Flaws in foldamers: screw-sense fidelity and signal decay in achiral helical peptide oligomers

Bryden A. F. Le Bailly, Liam Byrne, Vincent Diemer, Mohammadali Foroozandeh, Gareth A. Morris, and Jonathan Clayden*

School of Chemistry, University of Manchester, Oxford Rd, Manchester M13 9PL, UK

Supporting Information

Table of Contents

Experimental Section	S3
General Experimental and Materials	S3
Instrumentation	S3
Synthetic Procedures	S4
Example spectra showing ¹³ C-labelled Aib** of 7a	S15
Calculation of decay rate f	S16
Details of NMR experiment used to resolve glycines in compound 3	S16
NMR Spectra	S19
References	\$39
Nerer ences	

General Experimental and Materials

All reactions were carried out in oven-dried glassware under an atmosphere of nitrogen using standard anhydrous techniques. All reagents were obtained from commercially available sources and used without further purification, or where indicated prepared internally. Air- and moisture-sensitive liquids and solutions were transferred *via* syringe or stainless steel cannula. Reactions performed at 0 °C were done so using an ice bath; those performed at -78 °C were done so using an acetone/dry ice bath. Anhydrous dichloromethane was obtained by distillation from calcium hydride. Other anhydrous reaction solvents were obtained from standard anhydrous solvent engineering system. Triethylamine was stored over potassium hydroxide. All products were dried on a rotary evaporator followed by connection to a high vacuum system to remove any residual solvent. Flash chromatography was performed on silica gel (Merck 60H, 40-60 nm, 230 – 300 mesh). Analytical thin layer chromatography was performed on aluminium backed silica (60 F₂₅₄) plates.

Instrumentation

All ¹H and ¹³C nuclear magnetic resonance spectra were obtained using Bruker AVANCE 300, 400 or 500 MHz spectrometers. Chemical shifts are quoted in parts per million (ppm), and coupling constants (*J*) are quoted in Hz to the nearest 0.5 Hz. ¹H-NMR spectra were referenced to the residual deuterated solvent peak (CDCl₃ 7.27; CD₃OD 3.31; CD₃CD₂OD 3.56; THF-d₈ 1.73 ppm) and ¹³C-NMR were referenced to the carbon resonance of the solvent (CDCl₃ 77.00; CD₃OD 49.05; CD₃CD₂OD 17.31; THF-d₈ 25.37 ppm). Multiplicities are denoted as s (singlet), d (doublet), t (triplet), q (quartet), spt (septet) and m (multiplet) or denoted as br (broad), or some combination of these, where appropriate. Where ¹H-NMR spectra were run in CD₃OD, D₂O or CD₃CD₂OD exchangeable protons (NH, OH) are reported only where observed.

Infra-red spectra were recorded on an ATi Perkin Elmer Spectrum RX1 FT-IR spectrometer. Only absorption maxima (λ_{max}) of interest are reported and quoted in wavenumbers (cm⁻¹). Low and high resolution mass spectra were recorded by staff at the University of Manchester. Electrospray (ES) spectra were recorded on a Waters Platform II and high resolution mass spectra (HRMS) were recorded on a Thermo Finnigan MAT95XP and are accurate to ± 0.001 Da. Melting points were determined on a GallenKamp apparatus and are uncorrected. Optical rotation measurements were taken on an AA-100 polarimeter at 20 °C with the solvent and concentration stated. Circular Dichroism (CD) measurements were performed at 20 °C on a JASCO J-815 spectropolarimeter, using a 1 mm cell with the solvent and concentration stated, where applicable.

Methods for the synthesis of HCl.H-Aib^{**}-OMe,¹ N₃-AibOH, Azib-Cl, H-AlaNH^tBu, H-Aib₂-O^tBu, H-Aib₃-O^tBu, H-Aib₄-O^tBu,² N₃-Aib₃-OH,³ **1a-1d** and **2a-2d⁴** and **3**² have been reported previously. The synthesis of compounds **8a** and **8b** will be reported in a future communication.

