PLOS

1/9

@.PLOS | sumissioN

Fig B
Ao.35— K
=5
g 0.30 1 -6
£ -7
=< 0251 -8
= <9
N —
o) - 10
c 0207 =11
RS .
5 -
@ 0.15 .
I Algorlthm
P N N — = - - decycling
0101 SN ¥ E 5 F-< — DOCKSany
20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
L - sequence length
B 100000.0 - Algorithm
— — DOCKSany
@ 10000.0
©
5
8 1000.0 1 k]
» -
5 10007 -6
S -7
= 10.0 g
5 “9
o 1.0
=10
20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
L - sequence length
C 512 - Algorithm
— — DOCKSany
=
256 = S
g — K
g e
£ 128 =6
S -7
3 64 -8
s \ <9
=10
. N‘ R : ’ — =11

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

L - sequence length
Performance of DOCKSany. For different combinations of k£ and L we ran
DOCKSany over the DNA alphabet. (A) Set sizes. The results are shown as a fraction
of the total number of k-mers |X|*. The broken lines show the decycling set size for
each k. (B) Running time in seconds. Note that y-axis is in log scale. (C) Maximum

memory usage in megabytes. Note that y-axis is in log scale.

PLOS

2/9

@.PLOS | sumissioN

Fig C
A 1.6
%)
¥
O
O 1.4
0o
-~ .N
>0
C a
3%
L7 124
Q
o
a
1.0
Zb 3b 4b 50 Gb 7b 50 Qb 160 1%0 150 150 1&0 150 1é0 1}0 160 1éO 260
L - sequence length
1.00 1

w

0.75 1

0.25 1

DOCKSany / DOCKS
runtime

0.00 % o i = e - i o 4 i = e

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
L - sequence length

0 4
S
985,
35
£E,
28
QE
0o 1
o

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
L - sequence length

-5
6
-7
-+ 8
=9
%10

-5
6
-7
-+ 8
=9
=10

Performance of DOCKSany compared to DOCKS. The graphs show the ratio

between DOCKSany and DOCKS for (A) the k-mer set size generated; (B) the runtime

used; (C) the maximum memory used.

PLOS

3/9

@.PLOS | sumissioN

Fig D
A 5]
%)
S
3 X
Q 201 -1
=N “5
Xz =25
g9 =+ 125
L s = 625
O 3125
o]
o
1.0 1
2I0 3'0 4I0 5I0 6I0 7l0 SIO 9'0 1(I)0 1'IIO 12IO 11I30 1410 150 1é0 ’I'I/O 1é0 1;30 2(l)0
L - sequence length
B 0.20
]
S
O 0.151 X
o 1
= g 5
X £
=>E 0.101 - 25
g2 =125
&) + 625
O 0051 #3125
: ;==—0—0—0—6—6—F
o
0.00 e
2I0 3I0 4I0 5I0 6IO 7I0 8I0 9IO 160 1'10 'IéO 11;:0 1410 15IO 1é0 1%0 1é0 1;30 260
L - sequence length
C 1.00
]
S
X
S Z o754 -1
>§g =25
S x 0.50 1 == 125
%]
o= + 625
O #3125
O 0251
a

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
L - sequence length
Performance of DOCKSanyX. The graphs show the ratio between DOCKSanyX
and DOCKS on k = 10 for (A) the k-mer set size generated; (B) the runtime used; (C)

the maximum memory used.

PLOS 4/9

@.PLOS | sumissioN

Fig E

k
<5
-6
-7
8
“9
=10
= 11
=12
13

.4 1

-mers o>

o
w
L

Fraction of all k
o
N

Algorithm
= = decycling
— DOCKSanyX

o
=
R

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
L - sequence length
k

<5
)
-+ 7
> 8
“9
=10
= 11
12
%13

1e+06 4

vy)

1e+04 1

1e+02

Runtime [seconds]

1e+00 1

Algorithm
— DOCKSanyX

2I0 3I0 4I0 5I0 6I0 7I0 Sb QIO 160 11I0 12I0 1é0 14:0 ’IéO 1(I50 1%0 ’IéO 1SI30 260
L - sequence length

