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Supplementary Note 1 | Quantum Theory of Nonthermal Carrier Generation 

The classical electrodynamic simulations (Supplementary Figs. 3-7) provide a reliable 

description of the plasmonic spectra. However, as introduced in the main text, additional efforts 

are required to reliably predict the generation of high-energy nonthermal carriers. 

Electrodynamics simulations are based on the bulk dielectric constants of the metals, which 

become Drude-like in the red and NIR spectral intervals. The Drude model assumes the electron-

hole pairs are produced with small excitation energies close to the Fermi level of a metal. In 

contrast, nonthermal electrons with excitation energies ~ !ω  are created in the Fermi gas due to 

quantum optical transitions with non-conservation of linear momentum.1,2 In a large 

nanostructure, such transitions take place near the surfaces and the hot spots where the linear 

momentum of a carrier is not conserved due to scattering from the potential wall.  As shown in 

the main text, the rate of optical generation of nonthermal carriers can be calculated according to 

equation (1).3 We see that the generation rate includes the factor 3w-
 arising from the quantum 

mechanics of optical transitions near a metal surface. In our system, we have two components 

(Ag nanocube and Au film), and the total generation rate is composed of two terms calculated 

according to equation (1). In Supplementary Figure 6 we show the calculated rates of nonthermal 

carrier generation for both Ag and Au components of the metasurface as a function of spacer 

thickness. As can be seen, the generation rate of excited nonthermal electrons at the gap plasmon 

resonance is inversely related to the spacer thickness. There are two physical reasons: (1) For 

small gaps, the hot spots in the system become much stronger and the electric fields increase 

dramatically. These enhanced electric fields of the gap plasmons are responsible for quantum 

excitation of hot electrons at the surfaces. (2) The quantum factor 3w-
 in equation (1) enhances 

nonthermal electron generation as the plasmon peaks red-shift (Supplementary Fig. 4). This 
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factor gives rise to the stronger spacer thickness dependence of nonthermal carrier generation 

than optical absorption (Supplementary Fig. 7c,d). 

 The distribution of nonthermal carriers generated in the Ag nanocubes or the Au film also 

appears to be strongly excitation wavelength-dependent, as highlighted in Supplementary Figure 

7b. Our calculations indicate nearly 100% of nonthermal carrier generation occurs in the Ag 

nanocubes when exciting at the multipolar plasmon resonance (at ~370 nm), while 55% and 70% 

are generated in Au at the gap and quadrupolar plasmon resonances (at ~1000 nm and 630 nm), 

respectively. Unlike the gap and quadrupolar modes (Fig. 3 and Supplementary Fig. 3c,d,g,h), 

the multipolar mode is uncoupled from the Au film (Fig. 3 and Supplementary Fig. 3a,e), biasing 

generation to hot spots at the Ag nanocube corners. We additionally observe a weak linear 

dependence of the fraction of nonthermal carriers being generated in the nanocubes on the spacer 

thickness. Due to the higher refractive index of the Al2O3 spacer than the PVP/PAH polymer 

layers, a reduction in spacer thickness decreases the effective index in the gap near the Au 

surface. As a result, the electric field in the Au film increases more than in the Ag nanocube 

surface at the gap resonance. 

While the above discussion focuses on the generation rate of nonthermal carriers, the 

decay rate (through e-e scattering) also should impact their contribution to the optical response 

by modulating the peak nonthermal carrier density (Fig. 4c,d). For a rough estimate of the 

average nonthermal carrier population during the pump pulse, we can use a simple rate equation 

to describe the kinetics. Note that the pump pulse duration (~80 fs) is longer than the plasmon 

dephasing time (estimated from the calculated absorption linewidth as ~ 12 fs), therefore we can 

use our results from equation (1) of the main text for the CW regime of optical excitation: 
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Here we estimate the average lifetime for e-e scattering time assuming an energy in the middle of 

the interval of hot electrons, EF < E < EF + ℏω. The average number of nonthermal electrons in 

the nanocube during a square-wave pulse of 80 fs duration is then calculated by:  

 NNonthermal,avg t( ) = RateNonthermal ⋅τ e-e 1− e−t τ e-e( )  
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where Δt is the pulse duration. As can be seen from supplementary equation (3), a slower e-e 

scattering rate should result in a larger buildup of nonthermal carriers during the pulse. For 

smaller gaps with plasmon resonances in the NIR, this effect should amplify the contribution 

from nonthermal carriers relative to plasmon resonances in the UV to visible spectrum (Fig. 4d). 

Supplementary Figure 6 shows the examples of computations for the hybrid Ag-Au plasmonic 

structures with nano-gaps. This approach was used to compose a global picture (shown as Figure 

5 in the main text) for the rates of generation in the hybrid plasmonic systems with and without 

nano-gaps. Such systems include Au, Ag and Ag-Au nanostructures and the choice of metal and 

geometry is crucial to obtain efficient hot-carrier production. 