Synthetic Procedures

Aze-Aib₁₁AlaNH^tBu 8c

¹H-NMR (400 MHz, CDCl₃) δ_{H} 8.40 (1H, br, NH), 7.82 (1H, br s, NH), 7.79 (1H, br s, NH), 7.77 (1H, br s, NH), 7.75 (2H, br s, NH x2), 7.69 (1H, br s, NH), 7.67 (1H, br s, NH), 7.57 (1H, br s, NH), 7.55 (2H, s, ArCH x2), 7.51 (3H, m, ArCH x3), 7.41 (3H, m, ArCH x3), 7.40 (1H, br s, NH), 6.71 (1H, br s, NH), 5.68 (1H, br s, NH), 4.28 (5H, m, CH₂ x2 and CH), 1.55 (12H, m, CH₃ x4), 1.47-1.53 (45H, m, CH₃ x 15), 1.45 (3H, s, CH₃), 1.43 (12H, s, CH₃ and C(CH₃)₃), 1.40 (3H, m, CH₃-CH), 1.37 (3H, s, CH₃). ¹³C-NMR (101 MHz, CDCl₃) δ_{c} 176.2 (CO), 176.1 (CO), 176.1 (CO), 176.1 (CO), 176.0 (CO), 175.9 (CO), 175.7 (CO), 175.5 (CO), 175.4 (CO), 175.2 (CO), 174.7 (CO), 172.6 (CO), 156.5 (CON), 140.4 (ArC), 133.8 (ArC), 129.3 (ArCH), 128.9 (ArCH), 128.5 (ArCH), 128.4 (ArCH), 80.4 (CMe₃), 57.3 (-C), 56.8 (-C), 56.7 (-C), 56.7 (-C), 56.6 (-C), 56.5 (-C), 56.5 (-C x4), 56.4 (-C), 49.5 (-CH), 48.1 (br, CH₂Ar), 28.0 (C(CH₃)₃), 23.0-27.4 (br, CH₃ x24), 16.9 (CH₃-CH). IR (neat) $v_{max}/cm^{-1} = 3273$, 2984, 2935, 1738, 1650, 1538, 1455, 1383, 1361. MS (ES⁺, CH₂Cl₂) 1303.1 (95%, [(M+H]⁺), 1325.1 (100%, [M+Na]⁺). Mp 240-242 °C. [α]²⁰_D = -20.0 (c 0.5, CH₂Cl₂).

Aze-Aib₁₁AlaNH^tBu 8d

¹H-NMR (400 MHz, CDCl₃) δ_{H} 8.39 (1H, br s, NH), 7.82 (1H, br s, NH), 7.80 (1H, br s, NH), 7.76 (4H, m, NH x4), 7.69 (1H, br s, NH), 7.67 (1H, br s, NH), 7.57 (1H, br s, NH), 7.55 (2H, s, ArCH x2), 7.51 (3H, m, ArCH x3), 7.41 (3H, s, ArCH x3), 7.40 (1H, br s, NH), 6.71 (1H, br s, NH), 5.63 (1H, br s, NH), 4.27 (5H, m, CH₂ x2 and CH), 1.56 (9H, m, CH₃ x3), 1.47-1.54 (54H, m, CH₃ x18), 1.45 (3H, s, CH₃), 1.43 (12H, s, CH₃ and C(CH₃)₃), 1.41 (1H, m, CH₃-CH), 1.38 (3H, s, CH₃). ¹³C-NMR (101 MHz, CDCl₃) δ_{c} 176.2 (CO x2), 176.2 (CO), 176.1 (CO), 176.0 (CO), 175.9 (CO), 175.7 (CO), 175.5 (CO), 175.4 (CO), 175.2 (CO), 174.8 (CO), 172.7 (CO), 156.5 (CO), 140.4 (ArC), 133.7 (ArC), 129.3 (ArCH), 129.0 (ArCH), 128.5 (ArCH), 128.4 (ArCH), 80.4 (CMe₃), 57.4 (°C), 56.8 (°C), 56.7 (°C), 56.7 (°C), 56.6 (°C), 56.5 (°C x6), 56.4 (°C), 49.5 (°CH), 48.1 (CH₂ x2), 28.0 (C(CH₃)₃), 22.6-27.4 (CH₃ x24), 16.9 (CH₃-CH). IR (neat) $v_{max}/cm^{-1} = 3291$, 2984, 2931, 1651, 1531, 1455, 1384, 1362. MS (ES⁺, CH₂Cl₂) 1388.4 (80%, [(M+H]⁺), 1411.1 (100%, [M+Na]⁺). Mp 283-285 °C. [α]²⁰_D = -21.6 (c 0.5, CH₂Cl₂).

