Supporting Information

Performance of the greedy algorithm compared to DOCKS. The graphs show the ratio between the greedy algorithm and DOCKS in terms of (A) the k -mer set size generated; (B) the runtime used; (C) the max memory used.

Performance of DOCKSany compared to DOCKS. The graphs show the ratio between DOCKSany and DOCKS for (A) the k -mer set size generated; (B) the runtime used; (C) the maximum memory used.

Performance of DOCKSanyX. The graphs show the ratio between DOCKSanyX and DOCKS on $k = 10$ for (A) the k-mer set size generated; (B) the runtime used; (C) the maximum memory used.

Performance of DOCKSanyX. For different combinations of k and L we ran DOCKSanyX over the DNA alphabet. X value was 1 for $5 \leq k \leq 11,$ 100 for $k = 12$ and 10000 for $k = 13$. (A) Set sizes. The results are shown as a fraction of the total number of k-mers $|\Sigma|^k$. The broken lines show the decycling set size for each k. (B) Running time in seconds. Note that y-axis is in log scale. (C) Maximum memory usage in megabytes. Note that y-axis is in log scale.

Appendix

In this section we prove theoretical results used in the body of the paper.

NP -hardness of MINIMUM (k, L) -HITTING SET

One of the motivations for a universal k -mer set comes from the fact that the problem of finding a minimum-size k -mer set that hits every string in a given set of L -long strings is NP-hard. The hitting set problem, if a given set of target sequences is part of the input, is as follows:

MINIMUM (k, L) -HITTING SET

INSTANCE: Set S of L-long sequences over Σ and k.

VALID SOLUTION: Set X of k-mers s.t. $S \subseteq hit(X, L)$.

GOAL: Minimize $|X|$.

We prove that MINIMUM (k, L) -HITTING SET is NP-hard. For simplicity, we study the problem on the DNA alphabet, but it can be easily generalized to any finite alphabet Σ . We show a reduction from HITTING SET [\[1\]](#page-8-1). While the problems look similar, HITTING SET is a more general case than our problem, since in HITTING SET the subsets are arbitrary, while in MINIMUM (k, L) -HITTING SET problem each subset is made of overlapping k-mers. Hence, the hardness of the former does not directly imply hardness of the latter.

Theorem 1. MINIMUM (k, L) -HITTING SET is NP-hard.

Proof. Given an input to HITTING SET, a set S of subsets of $E = \{e_1 \dots e_n\}$, we generate an input to MINIMUM (k, L) -HITTING SET problem as follows: Denote by m the size of the maximum cardinality set, i.e. $m = \max_{S_i \in S} |S_i|$. We choose $\ell = \lceil \log_2(\max(m, n)) \rceil, L = 3\ell m$ and $k = 2\ell$. We map each set $S_i \in S$ to a k-long binary representation of i , where instead of bits we use nucleotides C and G . We map each element $e_j \in E$ to a k-long binary representation of j, where instead of bits we use nucleotides A and T. We call these representations the set's $\{C, G\}$ -representation and the element's $\{A, T\}$ -representation and denote them by $f_{CG}(S_i)$ and $f_{AT}(e_j)$.

We generate a sequence set T, which is the input to MINIMUM (k, L) -HITTING SET. For each set $S_i \in S$ we generate a sequence that contains all of its elements' {A, T}-representations, each appearing twice consecutively and buffered by the set's $\{C, G\}$ -representation. Formally, for the set $S_i = \{e_{i_1}, \ldots, e_{i_{|S_i|}}\}$ we create the sequence: $T_i := (\prod_{j=1}^{|S_i|} f_{AT}(e_{i_j}) \cdot f_{AT}(e_{i_j}) \cdot f_{CG}(S_i)) \cdot (f_{AT}(e_{i_1}) \cdot f_{AT}(e_{i_1}) \cdot f_{CG}(S_i))^{m-|S_i|}$ (here \prod indicates concatenation). The new instance T is $\{T_1, \ldots, T_{|S|}\}.$

Denote by T^{OPT} an optimal solution to MINIMUM (k, L) -HITTING SET. If a k-mer contains as a substring a complete $\{A, T\}$ -representation w, then the element $f_{AT}^{-1}(w)$ is in the optimal solution to HITTING SET. If a k-mer contains a complete ${C, G}$ -representation w, then any element from the set $f_{CG}^{-1}(w)$ can be part of the optimal solution. The running time of the reduction is bounded by $O(|S| \times L)$ to generate the input sequence set T . In terms of m and n the running time is $O(|S| \cdot m \cdot (\log(m) + \log(n))).$

We now prove the correctness of the reduction. We start with proving several properties of the solution.

Lemma 1. A k-mer that contains a complete $\{A, T\}$ -representation w can be replaced by k-mer ww to produce a hitting set of the same cardinality.