To compute the nonthermal populations during the laser pulse in the plasmonic 

components of our nanostructures (supplementary equations (2) and (3)), we need material 
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constants of Au and Ag. We can extract these constants from the Drude fits to the empirical 

dielectric functions.4 The resulting values for the Drude relaxation rate, plasmon frequency, and 

Fermi energy can be found in Supplementary Table 1. 

 

 

Supplementary Note 2 | Nonthermal and Thermal Hot Electron Relaxation 

Relaxation of nonthermal carriers is generally treated within the context of Landau’s Fermi 

liquid theory (FLT), whereby the e-e scattering rate is quadratically dependent on the particle 

energy: 
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where EF is the Fermi energy of the metal, ωp is the intraband (Drude) plasma frequency, m* is 

the bulk electron effective mass, n is the electron density, e is the electron charge, and q is the 

wavevector.5-7 In the case of nonthermal intraband excitation, electrons and holes are excited up 

to ℏω from the Fermi energy. Subsequently during e-e scattering, electrons with an energy ΔE 

relative to the Fermi energy collide with those near the Fermi surface yielding two electrons and 

a hole with a combined energy of ΔE, conserving both energy and momentum. Thus the 

nonthermal electron distribution rapidly evolves to a “thermalized” state, increasing the 

temperature of the electron gas in the process. 

 Multiple time-resolved two-photon photoemission (2-PPE) studies5,8-12 have previously 

been conducted on noble and transition metals with ultrafast resolution (~100 fs). For noble 
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metals in particular, a good agreement with supplementary equation (4) was found for intraband 

excitations. However, a consistent deviation from FLT was demonstrated when contributions 

from interband transitions were involved.11 Recent theoretical calculations13-16 have qualitatively 

reproduced these results, indicating that holes residing in the d-bands of Au and Ag have 

dramatically lower lifetimes and mean free paths. These calculations have also provided the first 

indication that local band curvature may impact the e-e scattering rate, with a predicted 3-fold 

variation in intraband scattering rates near the Fermi surface.14,16 

 An essential assumption in supplementary equation (5) is that the metal can be treated as 

isotropic with a single effective mass and parabolic band structure. For isotropic band structures 

within the electron gas model, the wavevector dependence of ωp is neglected, and transitions are 

assumed to all occur near the Fermi surface where q ≈ 0 (Drude approximation). In metals the 

effect of ωp on the e-e scattering rate cannot be overstated; it describes the dielectric function (ε) 

and hence the charge screening of the metal by: 

 

ε ω( ) = ε∞ −
ω p
2

ω ω + iγ( )  

 

(6) 

where g is the damping factor. Unlike the simple Drude approximation however, nonthermal 

electron generation imparts a substantial wavevector (momentum shift) due to the quantum 

breaking of momentum matching conditions: 

 
q ω( ) = 2m∗ω

!
 

 

(7) 

Recent first-principles calculations by Kaltenborn et al. have shown the wavevector dependence 

of the plasma frequency can be estimated as: 
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 Δω p ≈ −βq2  (8) 

with β being a prefactor. By combining supplementary equations (2), (4), and (5) we arrive at a 

modified FLT expression for intraband e-e scattering including anisotropy of the band structure: 
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where β and m* now correspond to scattering within individual (parabolic) conduction bands. 

 As stated above, the band structure in Ag and Au exhibits a large variability in effective 

mass at the Fermi surface crossings near the L, X, and K symmetry points of the Brillouin zone 

(Fig. 8), particularly at the saddle points near the X and L transitions. From supplementary 

equation (9) one can see carriers excited through quantum intraband transitions along these three 

bands should have distinct kinetics (from varying effective mass)7 and distinct spectral signatures 

arising from differences in their optical permittivity (supplementary equation (6)).17,18 Assuming 

FLT applies not only to the bulk effective lifetimes (e.g. from 2-PPE) but also to e-e scattering of 

carriers in individual bands, supplementary equation (9) can approximate the relative lifetimes 

for charges near the L, X, and K points from supplementary equation (5). Comparing to bulk 2-

PPE measurements in Ag, studies have found a τ0 of 0.6 fs which corresponds to a minimum 

lifetime of 14 fs at an 1100 nm pump wavelength assuming a Fermi energy of 5.5 eV.5,19 Thus 

even within the isotropic approximation, our results fall within the range of lifetimes predicted 

from FLT. 