N₃-AibAib**-OMe

HCl.N₃-Aib-OMe** (1.91 g, 12.27 mmol) and triethylamine (4.28 mL, 30.69 mmol) were dissolved in CH₂Cl₂ (30 mL) and the resulting mixture cooled to 0 °C. A freshly prepared batch of Azib-Cl (2.55 g, 17.30 mmol) was added dropwise and the reaction mixture was allowed to warm to room temperature and stirred for 16 h. EtOAc (60 mL) was added and the solution washed with KHSO₄ (10%, 2 x 15 mL), NaHCO₃ (sat., 2 x 15 mL) and brine (10 mL). The organic phase was then dried (MgSO₄), filtered and concentrated *in vacuo*. The crude reaction product was isolated by column chromatography (3:1 PE:EtOAc) to give **N₃-AibAib**-OMe** (2.52 g, 89%) as a pale yellow oil. ¹H-NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 6.98 (1H, br s, NH), 3.74 (3H, s, OCH₃), 1.55 (6H, dd, *J*=129.0, 4.5, *CH₃ x2), 1.53 6H, s, CH₃ x2). ¹³C-NMR (101 MHz, CDCl₃) $\delta_{\rm c}$ 174.6 (CO), 171.6 (CO), 64.2 (-C), 52.6 (OCH₃), 24.7 (*CH₃), 24.3 (CH₃). The triplet signal arising from the carbon alpha to the ¹³C-labels could not be located. IR (neat) $v_{max}/cm^{-1} = 3379$, 2979, 2109, 1740, 1674, 1511, 1455. MS (ES⁺, MeOH) 231.2 (100%, [(M+H]⁺), 253.1 (40%, [M+Na]⁺).

H-AibAib**-OMe

N₃-AibAib-OMe** (2.52 g, 10.96 mmol) was dissolved in MeOH (25 mL) and Pd/C (10%, 750 mg) was added under an atmosphere of N₂. An atmosphere of H₂ was introduced *via* a vacuum/H₂ purge cycle (3 x) and the reaction mixture stirred for 16 h. The Pd/C was filtered off with celite and the solvent removed *in vacuo* to give **H-AibAib**-OMe** (2.24 g, >99%) as a waxy white solid which was used without further purification. Note: Product was used as soon as possible to prevent cyclisation to the diketopiperazine. ¹H-NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ 7.85 (1H, br s, NH), 3.74 (3H, s, OCH₃), 1.55 (6H, dd, *J*=129.5, 4.5, *CH₃ x2), 1.46 (6H, s, CH₃ x2). ¹³C-NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 174.9 (CO), 170.5 (CO), 58.1 (°C), 52.9 (OCH₃), 24.8 (CH₃), 24.6 (*CH₃). The triplet signal arising from the carbon alpha to the ¹³C-labels could not be located. IR (neat) v_{max}/cm^{-1} = 2965, 1663, 1490, 1444. HRMS (ES⁺, CH₂Cl₂) Calc. for C₇¹³C₂H₁₉N₂O₃ ([M+H]⁺) 205.1463, found 205.1471.

N₃-Aib₂Aib**-OMe

H-AibAib-OMe** (BL200, 2.24 g, 10.96 mmol) and triethylamine (2.3 mL, 16.40 mmol) were dissolved in CH_2Cl_2 (30 mL) and the resulting mixture cooled to 0 °C. A freshly prepared batch of Azib-Cl (2.43 g, 16.44 mmol) was added dropwise and the reaction mixture was allowed to warm to room temperature and stirred for 16 h. EtOAc (90 mL) was added and the solution washed with $KHSO_4$ (5%, 2 x 20 mL), NaHCO₃ (sat., 2 x 20 mL) and brine (20 mL). The organic phase was then dried

(MgSO₄), filtered and concentrated *in vacuo*. The crude reaction product was isolated by column chromatography (twice; 4:1 to 1:1 PE:EtOAc) to give N₃-Aib₂Aib**-OMe (1.68 g, 49%) as an off-white solid. ¹H-NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.08 (1H, br s, NH), 7.05 (1H, br s, NH), 3.75 (3H, s, OCH₃), 1.56 (6H, s, CH₃ x2), 1.55 (6H, dd, *J*=129.5, 4.5, *CH₃ x2), 1.54 (6H, s, CH₃ x2). ¹³C-NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 175.2 (CO), 173.1 (CO), 172.1 (CO), 64.3 (°C), 57.2 (°C), 56.6 (t, *J*=36.5, °C-(*CH₃)₂), 52.7 (OCH₃), 24.9 (CH₃), 24.4 (*CH₃), 24.3 (CH₃). IR (neat) v_{max} /cm⁻¹ = 3402, 3366, 2989, 2117, 1719, 1677, 1663, 1502, 1464, 1436. HRMS (ES⁺, CH₂Cl₂) Calc. for C₁₁¹³C₂H₂₄N₅O₄ ([M+H]⁺) 316.1890, found 316.1888. Mp 88-90 °C.