N k
e e P
st “6
-7
8
- <9
g 512 4 =10
Q256 =M1
= 12
N 1281 13
2 o
32 Algorithm
=— DOCKSanyX

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
L - sequence length
Performance of DOCKSanyX. For different combinations of £ and L we ran
DOCKSanyX over the DNA alphabet. X value was 1 for 5 < k < 11, 100 for k = 12
and 10000 for k = 13. (A) Set sizes. The results are shown as a fraction of the total
number of k-mers |S|¥. The broken lines show the decycling set size for each k. (B)
Running time in seconds. Note that y-axis is in log scale. (C) Maximum memory usage

in megabytes. Note that y-axis is in log scale.

PLOS 5/9

@. PLOS | susmission

Appendix

In this section we prove theoretical results used in the body of the paper.

NP-hardness of MINIMUM (k, L)-HITTING SET

One of the motivations for a universal k-mer set comes from the fact that the problem
of finding a minimum-size k-mer set that hits every string in a given set of L-long
strings is NP-hard. The hitting set problem, if a given set of target sequences is part of

the input, is as follows:

MINIMUM (k, L)-HITTING SET

INSTANCE: Set S of L-long sequences over Y. and k.
VALID SOLUTION: Set X of k-mers s.t. S C hit(X, L).
GOAL: Minimize |X]|.

We prove that MINIMUM (k, L)-HITTING SET is NP-hard. For simplicity, we study
the problem on the DNA alphabet, but it can be easily generalized to any finite
alphabet 3. We show a reduction from HITTING SET [1]. While the problems look
similar, HITTING SET is a more general case than our problem, since in HITTING
SET the subsets are arbitrary, while in MINIMUM (k, L)-HITTING SET problem each
subset is made of overlapping k-mers. Hence, the hardness of the former does not

directly imply hardness of the latter.
Theorem 1. MINIMUM (k,L)-HITTING SET is NP-hard.

Proof. Given an input to HITTING SET, a set S of subsets of E = {ey...e,}, we
generate an input to MINIMUM (k, L)-HITTING SET problem as follows: Denote by
m the size of the maximum cardinality set, i.e. m = maxg,eg |S;|. We choose

¢ = [logy(max(m,n))], L = 3¢m and k = 2¢. We map each set S; € S to a k-long
binary representation of i, where instead of bits we use nucleotides C and G. We map
each element e; € E to a k-long binary representation of j, where instead of bits we use
nucleotides A and T. We call these representations the set’s {C, G}-representation and

the element’s {A, T'}-representation and denote them by foe(S;) and far(e;).

PLOS

6/9

@. PLOS | susmission

We generate a sequence set 7', which is the input to MINIMUM (k, L)-HITTING
SET. For each set S; € S we generate a sequence that contains all of its elements’

{A, T'}-representations, each appearing twice consecutively and buffered by the set’s

{C, G}-representation. Formally, for the set S; = {e;,,..., e, } we create the sequence:
Ty = (12 far(er,) - far(e,) - foa(S0) - (Far(en) - far(en) - foa(S))™ 1 (here
[[indicates concatenation). The new instance 7" is {71, .., Tjg}-

Denote by T9FT an optimal solution to MINIMUM (k, L)-HITTING SET. If a
k-mer contains as a substring a complete { A, T'}-representation w, then the element
far(w) is in the optimal solution to HITTING SET. If a k-mer contains a complete
{C, G}-representation w, then any element from the set fo5(w) can be part of the
optimal solution. The running time of the reduction is bounded by O(]S| x L) to
generate the input sequence set T. In terms of m and n the running time is
O(|S] - m - (log(m) + log(n)))-

We now prove the correctness of the reduction. We start with proving several

properties of the solution.

Lemma 1. A k-mer that contains a complete { A, T }-representation w can be replaced

by k-mer ww to produce a hitting set of the same cardinality.

Proof. The k-mer contains a complete {A, T }-representation w. Thus, it can only hit
sequences that contain w. Since the sequences were constructed to contain two adjacent
{A, T}-representations per element, and since this representation is unique, k-mer ww

hits the same set of sequences. O

Lemma 2. A k-mer that contains a complete {C, G}-representation can be replaced by
a k-mer that contains two adjacent occurrences of any {A,T}-representation from this

sequence to produce a hitting set of the same cardinality.