 After thermalization of the electron gas, the electrons remain in a state of 

quasiequilibrium with an effective electron temperature much higher than that of the surrounding 

lattice (Te >> TL). At this point in time, nonthermal carriers have a negligible contribution to the 

overall charge density, and the system as a whole can be described using the classical two-
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temperature model (TTM).19-21 In this framework, the thermal electrons lose energy through 

electron-phonon (e-ph) scattering, which is much faster than e-e scattering for carriers near the 

Fermi energy. Neglecting e-ph scattering at early times, the maximum electronic temperature can 

be approximated according to: 

 
Te = T0 +

2U
γ

 
 

(10) 

where T0 is the ambient temperature (300 K), U is the absorbed energy per unit volume, and γ is 

the temperature dependence of the electronic heat capacity (65 Jm-3K-2 and 66 Jm-3K-2 for Ag 

and Au, respectively).21 Assuming a nanocube density of 2 µm-2 (Fig. 3d) and 80% of the energy 

dissipation in the Au (Supplementary Fig. 7) we calculate an electronic temperature of 585 K and 

726 K in the Au film and Ag nanocubes, respectively, at the highest measured fluence of 130 µJ 

cm-2. At these temperatures the e-ph scattering rate is inversely (and nonlinearly) related to Te, 

and a direct calculation of the predicted thermal electron lifetime is out of the scope of this work. 

However, we do observe a decreased e-ph scattering rate with increasing fluence. Additionally, 

previous studies have found values of ~1 ps, similar to those reported here.19,20 

 

Supplementary Note 3 | Lifetime Density Analysis 

In fitting complex datasets, often multiple solutions of equations are applicable causing the 

problem to be ill-posed. The use of least-squares regression analysis can thus over- or under-

constrain the problem, depending on the number of variables built into the model. This is 

especially true for transient absorption data, where multiple processes (species) can be present 

with time-dependent constituent spectra and amplitudes. In the case of a spectral blueshift of a 

plasmon resonance (e.g. from electron-electron scattering), the overall decay in amplitude is 

convoluted with a blueshift in the center wavelength of the difference spectrum. The apparent 
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rate of (amplitude) decay is then dependent on the probe wavelength used, with wavelengths 

shorter than the transition yielding an effectively slower response than those to the red. 

Complicating matters, there are often other overlapping transitions or processes present with 

different kinetics and spectral signatures. In such cases, the LDA method is an incredibly 

powerful procedure for separating both kinetic and spectral features from data. The LDA 

procedure was recently detailed extensively by Slavov et al., thus we only present a brief 

overview here in the context of our data.22 

The most basic and common procedure for fitting transient absorption data is the global 

lifetime analysis (GLA) method.23 This approach involves fitting the time-dependent spectrum 

(S) to a sum of exponentials involving the various relaxation processes of the system: 

 
Sfit λ,t( ) = Ai λ,τ i( )exp − t τ i( )

i=1

N

∑ ⊗ IRF t( )  
 

(11) 

with A being the wavelength-dependent amplitude of each component, commonly known as the 

decay-associated spectra (DAS), τ the lifetime, and ⊗  the convolution with the instrument 

response function (IRF). In the case of a Gaussian-shaped IRF (Supplementary Fig. 8) with a 

center of time c and standard deviation σ, the convolution has the analytical form: 
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with k being the inverse of the lifetime. The amplitudes for each component are then found by 

linear fitting the product of the pseudoinverse of the guess matrix and the experimental data 

(Sexp) for a given wavelength: 

 A = Sguess
+ Sexp  

 

(13) 
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where Sguess is a matrix of the components si(t) for each guess of the constituent lifetimes and the 

“+” superscript indicates the pseudoinverse. In the GLA procedure, the IRF and the lifetimes of 

the N components are then iteratively fit using the least squares fitting method, which minimizes 

the square of the residual norm (supplementary equation (14)). 

 min Sexp − Sfit 2
2
 

 

(14) 

There are two important points to note about the GLA procedure (supplementary equation (11)). 

First, the kinetic and spectral contributions for each component are considered separable. 

Second, the number of components N is fixed and is an assumption made at the outset of the 

fitting. The former condition precludes any time-dependent shifts of the DAS, while the latter 

requires assumptions as to the physical processes occurring in the ill-constrained data. 

Particularly in the case of a lower signal-to-noise ratio, properly selecting the number of 

components can be difficult and the “optimal” result may be unphysical. 

 The LDA method is an extension of the GLA approach employing a semi-infinite and 

quasi-continuous number of components, which relaxes the intrinsic assumptions of GLA. The 

amplitude A λ,τ( )  then represents the inverse Laplace transform of the time-dependent spectrum 

S λ, t( ) , and can be thought of as a quasi-continuous DAS. In practice, N is discretized with 

~100 values taken over a log-scale (in our case from 0.01 to 100 ps). The solution is then found 

through the process of Tikhonov regularization (TR), whereby a regularization (smoothing) 

parameter α is used as a low-pass filter to balance the noise introduced from the quasi-continuous 

number of components and the residual norm. The amplitudes are computed as in supplementary 

equation (13), however the pseudoinverse of the guess matrix has been modified: 

