
Supporting Information

Fig A

Performance of the greedy algorithm compared to DOCKS. The graphs show

the ratio between the greedy algorithm and DOCKS in terms of (A) the k-mer set size

generated; (B) the runtime used; (C) the max memory used.

PLOS 1/9

Fig B

Performance of DOCKSany. For different combinations of k and L we ran

DOCKSany over the DNA alphabet. (A) Set sizes. The results are shown as a fraction

of the total number of k-mers |Σ|k. The broken lines show the decycling set size for

each k. (B) Running time in seconds. Note that y-axis is in log scale. (C) Maximum

memory usage in megabytes. Note that y-axis is in log scale.

PLOS 2/9

Fig C

Performance of DOCKSany compared to DOCKS. The graphs show the ratio

between DOCKSany and DOCKS for (A) the k-mer set size generated; (B) the runtime

used; (C) the maximum memory used.

PLOS 3/9

Fig D

Performance of DOCKSanyX. The graphs show the ratio between DOCKSanyX

and DOCKS on k = 10 for (A) the k-mer set size generated; (B) the runtime used; (C)

the maximum memory used.

PLOS 4/9

Fig E

Performance of DOCKSanyX. For different combinations of k and L we ran

DOCKSanyX over the DNA alphabet. X value was 1 for 5 ≤ k ≤ 11, 100 for k = 12

and 10000 for k = 13. (A) Set sizes. The results are shown as a fraction of the total

number of k-mers |Σ|k. The broken lines show the decycling set size for each k. (B)

Running time in seconds. Note that y-axis is in log scale. (C) Maximum memory usage

in megabytes. Note that y-axis is in log scale.

PLOS 5/9

Appendix

In this section we prove theoretical results used in the body of the paper.

NP-hardness of MINIMUM (k, L)-HITTING SET

One of the motivations for a universal k-mer set comes from the fact that the problem

of finding a minimum-size k-mer set that hits every string in a given set of L-long

strings is NP-hard. The hitting set problem, if a given set of target sequences is part of

the input, is as follows:

MINIMUM (k, L)-HITTING SET

INSTANCE: Set S of L-long sequences over Σ and k.

VALID SOLUTION: Set X of k-mers s.t. S ⊆ hit(X,L).

GOAL: Minimize |X|.

We prove that MINIMUM (k, L)-HITTING SET is NP-hard. For simplicity, we study

the problem on the DNA alphabet, but it can be easily generalized to any finite

alphabet Σ. We show a reduction from HITTING SET [1]. While the problems look

similar, HITTING SET is a more general case than our problem, since in HITTING

SET the subsets are arbitrary, while in MINIMUM (k, L)-HITTING SET problem each

subset is made of overlapping k-mers. Hence, the hardness of the former does not

directly imply hardness of the latter.

Theorem 1. MINIMUM (k, L)-HITTING SET is NP-hard.

Proof. Given an input to HITTING SET, a set S of subsets of E = {e1 . . . en}, we

generate an input to MINIMUM (k, L)-HITTING SET problem as follows: Denote by

m the size of the maximum cardinality set, i.e. m = maxSi∈S |Si|. We choose

` = dlog2(max(m,n))e, L = 3`m and k = 2`. We map each set Si ∈ S to a k-long

binary representation of i, where instead of bits we use nucleotides C and G. We map

each element ej ∈ E to a k-long binary representation of j, where instead of bits we use

nucleotides A and T. We call these representations the set’s {C,G}-representation and

the element’s {A, T}-representation and denote them by fCG(Si) and fAT (ej).

PLOS 6/9

We generate a sequence set T , which is the input to MINIMUM (k, L)-HITTING

SET. For each set Si ∈ S we generate a sequence that contains all of its elements’

{A, T}-representations, each appearing twice consecutively and buffered by the set’s

{C,G}-representation. Formally, for the set Si = {ei1 , . . . , ei|Si|
} we create the sequence:

Ti := (
∏|Si|

j=1 fAT (eij) · fAT (eij) · fCG(Si)) · (fAT (ei1) · fAT (ei1) · fCG(Si))
m−|Si| (here∏

indicates concatenation). The new instance T is {T1, . . . , T|S|}.

Denote by TOPT an optimal solution to MINIMUM (k, L)-HITTING SET. If a

k-mer contains as a substring a complete {A, T}-representation w, then the element

f−1AT (w) is in the optimal solution to HITTING SET. If a k-mer contains a complete

{C,G}-representation w, then any element from the set f−1CG(w) can be part of the

optimal solution. The running time of the reduction is bounded by O(|S| × L) to

generate the input sequence set T . In terms of m and n the running time is

O(|S| ·m · (log(m) + log(n))).

We now prove the correctness of the reduction. We start with proving several

properties of the solution.

