Carnosine scavenging of glucolipotoxic free radicals enhances insulin secretion and glucose uptake.

Michael J. Cripps¹, Katie Hanna¹, Charlie Lavilla¹, Sophie R. Sayers², Paul W. Caton², Craig Sims¹, Luigi De Girolamo¹, Craig Sale³, and Mark D. Turner¹.

¹Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK.. ²Diabetes and Nutritional Sciences Division, King's College London, London, United Kingdom, SE1 1UL, ³Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK..

*Correspondence to: Dr. Mark D. Turner, Interdisciplinary Biomedical Research Centre. School of Science and Technology, Nottingham Trent University, Clifton Road, Nottingham, NG11 8NS United Kingdom.

E-mail: <u>mark.turner@ntu.ac.uk</u>

Supplementary Figure 1

INS -1 cells were cultured in RPMI-1640 media, or RPMI GLT media for 5 days \pm 10mM carnosine. Protein was separated by SDS-PAGE, transferred to nitrocellulose, and specific proteins detected using either anti-iNOS or anti-tubulin primary antibody.