 Sguess,α
+ = Sguess

T Sguess +α
2LTL( )−1SguessT  

 

(15) 
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where L is the identity matrix. For a range of α the TR is then minimized: 

 
min Sexp − Sfit 2

2
+α 2 LAα 2

2{ }  
 

(16) 

and the smoothing norm LAα 2  is plotted against the residual norm Sexp − Sfit 2 . The optimal 

solution is found at the corner of this plot, known as the L-curve, where the experimental data is 

sufficiently reproduced with low residual while avoiding over-fitting. The corner is defined by 

the point of maximum curvature (κ): 

 
κ α( ) = ′ρ ′′η − ′′ρ ′η

′ρ( )2 + ′η( )2( )3/2  
 

(17) 

where ρ and η are the log of the residual and smoothing norms, respectively, and the primes 

denote differentiation with respect to the regularization factor.24 

 An example of the L-curve analysis is shown in Supplementary Fig. 9. The fitting results 

for three regularization factors about the corner of the L-curve are shown, with the optimal point 

highlighted in gold (Supplementary Fig. 9b). An excellent match to the experimental data 

(Supplementary Fig. 9a) can be seen for all of the fitted spectra (Supplementary Fig. 9c,e,g), 

confirming all three have similar residuals and goodness of fit. However, as can be seen in their 

lifetime density maps (LDMs), there are larger and sharper amplitude variations with reduced α 

(Supplementary Fig. 9d,f,h). Qualitatively, the spectral shapes of the various components remain 

intact, along with their average lifetimes. However, the components at very short (~0.02 ps) and 

intermediate (~0.85 ps) lifetimes become washed out with larger smoothing values. Between the 

points at α = 0.559 and 2.984, there is qualitatively little change observed in the LDM, indicating 

a stable solution is obtained. The same procedure was performed for all datasets with similar 

accuracy and stability of solutions. 
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 Finally we consider how the LDA fitting has relaxed the assumptions built into the 

common GLA method. First, although the number of lifetimes is treated as quasi-continuous, a 

discrete set of lifetimes appears in the resulting lifetime density maps. As shown in Fig. 7d-g of 

the main text, these exhibit average lifetimes with a small distribution in each case. The ability to 

capture the lifetime distribution as opposed to assigning a single ensemble value appears to have 

particular relevance in systems with energetically or spatially-dependent decay rates, such as 

nonthermal electrons in metals or emitters coupled to plasmonic nanoantennas, respectively.14,25 

Second, spectral shifts in the data appear as a shearing of the peaks in the LDM versus 

wavelength, generating ellipticity. This is most apparent for the higher energy transitions such as 

the multipolar resonance and interband transition in the metasurfaces (Fig. 7a), where blueshifts 

in the spectra bias the lifetime distributions to larger values at shorter wavelengths. However, 

this does not change the average or standard deviation of each component’s lifetime. In this 

fashion, both assumptions are circumvented in the implementation of the LDA, and the data is fit 

with a model-independent method. 

 

Supplementary Note 4 | Separation of Lifetime Distributions and Spectra 

From the lifetime density maps (Fig. 7a and Supplementary Fig. 9d,f,h), it is clear that there are a 

finite number of distinct components with varying spectra at each mode/transition and kinetic 

distributions that partially overlap at short lifetimes. To disentangle the kinetic and spectral 

contributions to the LDMs, we applied a global fitting assuming a set of normal distributions: 

 
Sfit λ,τ( ) = DASi λ( )
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N
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where μ and σ represent to the average and standard deviation of each distribution and N = 6 – 

7 to capture the contributions from nonthermal e-e scattering, e-ph scattering, ph-ph scattering 

into coherent acoustic modes, and semi-infinite components from lattice heating. In each case, 

the minimum number of distributions was used. Initial locations for each distribution were taken 

from peaks in the LDM. The generalized global fitting procedure (supplementary equations (10) 

and (11)) was then employed using the MultiStart algorithm in Matlab to find the optimal 

solutions. Each wavelength range of the LDM corresponding to the gap, quadrupolar, and 

multipolar plasmon modes and the interband transition was fitted independently. As can be seen 

in Fig. 7d-g of the main text, an excellent fit to the LDM data was achieved, and a remarkable 

consistency in the lifetime distributions was found between all three plasmon resonances 

(Supplementary Fig. 10).  

 

Supplementary Note 5 | Characteristics of the Nonthermal DAS in Ag 

Beginning with the multipolar mode (Fig. 7b), the three nonthermal DAS all have similar 

spectral lineshapes which blueshift over ~30 nm from the fast to slow carriers, generally 

indicating a cooling of the carriers. The slow e-e spectrum is centered on that of the e-ph 

spectrum, both of which match the ground state plasmon resonance wavelength. This indicates 

that the slow nonthermal carriers represent e-e scattering at energies near the Fermi level. 