H-Aib₂Aib**-OMe

$$H_2N \xrightarrow{O}_{H} \overset{N}{\underset{H}{\longrightarrow}} \overset{H}{\underset{O}{\longrightarrow}} \overset{O}{\underset{\mathbb{Z}}{\longrightarrow}} OMe$$

N₃-Aib₂Aib^{-}OMe** (663 mg, 2.1 mmol) was dissolved in MeOH (20 mL) and Pd/C (10%, 70 mg) was added under an atmosphere of N₂. An atmosphere of H₂ was introduced *via* a vacuum/H₂ purge cycle (3 x) and the reaction mixture stirred for 16 h. The Pd/C was filtered off with celite and the solvents removed *in vacuo* to give **H-Aib₂Aib^{**-OMe}** (609 mg, >99%) as a white solid. ¹H-NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 8.16 (1H, br s, NH), 7.71 (1H, br s, NH), 3.72 (3H, s, OCH₃), 1.53 (6H, s, CH₃ x2), 1.52 (6H, dd, *J*=129.5, 4.5, *CH₃ x2), 1.36 (6H, s, CH₃ x2). ¹³C-NMR (101 MHz, CDCl₃) $\delta_{\rm c}$ 178.1 (CO), 175.2 (CO), 173.7 (CO), 57.0 (°C), 55.0 (°C), 52.5 (OCH₃), 28.9 (CH₃), 25.1 (CH₃), 24.63 (*CH₃). The triplet signal arising from the carbon alpha to the ¹³C-labels could not be located. IR (neat) v_{max}/cm^{-1} = 3313, 3282, 2979, 1784, 1641, 1493, 1454. HRMS (ES⁺, CH₂Cl₂) Calc. for C₁₁¹³C₂H₂₆N₃O₄ ([M+H]⁺) 290.1985, found 290.1980. Mp 143-145 °C.

N₃-Aib₂Aib**-OH 4**

N₃-Aib₂Aib-OMe** (994 mg, 3.15 mmol) and LiOH (529 mg, 22 mmol) were dissolved in THF/H₂O (4:1, 30 mL total) and the resulting mixture was heated at 40 °C for 16 h. The reaction mixture was allowed to cool to room temperature and HCl (1 M) was added until the pH=1. The aqueous phase was extracted with EtOAc (100 mL) and the organic phase was then washed with HCl (1 M, 20 mL), brine (20 mL) and was dried (Na₂SO₄), filtered and concentrated *in vacuo* to give **N₃-Aib₂Aib**-OH 4**** (949 mg, >99%) as a white solid. ¹H-NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.23 (1H, br s, NH), 7.01 (1H, br s, NH), 1.57 (6H, s, CH₃ x2), 1.56 (6H, dd, *J*=130.0, 4.5,*CH₃ x2), 1.53 (6H, s, CH₃ x2). ¹³C-NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 177.3 (CO), 174.1 (CO), 172.9 (CO), 64.3 (°C), 57.3 (°C), 24.9 (CH₃), 24.6 (*CH₃), 24.3 (CH₃). The triplet signal arising from the carbon alpha to the ¹³C-labels could not be located. IR (neat) $v_{\rm max}/\rm cm^{-1}$ = 3353, 2977, 2934, 2107, 1710, 1683, 1535, 1498, 1535, 1498, 1473, 1452, 1409. HRMS (ES⁺, CH₂Cl₂) Calc. for C₁₀¹³C₂H₂₅N₂O₅Na ([M+Na]⁺) 302.1723, found 302.1729. Mp 114-116 °C.