Lemma 1. A k-mer that contains a complete {A, T}-representation w can be replaced

by k-mer ww to produce a hitting set of the same cardinality.

Proof. The k-mer contains a complete {A, T}-representation w. Thus, it can only hit

sequences that contain w. Since the sequences were constructed to contain two adjacent

{A, T}-representations per element, and since this representation is unique, k-mer ww

hits the same set of sequences.

Lemma 2. A k-mer that contains a complete {C,G}-representation can be replaced by

a k-mer that contains two adjacent occurrences of any {A, T}-representation from this

sequence to produce a hitting set of the same cardinality.

Proof. A {C,G}-representation is unique to each sequence. Thus, it can only hit one

sequence, and replacing it by any other k-mer from that sequence preserves the hitting

properties of the set.

We now prove the two sides of the reduction:

1. MINIMUM (k, L)-HITTING SET ⇒ HITTING SET: all L-long sequences in T

are hit by k-mers in TOPT . By Lemmas 1 and 2 we can transform any hitting set

PLOS 7/9

to a hitting set of the same cardinality, but containing only k-mers over {A, T}.

These correspond to elements in an optimal solution of HITTING SET. Assume

contrary that there is a smaller solution U to HITTING SET. Then, the set

{fAT (w) · fAT (w) | w ∈ U} hits all sequences in the k-mer hitting problem, and

by that producing a smaller solution, contrary to its optimality.

2. HITTING SET ⇒ MINIMUM (k, L)-HITTING SET: denote by SOPT an optimal

solution to HITTING SET. Then, a set of k-mers {fAT (w) · fAT (w) | w ∈ SOPT }

is an optimal solution to MINIMUM (k, L)-HITTING SET. Assume contrary that

there is a smaller solution U to MINIMUM (k, L)-HITTING SET. By Lemmas 1

and 2 there is a solution composed of k-mers over {A, T}. The set of element

{f−1AT (w1:k/2) | w ∈ U} is a smaller hitting set in HITTING SET, contrary to its

optimality.

NP-hardness of MINIMUM `-PATH COVER IN A DAG

Our heuristic to find Uk,L searches for a minimum `-path cover in the DAG created

after removing a decycling set. In the second phase of DOCKS we encounter a special

case of the following problem.

MINIMUM `-PATH VERTEX COVER IN A DAG

INSTANCE: A directed acyclic graph G = (V,E) and integer `.

VALID SOLUTION: Vertex set X s.t. G′ = (V \X,E) contains no `-long paths.

GOAL: Minimize |X|.

This general problem was shown to be NP-hard in [2]. A special case of the problem,

for an acyclic subgraph of the de Bruijn graph, arises in the second phase of DOCKS

after removing a minimum decycling set. The hardness result motivates the use of

heuristics in the second phase.

Validity of the ILP formulation

Lemma 3. The ILP is a valid formulation of the minimum hitting set problem.

PLOS 8/9

Proof. Suppose S is a UHS, and define x∗v = 1 ⇐⇒ v ∈ S, L∗v = 0 if v ∈ S and

otherwise L∗v equal to the length of the longest path ending at v. We claim that (x∗, L∗)

satisfy the constraints. By construction, (8) holds. To show (9), if v ∈ S then

0 = L∗v ≥ 1 + L∗u − `. If v 6∈ S, then L∗v ≥ 1 + L∗u by the property of the longest path

labels. Hence all constraints are satisfied. Conversely, suppose the vectors x∗ and L∗

solve the ILP. W.l.o.g., we can assume that L∗ is integer (otherwise round all

coordinates down and all inequalities still hold for the new solution). Define

S = {i | x∗i = 1}. We claim that S is a UHS. Suppose by contradiction there exists a

path of ` edges p = (u0, e0, u1, e1, . . . , u`) in the graph induced by Gk \ S (i.e. the DAG

induced by removing the set S from the order k de Bruijn graph). Then, x∗ui
= 0 for

i = 0, . . . , ` and summing the inequalities (9) for the edges in the path we get

Lu`
≥ Lu0 + `, which contradicts (8). Hence, S is indeed a UHS.

References

1. Karp RM. Reducibility among combinatorial problems. In: 50 Years of Integer

Programming 1958-2008. Springer; 2010. p. 219–241.

2. Paindavoine M, Vialla B. Minimizing the Number of Bootstrappings in Fully

Homomorphic Encryption. In: Revised Selected Papers of the 22Nd International

Conference on Selected Areas in Cryptography - SAC 2015 - Volume 9566. New

York, NY, USA: Springer-Verlag New York, Inc.; 2016. p. 25–43. Available from:

http://dx.doi.org/10.1007/978-3-319-31301-6_2.

PLOS 9/9

http://dx.doi.org/10.1007/978-3-319-31301-6_2