 At the gap mode (Fig. 7c), both fast and intermediate carriers exhibit a strong bleach at 

the gap resonance, and have zero crossings which are redshifted from the slow nonthermal 

carriers. As in the case of the multipolar mode, both the slow e-e scattering DAS and e-ph DAS 

are centered on the resonance wavelength of the gap plasmon in the ensemble. Apart from their 

near-identical lifetime distributions (Supplementary Fig. 10a-c), this provides further 
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confirmation that we are probing the same nonthermal carrier populations at all three plasmon 

modes. 

 At the gap mode of the 8 nm Al2O3 sample, we observe the strongest ultrafast bleach at 

the peak of the ensemble plasmon resonance (~1020 nm) despite excitation at 1100 nm (Fig. 6b). 

This is due to the heterogeneous distribution of nanocube sizes (as shown in Supplementary Fig. 

2), which leads to excitation of a subset of particles within the ensemble. Since particle sizes 

with resonances near the resonance of the ensemble are the most prevalent in the film, their 

contribution to the signal biases the overall response. If there is a homogeneous distribution of 

nanocubes with a single particle size, one might expect a more symmetric differential absorption 

signal. In contrast, the asymmetry observed in the nonthermal DAS at the gap resonance (Fig. 7c 

and Supplementary Fig. 10), as well as the overall transient absorption spectra at short times 

(Fig. 6a,b), is the result of exciting a finite distribution of particle sizes in the metasurface. 

 

 

Supplementary Note 6 | Pump Wavelength and Spacer Thickness Dependence 

As discussed above, the quantum generation of nonthermal carriers is highly geometry-

dependent. To investigate this phenomenon, we performed transient absorption measurements at 

the gap plasmon resonance on samples with a range of Al2O3 spacer thicknesses (Supplementary 

Figs. 4 and 11). From the DAS for the three e-e components and the e-ph decay, it is possible to 

approximate the contribution to the hot electron signal at short times arising from the relaxation 

of the high energy nonthermal carriers: 

 
f =

DASFast λ( ) + DASInt λ( )
DASFast λ( ) + DASInt λ( ) + DASSlow λ( )+ DASe-ph λ( )λ

∑  

 

(19) 
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Here we combine the slow e-e and e-ph spectra as they describe both the growth (through low-

energy nonthermal carrier scattering) and decay of the thermalized carrier population, 

respectively. By taking the magnitude of each DAS and summing over the wavelengths of the 

gap resonance, we then obtain a measure of the overall signal contribution from the ultrafast 

nonthermal carriers (Supplementary Fig. 11c). We note this is only an approximation, as the 

LDA method also includes other terms at time zero arising from longer-lived components (e.g. 

phonon-phonon scattering), and an exact estimate would require a more targeted analysis 

method. Nevertheless, we observe a decreased contribution from nonthermal carriers as the 

spacer thickness increases. We calculate a roughly 30% drop in ultrafast nonthermal signal when 

increasing the Al2O3 thickness from 3 to 25 nm. This is in qualitative agreement with recent 

kinetic density functional theory predictions4 for high energy nonthermal carrier generation in 

hot spots, and is indicative of a surface-mediated effect.14 

  

 

Supplementary Note 7 | Hot Electrons and Coherent Acoustic Modes 

Due to the short duration of the excitation pulse relative to the period of phonon modes in the 

silver nanocubes and gold/oxide films, acoustic phonon modes are excited impulsively in our 

transient absorption measurements. This gives rise to coherent oscillations of the nanopatch 

antenna geometry upon lattice thermalization. The deformation of the nanocubes and underlying 

films modifies the resonance conditions of the gap mode and results in a spectral shift. As can be 

seen in Supplementary Fig. 12, the metasurface response at long time delays indeed exhibits 

periodic oscillations about the gap plasmon mode. The initial rise time of the acoustic modes is 

~10 ps (Supplementary Fig. 12b), consistent with the phonon-phonon scattering times calculated 
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in Fig. 7d-g of the main text. The oscillations are then damped over time while heat is lost to the 

Si substrate and environment, which act as isothermal heat sinks. 

We analyzed the metasurface response over a 2 ns window to determine the acoustic 

phonon modes present. To separate out the exponential and sinusoidal contributions from the 

data, time traces were first differentiated prior to taking the fast Fourier transform.26 The result is 

a spectrogram exhibiting multiple resonances spanning slow (~3 GHz) to fast (~22 GHz) 

vibrational modes in the system. Previous work has characterized these modes for substrate-

coupled silver nanocubes.27,28 The first mode at ~3 GHz is likely a breathing mode of the gold 

film, while the higher frequency modes all appear to match acoustic modes of the nanocubes. We 

have overlaid the dominant asymmetric (A) and symmetric (S) deformation modes as were 

previously calculated by Petrova et al. and observe an excellent agreement with our data. 