N₃-Aib₂Aib^{50%}**Aib₂Aib**-OMe

N₃-Aib₂Aib**OH 4** (243 mg, 0.81 mmol) and N₃-Aib₃-OH 4 (241 mg, 0.81 mmol) were dissolved in CH₂Cl₂ and the resulting solution cooled to 0 °C. N-(3-Dimethylaminopropyl)-N -ethylcarbodiimide (0.34 mL, 1.93 mmol) was added, the reaction mixture was allowed to warm to room temperature and stirred for 3 h. The solution was then concentrated in vacuo, EtOAc (30 mL) was added and the organic phase washed with KHSO₄ (10%, 3 x 7 mL), brine (7 mL), dried (MgSO₄), filtered and concentrated in vacuo. The crude azlactone was then place under high vacuum (<0.1 mbar) before being dissolved in MeCN (10 mL) with H-Aib₂Aib**-OMe (513 mg, 1.77 mmol) and the resulting mixture was heated to reflux for 5 d. The solvent was removed in vacuo, EtOAc (40 mL) was added and the organic phase washed with KHSO₄ (10%, 2 x 8 mL), NaHCO₃ (2 x 8 mL), brine (8 mL), dried (MgSO₄), filtered and concentrated to give N₃-Aib₂Aib^{50%}**Aib₂Aib^{**}-OMe (831 mg, 90%) as a white solid. ¹H-NMR (500 MHz, CDCl₃) δ_H 7.39 (1H, br s, NH), 7.37 (1H, br s, NH), 7.21 (1H, br s, NH), 6.89 (1H, br s, NH), 6.10 (1H, br s, NH), 3.69 (3H, s, OCH₃), 1.56 (6H, s, CH₃ x2), 1.52 (6H, dd, *J*=129.0, 4.5, *CH₃ x2 (100%)), 1.50 (12H, s, CH₃ x4), 1.47 (6H, s, CH₃ x2), 1.43 (3H, s, CH₃ x2 (50%)), 1.43 (3H, dd, J=129.0, 4.5, *CH₃ x2 (50%)). ¹³C-NMR (126 MHz, CDCl₃) δ_c 175.5 (CO), 174.5 (CO), 173.6 (CO), 173.5 (CO), 173.1 (CO), 172.7 (CO), 63.9 (^aC), 57.0 (^aC), 56.9 (^aC), 56.7 (^aC), 56.6 (^aC), 52.0 (OCH₃), 25.3 (CH₃), 25.2 (*CH₃ (50%)), 24.9 (*CH₃ (100%)), 24.8 (CH₃), 24.3 (CH₃). The triplet signals arising from the carbons alpha to the ¹³C-labels could not be located. IR (neat) v_{max}/cm^{-1} = 3324, 2983, 2936, 2110, 1729, 1668, 1645, 1525, 1454. HRMS (ES⁺, MeOH) Calc. for C₂₃¹³C₂H₄₄N₇O₈Na ([M+Na]⁺) 593.3298, found 593.3280; calc. for C₂₁¹³C₄H₄₅N₇O₈ ([M+H]⁺) 573.3540, found 573.3524. Mp 223-225 °C.

H-Aib₂Aib^{50%}**Aib₂Aib**-OMe

N₃-Aib₂Aib^{50%}Aib₂Aib**-OMe** (824 mg, 1.44 mmol) was dissolved in MeOH (15 mL) and Pd/C (10%, 85 mg) was added under an atmosphere of N₂. An atmosphere of H₂ was introduced *via* a vacuum/H₂ purge cycle (3 x) and the reaction mixture stirred for 16 h. The Pd/C was filtered off with celite and the solvents removed *in vacuo* to give **H-Aib₂Aib^{50%}**Aib₂Aib**-OMe** (782 mg, >99%) as a white solid. ¹H-NMR (300 MHz, CD₃OD) $\delta_{\rm H}$ 7.86 (1H, br s, NH), 7.76(1H, br s, NH), 3.66 (3H, s, OCH₃), 1.57 (6H, s, CH₃ x2), 1.49 (6H, dd, *J*=129.0, 4.5, *CH₃ x2), 1.47 (12H, s, CH₃ x4), 1.46 (6H, s, CH₃ x2), 1.42 (3H, s, CH₃ x2 (50%)), 1.42 (3H, dd, *J*=129.0, 4.0, CH₃ x2 (50%)). ¹³C-NMR (75 MHz, CD₃OD) $\delta_{\rm C}$ 177.0 (CO), 177.0 (CO), 176.9 (CO), 176.9 (CO), 176.2 (CO), 58.3 (°C), 58.1 (°C), 58.0 (°C), 57.9 (°C), 57.7 (°C), 52.7 (OCH₃), 25.8 (CH₃), 25.6 (CH₃), 25.4 (*CH₃), 25.3 (*CH₃, CH₃), 25.0 (CH₃). The triplet signals arising from the carbons alpha to the ¹³C-labels could not be located. IR (neat) $v_{max}/cm^{-1} = 3307$, 2983, 1729, 1657, 1527, 1456. HRMS (ES⁺, CH₂Cl₂) Calc. for C₂₃¹³C₂H₄₇N₆O₇ ([M+H]⁺) 545.3568, found 545.3568; calc. for C₂₁¹³C₄H₄₇N₆O₇ ([M+H]⁺) 547.3635, found 547.3631. Mp 168-171 °C.