Proof. A {C, G}-representation is unique to each sequence. Thus, it can only hit one
sequence, and replacing it by any other k-mer from that sequence preserves the hitting

properties of the set. O

We now prove the two sides of the reduction:

1. MINIMUM (&, L)-HITTING SET = HITTING SET: all L-long sequences in T

are hit by k-mers in 79P7. By Lemmas 1 and 2 we can transform any hitting set

PLOS

7/9

@. PLOS | susmission

to a hitting set of the same cardinality, but containing only k-mers over {A,T'}.
These correspond to elements in an optimal solution of HITTING SET. Assume
contrary that there is a smaller solution U to HITTING SET. Then, the set

{far(w) - far(w) | w € U} hits all sequences in the k-mer hitting problem, and

by that producing a smaller solution, contrary to its optimality.

2. HITTING SET = MINIMUM (k, L)-HITTING SET: denote by S®F7 an optimal
solution to HITTING SET. Then, a set of k-mers { far(w) - far(w) | w € SOTT}
is an optimal solution to MINIMUM (k, L)-HITTING SET. Assume contrary that
there is a smaller solution U to MINIMUM (&, L)-HITTING SET. By Lemmas 1
and 2 there is a solution composed of k-mers over {A,T'}. The set of element
{fgql“(wlzk/Q) | w € U} is a smaller hitting set in HITTING SET, contrary to its

optimality.

NP-hardness of MINIMUM /-PATH COVER IN A DAG

Our heuristic to find Uy, searches for a minimum ¢-path cover in the DAG created
after removing a decycling set. In the second phase of DOCKS we encounter a special

case of the following problem.
MINIMUM /-PATH VERTEX COVER IN A DAG
INSTANCE: A directed acyclic graph G = (V| E) and integer ¢.
VALID SOLUTION: Vertex set X s.t. G’ = (V \ X, E) contains no ¢-long paths.
GOAL: Minimize |X]|.

This general problem was shown to be NP-hard in [2]. A special case of the problem,
for an acyclic subgraph of the de Bruijn graph, arises in the second phase of DOCKS
after removing a minimum decycling set. The hardness result motivates the use of

heuristics in the second phase.

Validity of the ILP formulation

Lemma 3. The ILP is a valid formulation of the minimum hitting set problem.

PLOS

8/9

@. PLOS | susmission

Proof. Suppose S is a UHS, and define 2}, =1 <= v e S, L} =0if v € S and
otherwise L} equal to the length of the longest path ending at v. We claim that (z*, L*)
satisfy the constraints. By construction, (8) holds. To show (9), if v € S then
0=L;>1+4+L;—¢ Ifv¢gsS, then L} > 14 L¥ by the property of the longest path
labels. Hence all constraints are satisfied. Conversely, suppose the vectors =* and L*
solve the ILP. W.l.o.g., we can assume that L* is integer (otherwise round all
coordinates down and all inequalities still hold for the new solution). Define

S ={i |z =1}. We claim that S is a UHS. Suppose by contradiction there exists a
path of ¢ edges p = (ug, €g, u1,€1,...,up) in the graph induced by Gy \ S (i.e. the DAG
induced by removing the set S from the order & de Bruijn graph). Then, z; = 0 for
i=0,...,0 and summing the inequalities (9) for the edges in the path we get

Ly, > Ly, + £, which contradicts (8). Hence, S is indeed a UHS. O

References

1. Karp RM. Reducibility among combinatorial problems. In: 50 Years of Integer
Programming 1958-2008. Springer; 2010. p. 219-241.

2. Paindavoine M, Vialla B. Minimizing the Number of Bootstrappings in Fully
Homomorphic Encryption. In: Revised Selected Papers of the 22Nd International
Conference on Selected Areas in Cryptography - SAC 2015 - Volume 9566. New
York, NY, USA: Springer-Verlag New York, Inc.; 2016. p. 25-43. Available from:

http://dx.doi.org/10.1007/978-3-319-31301-6_2.

PLOS

9/9

http://dx.doi.org/10.1007/978-3-319-31301-6_2