Additional peaks above 15 GHz are also present in our experiments, which are well correlated 

with higher order asymmetric modes. 

We observe coupling to a much larger number of coherent acoustic modes in the 

nanopatch metasurface than has been demonstrated in previous studies on bare silver 

nanocubes.29 The asymmetric excitation of hot electrons at the gap plasmon resonance condition 

generates a nonuniform initial strain of the lattice during electron-phonon scattering.30 As the 

electron pressure exerted on the lattice is proportional to the energy of the electron gas, the large 

population of highly energetic nonthermal electrons efficiently couples to higher order modes 

than are typically excited in isolated metallic nanoparticles. For this reason the nanopatch 

metasurface geometry offers a promising route to populating previously inaccessible acoustic 

modes for coherent phonon sources and optomechanical transduction. 
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Supplementary Figure 1 |  Coexistence of nonthermal and thermal carriers during a finite 

excitation pulse. In contrast to the idealized diagram of Fig. 1b, which treats all carriers as 

initially being nonthermal and assumes an instantaneous excitation pulse, in a real system both 

thermal and nonthermal carriers are generated by an excitation pulse of finite duration. Due to 

the bulk permittivity of the metal (e.g. Drude response), a fraction of the pulse dissipates through 

low-energy transitions with negligible momentum change. Relaxation of the nonthermal 

population through e-e scattering adds to the existing thermal population, until a fully 

thermalized distribution is achieved. While the nonthermal and thermal populations are indeed 

distinct types of hot carriers, it is important to note that in reality they evolve both sequentially 

and in parallel. 
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Supplementary Figure 2 | Determination of nanocube dimensions. (a) Raw SEM micrograph 

of silver nanocubes on the metasurface viewed top-down. (b) Processed micrograph after particle 

analysis accounting only for isolated nanocubes. Red regions correspond to areas assigned to 

each particle, while blue outlines indicate the calculated perimeters. The min/max Feret’s 

diameters and the area were the measured parameters for each nanocube. (c) Diagram 

approximating each nanocube as a rounded rectangle, with measured parameters indicated in red 

and calculated parameters in black (along with their corresponding relations). (d,e) Length and 

corner radius distributions over all measured nanocubes, each fitted to a gaussian distribution to 

extract their mean and standard deviation (insets). 
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Supplementary Figure 3 | Electric field profiles and power dissipation from classical 

electrodynamics. (a-d) Maps of the electric field magnitude relative to free space for normally 

incident light polarized in-plane for the 8 nm Al2O3 sample at the indicated wavelengths (same 

as in Fig. 6d). Nonthermal carrier generation scales with the square of the electric field 

magnitude normal to the metals’ surfaces. (e-h) Corresponding absorbed power (arbitrary units) 

through resistive losses calculated using COMSOL. Resistive losses in the metals only account 

for the direct generation of thermal electrons. They do not predict the hot spot and surface-

assisted quantum generation of nonthermal carriers. 
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Supplementary Figure 4 | Steady-state absorbance spectra and comparison to simulation. 

(a) Absolute absorbance spectra measured for samples as a function of Al2O3 spacer thickness. 

Individual spectra are offset by 0.5 OD for clarity. Both the quadrupolar and gap plasmon 

resonances exhibit a blueshift with increased spacer thickness, while the multipolar plasmon 

resonance and gold interband transition remain fixed. (b) Linear dependence of the measured 

(circles) and simulated (crosses) plasmon resonance wavelengths on the inverse of the total gap 

thickness (d). 
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Supplementary Figure 5 | Separated absorption spectra for Ag nanocubes and Au film. 

Total absorption spectra (solid lines) and the absorption contribution from the Ag nanocubes 

(dashed lines) and Au film (dotted lines) as a function of Al2O3 spacer thickness. 
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Supplementary Figure 6. Calculations of (a) absorption and (b) nonthermal hot electron 

generation rates are shown for Ag nanocubes on a glass substrate (c). The enhancement of (d) 

absorption and (e) nonthermal hot electron generation rates are also shown for Ag nanocubes 

(NC with dimensions 150 nm x150 nm x150 nm) and nanorods (NR with dimensions of 340 nm 

x 100 nm x 100 nm) on a Ag or Au substrate with a spacer thickness of 8 nm (f). These data 

were obtained for relatively small intensity, 3 2
0 3.6 10  W/cmI = × . For larger intensities, these 

data can be easily rescaled.  
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Supplementary Figure 7 | Separated contributions from Ag nanocubes and Au film from 

simulation. Contributions to steady-state absorbance through resistive losses (a) and quantum 

generation rate of nonthermal carriers (b) for the 8 nm Al2O3 sample. (c) Spacer thickness 

dependence for total absorbance (black circles) and percent of light absorbed in Ag (red squares) 

at the gap plasmon resonance. (d) Al2O3 spacer thickness dependence for the total nonthermal 

generation rate (black circles) and percent of nonthermal electrons generated in Ag (red squares) 

at the gap plasmon resonance. Dotted lines in (c-d) are guides to the eye. 
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Supplementary Figure 8 | Characterization of instrument response from cross-correlation 

measurements. (a) Optical Kerr response of diamond pumped at 900 nm and probed in the UV-