N₃-Aib₂Aib^{25%}**Aib₂Aib^{50%}**Aib₂Aib**-OMe 5

N₃-Aib₂Aib**OH 4** (99 mg, 0.33 mmol) and N₃-Aib₃-OH 4 (296 mg, 0.99 mmol) were dissolved in CH₂Cl₂ (10 mL) and the resulting solution cooled to 0 °C. N-(3-Dimethylaminopropyl)-N ethylcarbodiimide (0.28 mL, 1.58 mmol) was added, the reaction mixture was allowed to warm to room temperature and stirred for 3 h. The solution was then concentrated in vacuo, EtOAc (40 mL) was added and the organic phase washed with KHSO₄ (10%, 3 x 7 mL), brine (7 mL), dried (MgSO₄), filtered and concentrated in vacuo. The crude azlactone was then place under high vacuum (<0.1 mbar) before being dissolved in MeCN (6 mL) with H-Aib₂Aib^{50%}**Aib₂Aib**-OMe (720 mg, 1.32 mmol) and the resulting mixture was heated to reflux for 5 d. The solvent was removed in vacuo, CH₂Cl₂ (50 mL) was added and the organic phase washed with KHSO₄ (10%, 2 x 7 mL), NaHCO₃ (2 x 7 mL), brine (7 mL), dried (MgSO₄), filtered and concentrated to give N3-Aib₂Aib^{25%}**Aib₂Aib^{50%}**Aib₂Aib**-OMe 5 (340 mg, 32%) as a white solid. ¹H-NMR (400 MHz, CDCl₃) δ_H 7.64 (1H, br s, NH), 7.59 (1H, br s, NH), 7.57 (1H, br s, NH), 7.52 (1H, br s, NH), 7.47 (1H, br s, NH), 7.36 (1H, br s, NH), 6.95 (1H, br s, NH), 6.16 (1H, br s, NH), 3.69 (3H, s, OCH₃), 1.57 (6H, s, CH₃) x2), 1.54 (6H, dd, J=129.5, 4.0, *CH₃ x2), 1.53 (6H, s, CH₃ x2), 1.51 (6H, s, CH₃ x2), 1.50 (6H, s, CH₃ x2), 1.49 (3H, s, CH₃ x2 (50%)), 1.49 (3H, dd, J=129.0, 4.0, *CH₃ x2 (50%)), 1.48 (6H, s, CH₃ x2), 1.47 (6H, s, CH₃ x2), 1.44 (4.5H, s, CH₃ x2 (75%)), 1.44 (1.5H, dd, *J*=129.5, 4.5, *CH₃ x2 (25%)). ¹³C-NMR (101 MHz, CDCl₃) δ_c 176.2, 175.7 (CO), 175.6 (CO), 175.5 175.2 (CO), 175.1 (CO), 174.9 (CO), 174.2 (CO), 174.0 (CO), 173.3 (CO), 173.1 (CO), 64.0 (°C), 56.9 (°C), 56.8 (°C), 56.8 (°C), 56.6 (°C), 56.6 (°C), 56.6 (°C), 51.9 (OCH₃), 25.3 (CH₃), 25.0 (*CH₃ (100%, 50%, 25%) and CH₃ x3), 24.7 (CH₃), 24.7 (CH₃), 24.4 (CH₃), 24.3 (CH₃). The triplet signals arising from the carbons alpha to the 13 C-labels could not be located. IR (neat) v_{max}/cm^{-1} = 3303, 2983, 2110, 1729, 1658, 1532, 1454. HRMS (ES⁺, MeOH) Calc. for $C_{35}^{13}C_{2}H_{66}N_{11}O_{10}$ ([M+H]⁺) 826.5056, found 826.5061; Calc. for $C_{33}^{13}C_{4}H_{66}N_{11}O_{10}$ ([M+H]⁺) 828.5123, found 828.5128; Calc. for C₃₁¹³C₆H₆₆N₁₁O₁₀ ([M+H]⁺) 830.5190, found 830.5195. Mp 289-291°C.

