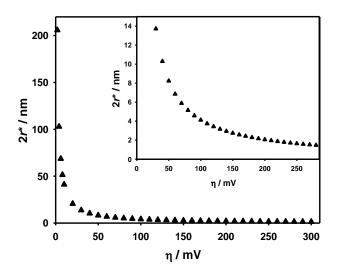

Supplementary Figure 1. Characteristic chronoamperometric transients at ITO electrodes in aqueous solution of $CuSO_4 \ 1.0 \times 10^{-3} \ mol \times dm^{-3}$ at various overpotentials and room temperature. The electrolyte solution contained $50 \times 10^{-3} \ mol \times dm^{-3} \ Na_2SO_4$ at pH 3.


Supplementary Figure 2. Dimensionless plot of the current (*i*) normalised by the maximum current (i_{max}) as a function of time (*t*) at two overpotential. The experimental conditions are described in the caption of **Supplementary Figure 1**. The *instantaneous* and *progressive* nucleation limits as predicted by the Scharifker-Hills model¹ are indicated.

Supplementary Figure 3. Chronoamperometric transient recorded at -0.27 V fitted to the Scharifker-Mostany model.² Concentration of CuSO₄ is 1.0×10^{-3} mol×dm⁻³. Nuclei number density and nucleation rate of 5.3×10^{6} cm⁻² and 15 s⁻¹, respectively, were estimated from the fit.

Supplementary Figure 4. Chronoamperometric transients recorded at various overpotentials on ITO electrodes at a CuSO₄ concentration of 1.0×10^{-4} mol×dm⁻³. Other experimental conditions are described in the caption of **Supplementary Figure 1**. The lack of a well-defined current peak and diffusion limiting current suggest a convolution of the dynamics of electron transfer and nucleation.

Supplementary Figure 5. Critical nucleus diameter $(2r^*)$ as a function of the overpotential (η) , estimated from **equation 1**. In **equation (1)** σ represents the surface tension, *M* is the atomic weight (*M*) and ρ is the density.³ This simple relation predicts stable Cu nuclei of 1.5 nm diameter can be formed at overpotentials of -0.27 V. Our experimental observations based on HS-LMFM images revealed stable nuclei of the order of 6-7 nm. Considering that no tip-shape deconvolution routines were applied to these images, our experimental values are close to the thermodynamic limit.

$$r^* = 2\sigma M / \rho z F |\eta| \tag{1}$$

Supplementary References

- 1 Scharifker, B. & Hills, G. Theoretical and Experimental Studies of Multiple Nucleation. *Electrochim Acta* **28**, 879-889 (1983).
- 2 Scharifker, B. R. & Mostany, J. 3-Dimensional Nucleation with Diffusion Controlled Growth.1. Number Density of Active-Sites and Nucleation Rates per Site. *J Electroanal Chem* **177**, 13-23 (1984).
- 3 Scharifker, B. R. & Mostany, J. in *Encyclopedia of Electrochemistry: Interfacial Kinetics* and Mass Transport Vol. 2 (eds A.J. Bard, M. Stratmann, & E.J. Calvo) 512-540 (Wiley, 2003).