Vis using continuum light from a CaF2 crystal. The measured data (blue circles) is fitted to a 

gaussian pulse and its first two derivatives (red line) to extract the cross-correlated pulsewidth of 

the pump/probe beams. (b) Pulsewidth distribution for probe light across the UV-Vis spectrum 

fitted to a gaussian distribution. (c,d) Optical Kerr response of diamond pumped at 900 nm and 

the extracted pulsewidth distribution in the NIR using continuum light generated with a sapphire 

crystal. 
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Supplementary Figure 9 | Stability of LDA fitting. (a) Differential absorbance spectral map 

for the 8 nm Al2O3 spacer pumped at 1100 nm with a fluence of 20.6 µJ cm-2. (b) Corresponding 

L-curve with three regularization factors selected about the optimal solution (gold), where the 

curvature (dotted line, linear scaling) is maximized. (c-h) Fitted differential absorbance spectral 

maps (left) and their corresponding lifetime density maps (right) for the three points in (b). 
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Supplementary Figure 10 | Fluence independence of nonthermal carrier kinetics and 

spectra at the plasmon modes. (a-c) Lifetime distributions of nonthermal e-e scattering at the 

gap (circles), quadrupolar (squares), and multipolar (diamonds) modes as a function of pump 

fluence. The average peak lifetimes over all measurements in the 8 nm Al2O3 sample are 

indicated by vertical lines. (d-f) Normalized DAS at the multipolar mode and (g-i) gap mode for 

the three nonthermal components as a function of pump fluence. The 61.7 µJ cm-2 curve in (i) 

represents an outlier. 
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Supplementary Figure 11 | Fluence and spacer thickness dependence of nonthermal 

contributions. (a) Kinetic traces of the measured (circles) and fitted (lines) differential 

absorbance at short time scales for the 8 nm Al2O3 sample as a function of increasing fluence (µJ 

cm-2). (b) Corresponding differential absorbance spectra taken at a delay of 50 fs relative to the 

pump pulse. An increase can be seen in both the apparent e-e scattering rate along with an 

inversion of the spectra (blueshift to redshift) with pump fluence, corresponding to a larger 

signal contribution from fast and intermediate e-e scattering rates. We propose this is the origin 

of the transition from weak to strong perturbation regime. (c) Fraction of hot electron signal 

arising from fast and intermediate nonthermal carriers as a function of spacer thickness, as 

calculated using supplementary equation (19). Labels indicate the pump wavelength (in nm) 

corresponding to each measurement, and pump fluence was kept constant at ~40 µJ cm-2. The 

dotted line is a guide to the eye. 
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Supplementary Figure 12 | Coherent acoustic phonon modes in the nanopatch metasurface. 

(a) Differential absorbance spectral map for the 8 nm Al2O3 spacer at long delay times centered 

about the gap plasmon mode. Periodic oscillations arise due to expansion/deformation of the 

nanopatch geometry. Some spectral hole burning at the 1100 nm pump wavelength is observed at 

long times due to the long duration of scanning. (b) Line cut from (a) taken at 1020 nm probe 

wavelength with the initial response (shaded region) expanded in the inset. (c) Spectrogram of 

the data in (a) showing the magnitude of the Fourier transform. (d) Average magnitude versus 

frequency for the nanopatch metasurface, with primary eigenvalues of the asymmetric (red) and 

symmetric (purple) nanocube acoustic modes indicated.27 
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Supplementary Table 1 | Drude parameters fitted to the dielectric functions of Ag and Au. 
Values are for the damping factor (Drude relaxation rate, gp), Drude plasma frequency (wp), and 
Fermi energy (EF) are all reported in units of eV. 
 

Parameter Au Ag 
gp 0.078 0.02 
wp 9.1 9.3 
EF 5.5 5.76 

 
 
 
 
 
 
 
Supplementary Table 2 | Fluence dependence of distribution parameters for e-e scattering 
in the 8 nm Al2O3 sample at plasmon resonance. Mean (µ) and standard deviation (σ) of each 
normal distribution obtained through global fitting. All measurements were performed at a pump 
wavelength of 1100 nm, and 95% confidence intervals were within 5% of the fitted values. 
 
Fluence 
(µJ cm-2) 

Plasmon 
Res. 