N₃-Aib₂Aib^{25%}**Aib₂Aib^{50%}**Aib₂Aib**-OH

N₃-Aib₂Aib^{25%}Aib₂Aib^{50%}**Aib₂Aib**-OMe 5** (344 mg, 0.43 mmol) and LiOH (82 mg, 3.42 mmol) were dissolved in THF/H₂O (4:1, 5 mL total) and the resulting mixture was heated at 40 °C for 16 h. The reaction mixture was allowed to cool to room temperature and HCl (1 M) was added until the pH=1. The aqueous phase was extracted with CH₂Cl₂ (2x25 mL) and the organic phase was then washed with HCl (1 M, 10 mL), brine (10 mL) and was dried (Na₂SO₄), filtered and concentrated *in vacuo* to give **N₃-Aib₂Aib^{25%}*Aib₂Aib^{50%}**Aib₂Aib**-OH** (332 mg, 99%) as a white solid. ¹H-NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 7.90 (1H, br s, NH), 7.77 (1H, br s, NH), 7.72 (1H, br s, NH), 7.71 (1H, br s, NH), 7.67 (1H, br s, NH), 7.57 (1H, br s, NH), 7.21 (1H, br s, NH), 6.73 (1H, br s, NH), 1.61 (6H, dd, *J*=129.0, 4.0, *CH₃ x2), 1.57 (6H, s, CH₃ x2), 1.52 (6H, s, CH₃ x2), 1.51 (6H, s, CH₃ x2), 1.49 (6H, s, CH₃ x2), 1.48 (3H, dd, *J*=129.0, 4.0, *CH₃ x2 (50%)), 1.48 (15H, s, CH₃ x2; CH₃ x2 (50%)), 1.44 (4.5H, s, CH₃ x2 (75%)),

1.44 (1.5H, dd, *J*=129.0, 4.0, *CH₃ x2 (25%)). ¹³C-NMR (126 MHz, CDCl₃) δ_{C} 176.5 (CO), 176.2 (CO), 176.1 (CO), 175.7 (CO), 175.5 (CO), 174.4 (CO), 173.6 (CO), 173.3 (CO), 63.9 (•C), 56.9 (•C), 56.8 (•C), 56.8 (•C), 56.7 (•C), 56.6 (•C), 30.3 (CH₃), 29.7 (CH₃), 25.3 (¹³CH₃ x2 (100%)), 24.3 – 25.5 (all other *CH₃ and CH₃). The triplet signals arising from the carbons alpha to the ¹³C-labels could not be located. IR (neat) ν_{max}/cm^{-1} = 3279, 2985, 2936, 2114, 1738, 1650, 1537, 1454. HRMS (ES⁺, MeOH) Calc. for C₃₄¹³C₂H₆₄N₁₁O₁₀ ([M+H]⁺) 812.4899, found 812.4902; Calc. for C₃₂¹³C₄H₆₄N₁₁O₁₀ ([M+H]⁺) 814.4966, found 814.4963; Calc. for C₃₀¹³C₆H₆₄N₁₁O₁₀ ([M+H]⁺) 816.5033, found 816.5030. Mp >300 °C.