Proof. The k-mer contains a complete $\{A, T\}$ -representation w. Thus, it can only hit sequences that contain w . Since the sequences were constructed to contain two adjacent ${A, T}$ -representations per element, and since this representation is unique, k-mer ww hits the same set of sequences. \Box

Lemma 2. A k-mer that contains a complete $\{C, G\}$ -representation can be replaced by a k-mer that contains two adjacent occurrences of any $\{A, T\}$ -representation from this sequence to produce a hitting set of the same cardinality.

Proof. A $\{C, G\}$ -representation is unique to each sequence. Thus, it can only hit one sequence, and replacing it by any other k -mer from that sequence preserves the hitting properties of the set. \Box

We now prove the two sides of the reduction:

1. MINIMUM (k, L) -HITTING SET \Rightarrow HITTING SET: all L-long sequences in T are hit by k-mers in T^{OPT} . By Lemmas [1](#page-6-0) and [2](#page-6-1) we can transform any hitting set to a hitting set of the same cardinality, but containing only k-mers over $\{A, T\}$. These correspond to elements in an optimal solution of HITTING SET. Assume contrary that there is a smaller solution U to HITTING SET. Then, the set ${f_{AT}(w) \cdot f_{AT}(w) \mid w \in U}$ hits all sequences in the k-mer hitting problem, and by that producing a smaller solution, contrary to its optimality.

2. HITTING SET \Rightarrow MINIMUM (k, L) -HITTING SET: denote by S^{OPT} an optimal solution to HITTING SET. Then, a set of k-mers $\{f_{AT}(w) \cdot f_{AT}(w) \mid w \in S^{OPT}\}\$ is an optimal solution to MINIMUM (k, L) -HITTING SET. Assume contrary that there is a smaller solution U to MINIMUM (k, L) -HITTING SET. By Lemmas [1](#page-6-0) and [2](#page-6-1) there is a solution composed of k-mers over $\{A, T\}$. The set of element ${f_{AT}^{-1}(w_{1:k/2}) \mid w \in U}$ is a smaller hitting set in HITTING SET, contrary to its optimality.

 \Box

NP -hardness of MINIMUM ℓ -PATH COVER IN A DAG

Our heuristic to find $U_{k,L}$ searches for a minimum ℓ -path cover in the DAG created after removing a decycling set. In the second phase of DOCKS we encounter a special case of the following problem.

MINIMUM ℓ -PATH VERTEX COVER IN A DAG

INSTANCE: A directed acyclic graph $G = (V, E)$ and integer ℓ .

VALID SOLUTION: Vertex set X s.t. $G' = (V \setminus X, E)$ contains no ℓ -long paths.

GOAL: Minimize $|X|$.

This general problem was shown to be NP-hard in [\[2\]](#page-8-2). A special case of the problem, for an acyclic subgraph of the de Bruijn graph, arises in the second phase of DOCKS after removing a minimum decycling set. The hardness result motivates the use of heuristics in the second phase.

Validity of the ILP formulation

Lemma 3. The ILP is a valid formulation of the minimum hitting set problem.

Proof. Suppose S is a UHS, and define $x_v^* = 1 \iff v \in S$, $L_v^* = 0$ if $v \in S$ and otherwise L_v^* equal to the length of the longest path ending at v. We claim that (x^*, L^*) satisfy the constraints. By construction, [\(8\)](#page-0-0) holds. To show [\(9\)](#page-0-0), if $v \in S$ then $0 = L_v^* \geq 1 + L_u^* - \ell$. If $v \notin S$, then $L_v^* \geq 1 + L_u^*$ by the property of the longest path labels. Hence all constraints are satisfied. Conversely, suppose the vectors x^* and L^* solve the ILP. W.l.o.g., we can assume that L^* is integer (otherwise round all coordinates down and all inequalities still hold for the new solution). Define $S = \{i \mid x_i^* = 1\}$. We claim that S is a UHS. Suppose by contradiction there exists a path of ℓ edges $p = (u_0, e_0, u_1, e_1, \dots, u_\ell)$ in the graph induced by $G_k \setminus S$ (i.e. the DAG induced by removing the set S from the order k de Bruijn graph). Then, $x_{u_i}^* = 0$ for $i = 0, \ldots, \ell$ and summing the inequalities [\(9\)](#page-0-0) for the edges in the path we get \Box $L_{u_{\ell}} \geq L_{u_0} + \ell$, which contradicts [\(8\)](#page-0-0). Hence, S is indeed a UHS.

References

- 1. Karp RM. Reducibility among combinatorial problems. In: 50 Years of Integer Programming 1958-2008. Springer; 2010. p. 219–241.
- 2. Paindavoine M, Vialla B. Minimizing the Number of Bootstrappings in Fully Homomorphic Encryption. In: Revised Selected Papers of the 22Nd International Conference on Selected Areas in Cryptography - SAC 2015 - Volume 9566. New York, NY, USA: Springer-Verlag New York, Inc.; 2016. p. 25–43. Available from: http://dx.doi.org/10.1007/978-3-319-31301-6_2.