µ Fast 
(log10(ps)) 

σ Fast 
(log10(ps)) 

µ Int. 
(log10(ps)) 

σ Int. 
(log10(ps)) 

µ Slow 
(log10(ps)) 

σ Slow 
(log10(ps)) 

20.6 Gap -1.59 1.04 -1.04 0.862 -0.634 0.750 
Quad. -1.66 0.922 -0.972 0.847 -0.501 1.00 
Multi. -1.81 1.04 -1.02 0.968 -0.695 1.12 

30.8 Gap -1.48 1.17 -0.927 0.938 -0.575 0.787 
Quad. -1.50 1.11 -0.965 0.815 -0.689 0.874 
Multi. -1.50 1.03 -0.916 0.910 -0.537 1.05 

41.1 
 

Gap -1.52 1.09 -1.06 0.837 -0.420 0.808 
Quad. -1.52 1.16 -0.917 0.876 -0.520 0.986 
Multi. -1.67 0.902 -0.980 0.938 -0.636 0.849 

61.7 Gap -1.67 0.943 -1.03 0.785 -0.640 0.750 
Quad. -1.72 1.06 -0.845 0.902 -0.544 0.954 
Multi. -1.60 0.905 -0.973 0.854 -0.764 0.906 

82.2 Gap -1.70 0.907 -1.02 0.955 -0.650 0.843 
Quad. -1.68 1.04 -0.957 0.873 -0.816 0.866 
Multi. -1.77 0.900 -1.08 0.885 -0.525 1.06 

103 Gap -1.50 1.16 -1.06 0.799 -0.506 0.783 
Quad. -1.54 1.14 -0.897 0.807 -0.731 0.837 
Multi. -1.87 1.12 -1.00 0.952 -0.779 0.901 

123 Gap -1.57 1.06 -1.11 0.670 -0.572 0.836 
Quad. -1.70 0.913 -0.831 0.889 -0.564 0.917 
Multi. -1.78 0.974 -1.12 0.897 -0.756 0.866 
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Supplementary Table 3 | Fluence dependence of distribution parameters for e-e scattering 
in the 8 nm Al2O3 sample at gold IB transition. Mean (µ) and standard deviation (σ) of each 
normal distribution obtained through global fitting. All measurements were performed at a pump 
wavelength of 1100 nm, and 95% confidence intervals were within 5%, 10%, and 5% of the 
fitted values for the fast, intermediate, and slow peaks respectively. 
 

Fluence 
(µJ cm-2) 

µ Fast 
(log10(ps)) 

σ Fast 
(log10(ps)) 

µ Int. 
(log10(ps)) 

σ Int. 
(log10(ps)) 

µ Slow 
(log10(ps)) 

σ Slow 
(log10(ps)) 

20.6 -1.42 1.14 -0.659 0.846 -0.425 0.795 
30.8 -1.33 1.20 -0.709 0.806 -0.518 0.757 
41.1 -1.45 1.07 -0.829 0.838 -0.494 0.970 
61.7 -1.23 0.989 -0.850 1.04 -0.364 0.580 
82.2 -1.25 1.26 -0.828 1.64 -0.524 0.923 
103 -1.41 1.06 -0.776 0.820 -0.481 0.855 
123 -1.31 1.29 -0.741 0.912 -0.518 0.956 

 
 
 
 
 
 
Supplementary Table 4 | Spacer and pump wavelength dependence of distribution 
parameters for e-e scattering at gap resonance. Mean (µ) and standard deviation (σ) of each 
normal distribution obtained through global fitting. All measurements were performed at a pump 
fluence of ~40 µJ cm-2 unless otherwise indicated, and 95% confidence intervals were within 5% 
of the fitted values. *Measurement performed at ~20 µJ cm-2. 
 

dAl2O3 
(nm) 

λpump 
(nm) 

µ Fast 
(log10(ps)) 

σ Fast 
(log10(ps)) 

µ Int. 
(log10(ps)) 

σ Int. 
(log10(ps)) 

µ Slow 
(log10(ps)) 

σ Slow 
(log10(ps)) 

3 1300* -1.49 0.963 -1.07 0.754 -0.579 0.741 
1250 -1.71 0.819 -1.22 0.801 -0.600 0.584 

5 1200 -1.74 0.901 -1.19 0.769 -0.852 0.715 
1150 -1.38 1.11 -1.09 0.882 -0.697 0.730 
1100 -1.79 0.952 -1.12 0.897 -0.709 0.754 
1050 -1.45 1.10 -1.07 0.744 -0.690 0.632 
1000 -1.56 1.15 -1.09 0.820 -0.931 0.809 

8 1100 -1.52 1.09 -1.06 0.837 -0.420 0.808 
13 1000 -1.79 0.886 -0.996 1.20 -0.754 0.798 
19 900 -1.55 1.11 -1.01 0.889 -0.867 0.825 
25 900 -1.59 0.990 -0.963 1.01 -0.739 0.983 
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