#### **Supplementary Information**

# The construction of intrahepatic cholangiocarcinoma model in zebrafish

Jing Wang<sup>1</sup>, Xiaoqian Leng<sup>1,2</sup>, Guiping Wang<sup>1</sup>, Xiaoyang Wan<sup>1</sup> and Hong Cao<sup>1,\*</sup>

<sup>1</sup>State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China

<sup>2</sup>Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China

\*Author for correspondence (regancao@ihb.ac.cn)



**Fig. 1. Generation of**  $Tg(fabp10:nras^{61K})$  **transgenic zebrafish.** (A) Schematic diagram of the  $Tg(fabp10:nras^{61K})$  transgenic zebrafish. The liver-specific  $nras^{61K}$ -EGFP gene was inserted into the C-terminus of the liver-driver promoter pfabp10. (B) Western blots showed that GFP-NRAS<sup>61K</sup> were expressed in the live samples of  $Tg(fabp10:nras^{61K})$  transgenic zebrafish at 3, 6, 9 and 12 mpf compared with WT (12 mpf). (C) The relative protein expression level of GFP-NRAS<sup>61K</sup> in the live samples of  $Tg(fabp10:nras^{61K})$  transgenic zebrafish at 3, 6, 9 and 12 mpf. (D) The survival curves of the homozygous  $Tg(fabp10:nras^{61K})$  transgenic respectively. zebrafish (n=128) and WT siblings as control (n=111).

#### **Supplementary Figure 2**



**Fig. 2. pMEK1/2 and pERK were induced by GFP-NRAS<sup>61K</sup> in 293T cells.** Western blots showed that pMEK1/2 and pERK were induced after transfection of pAc-GFP-*nras*<sup>61K</sup> in 293T cells compared with controls.

#### **Supplementary Figure 3**



## Fig. 3. Determination of expression levels of 11 ICC markers by qRT-PCR in the liver of WT and $Tg(fabp10:nras^{61K})$ transgenic zebrafish (12 mpf).

Determination of expression levels of 11 ICC markers (log2 fold change  $\geq$  1 and P  $\leq$  0.05) by qRT-PCR in the liver of WT and  $Tg(fabp10:nras^{61K})$  transgenic zebrafish (12 mpf). The expression levels of these genes in each WT and transgenic liver sample were first measured and normalized with the expression level of  $\beta$ -actin (n=4 each). The log2 fold changes in expression in the transgenic samples as compared with matched WT sample are presented.

#### **Supplementary Figure 4**



#### Fig. 4. Comparative analysis of the methylome and transcriptomic profiles by pie chart

(A) Comparative analysis showed that when the CG methylation was up-regulated, there were 72 genes up-regulated and 44 genes down-regulated at transcription level, while 924 genes remained stable.

(B) When the CG methylation was down-regulated, the number of up-regulated, down-regulated and unchanged genes at transcription level were 406, 182 and 3559, respectively.

| Gene<br>Symbol            | The CpG islands sequences                                                                                                                                                                                                   | chromoso<br>me | Integration loci                                                                         |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------|
| <i>EHF</i> 1 <sup>#</sup> | cgttaaacatcaacagattaaactggcaggattgctgaagcgtgtgtgt                                                                                                                                                                           | 25             | 10319582-10319891<br>10319582-10319777: Upstream<br>sequence<br>10319778-10319891: 5'UTR |
| EHF 2 <sup>#</sup>        | cgtaaccaaatattttaatattgttaataaacacaaattaatggaataatttcatcgaaataactttagc<br>gtgagagcatcaaaacattgagttaatctgtctagtttttttt                                                                                                       | 25             | 10324905-10325159<br>(Intron 1)                                                          |
| EPHA4                     | cgtaaatcgagtttgcttttcatttccaaaaggcagacgctgcctaattgcctgtcttccagttataag<br>tggtatatttatgttctgagcaaatatcaggggctccggggttaaagcccggttcagtatctacttgg<br>aagaacagagtagcggtttaagtgagagtaatgcattcaacattgggctgcactttgacctctgtgt<br>tcg | 2              | 40624668-40624874<br>(Intron 11)                                                         |
| ITGB6                     | cgtgaggcaaacaaaaagcaatgtggtttttttttctctgtgtgtg                                                                                                                                                                              | 11             | 11011880-11012134<br>(Intron 7)                                                          |

#### Supplementary table 3. The CpG islands sequences in three ICC marker genes

<sup>#</sup>Different CpG islands in *EHF*. The hypomethylated sites in these CpG islands are indicated in grey.

| Gene Symbol | Forward Primer (5'To 3')   | Reverse Primer (5'To 3')   |
|-------------|----------------------------|----------------------------|
| AGR2        | TGTCAGTGCTCTTGGTCATG       | CTTCCTCGTATGTCTGTGCC       |
| ECE2        | AGACGCTGGGAGAAAACATC       | AAGAGCTGGTCGTTTGTCAG       |
| EHF         | TTCCCGTGTTCAATTCTCCC       | CTTTTGACTTGTGACCGCTTG      |
| EPCAM       | TTTGGATAAGAAACTTGTGTCTGAAG | TGTAGTACGGTCGTCCTTATCTTTTT |
| EPHA4       | CACACCAACTACACCTTCCA       | GCGTGATGTCCTTACTCTGAA      |
| EPS8L3      | TGCCAGTCCACCGATTAAAG       | TGTGGAGGTGGAAAATCTGG       |
| ITGB6       | CGGTGGAGATAAAAGGCTGTC      | TGTTGGTTTCGGGTGTCTG        |
| PDZK11P1    | CCTCTTTCTCGTCTTCATCTCC     | ATTCGGTATGACTGCTTCTGG      |
| SLC44A4     | ACATACAAGCCAACCAGACC       | AAGCCCTCGGTGTTATAGTTG      |
| SLC6A14     | AGCTACTTTCCCTTACATCGTG     | TCTTTCCAAACCTCAGCCTC       |
| SPINT2      | ATAACTTTTACTCCCAGGCGG      | TCATTTCAGTAAGAGCCTTGGG     |

#### Supplementary table 4. RT-qPCR primers

#### Supplementary table 5. Methylation PCR primers

| Gene Symbol  | Forward Primer (5'To 3') | Reverse Primer (5'To 3') |
|--------------|--------------------------|--------------------------|
| $EHF 1^{\#}$ | GGTAAATAGGATGGTTTAG      | ТССССААТААААААТСАААААА   |
| $EHF 2^{\#}$ | TGTTTTATTTAAAGTTTACATT   | TAACAACATATATAAACAAC     |
| EPHA4        | GACCTTTTGTTAGCATTGG      | TCTCCCACTAAACCTTCTG      |
| ITGB6        | GTTGTGATTAAAGATTAGAAGG   | AAAATCAAATACCAAAACCCCCA  |
| #            |                          |                          |

<sup>#</sup>Different CpG islands in *EHF*.



### Full-length blots/gels of Supplementary Figure1 are presented



Full-length blots/gels of Supplementary Figure2 are presented



| pcmv-myc                | +        |
|-------------------------|----------|
| pACGFP                  | - ++ + - |
| GFP-nras <sup>61k</sup> | + ++     |



| pcm∨-myc                | +        |
|-------------------------|----------|
| pACGFP                  | - ++ + - |
| GFP-nras <sup>61k</sup> | + ++     |





-



Anti-tubulin