N₃-Aib₂Aib^{25%}**Aib₂Aib^{50%}**Aib₂Aib**Aib₂-O^tBu 6a

N₃-Aib₂Aib^{25%}**Aib₂Aib^{50%}**Aib₂Aib**-OH (100 mg, 0.123 mmol) was dissolved in CH₂Cl₂ (5 mL) and the resulting solution cooled to 0 °C. N-(3-Dimethylaminopropyl)-N -ethylcarbodiimide hydrochloride (35 mg, 0.184 mmol) and N,N-diisopropylethylamine (32 µL, 0.184 mmol) were added, the reaction mixture was allowed to warm to room temperature and stirred for 3 h. The solution was then concentrated in vacuo, EtOAc (15 mL) was added and the organic phase washed with KHSO₄ (10%, 3 x 3 mL), brine (3 mL), dried (MgSO₄), filtered and concentrated in vacuo. The crude azlactone was then place under high vacuum (<0.1 mbar) before being dissolved in MeCN (3 mL) and CH₂Cl₂ (1 mL) with H-Aib₂-O^tBu (41 mg, 0.123 mmol) and the resulting mixture was heated to reflux for 5 d. The solvent was removed in vacuo, CH₂Cl₂ (20 mL) was added and the organic phase washed with HCl (1 M, 2 x 5 mL), brine (5 mL), dried (MgSO₄), filtered and concentrated. The crude residue purified by column chromatography (2-10% MeOH in CH_2Cl_2) to give N₃was Aib₂Aib^{25%}**Aib₂Aib^{50%}**Aib₂Aib**Aib₂-O^tBu 6a (56 mg, 44%) as a white solid. ¹H-NMR (400 MHz, CDCl₃) δ_H 7.71 (1H, br s, NH), 7.66 (3H, br m, NH x3), 7.64 (1H, br s, NH), 7.56 (1H, br s, NH), 7.40 (2H, br m, NH x2), 7.04 (1H, br s, NH), 6.26 (1H, br s, NH), 1.56 (6H, s, CH₃ x2), 1.54 (6H, s, CH₃ x2), 1.50 (12H, m, CH₃ x4), 1.50 (6H, dd, *J*=129.0, 4.5, *CH₃ x2), 1.49 (3H, dd, *J*=129.0, 4.5, *CH₃ x2 (50%)), 1.49 (6H, s, CH₃ x2), 1.49 (9H, m, CH₃ x2 and CH₃ x2 (50%)), 1.48 (12H, s, CH₃ x4), 1.44 (13.5H, m, (CH₃)₃ and CH₃ x2 (75%)), 1.44 (1.5H, dd, J=129.0, 4.0, *CH₃ x2 (25%)). ¹³C-NMR (101 MHz, CDCl₃) δ_c 175.8 (CO), 175.7 (CO), 175.7 (CO), 175.5 (CO), 175.4 (CO), 174.3 (CO), 174.3 (CO), 174.2 (CO), 174.2 (CO), 173.3 (CO), 173.3 (CO), 79.6 (CMe₃), 63.9 (^cC), 56.9 (^cC), 56.8 (^cC), 56.6 (^cC), 56.6 (^cC), 56.6 (^cC), 56.6 (^cC), 56.6 (^cC), 56.9 ($^{\circ}$ C), 27.9 (C(C)H₃)₃), 23.6-26.4 (all CH₃ and * CH₃). The triplet signals arising from the carbons alpha to the ¹³C-labels could not be located. IR (neat) v_{max}/cm^{-1} = 3293, 2982, 2935, 2112, 1736, 1649 1531, 1455. MS (ES⁺, MeOH) 1038.8 (48%, [(¹³C₂)M+H]⁺), 1040.8 (100%, [(¹³C₄)M+H]⁺), 1042.9 (45%, $[(^{13}C_6)M+H]^+)$. Mp >300 °C.

N₃-Aib₂Aib^{25%}**Aib₂Aib^{50%}**Aib₂Aib**Aib₃O^tBu 6b

N₃-Aib₂Aib^{25%}**Aib₂Aib^{50%}**Aib₂Aib**-OH (100 mg, 0.123 mmol) was dissolved in CH₂Cl₂ (5 mL) and the resulting solution cooled to 0 °C. N-(3-Dimethylaminopropyl)-N -ethylcarbodiimide (0.026 mL, 0.147 mmol) was added, the reaction mixture was allowed to warm to room temperature and stirred for 3 h. The solution was then concentrated in vacuo, EtOAc (15 mL) was added and the organic phase washed with KHSO₄ (10%, 3 x 3 mL), brine (3 mL), dried (MgSO₄), filtered and concentrated in vacuo. The crude azlactone was then place under high vacuum (<0.1 mbar) before being dissolved in MeCN (3 mL) with H-Aib₃-OtBu (41 mg, 0.123 mmol) and the resulting mixture was heated to reflux for 5 d. The solvent was removed in vacuo, CH₂Cl₂ (20 mL) was added and the organic phase washed with HCl (1 M, 2 x 5 mL), brine (7 mL), dried (MgSO₄), filtered and concentrated. The crude residue was purified by column chromatography (1-5% MeOH in CH₂Cl₂) to give N₃-Aib₂Aib^{25%}**Aib₂Aib^{50%}**Aib₂Aib**Aib₃-OtBu 6b (47 mg, 34%) as a white solid. ¹H-NMR (400 MHz, CDCl₃) δ_H 7.73 (1H, br s, NH), 7.71 (1H, br s, NH), 7.67 (2H, br s, NH x2), 7.66 (1H, br s, NH), 7.63 (1H, br s, NH), 7.56 (1H, br s, NH), 7.40 (2H, br s, NH), 7.01 (1H, br s, NH), 6.26 (1H, br s, NH), 1.71 (6H, s, CH₃ x2), 1.57 (6H, s, CH₃ x2), 1.54 (6H, s, CH₃ x2), 1.51 (6H, s, CH₃ x2), 1.50 (6H, dd, J=129.0, 4.5, *CH₃ x2), 1.50 (6H, s, CH₃ x2), 1.50 (12H, s, CH₃ x4), 1.49 (3H, dd, J=129.0, 4.5, *CH₃ x2 (50%)), 1.49 (9H, m, CH₃ x2 and CH₃ x2 (50%)), 1.48 (12H, s, CH₃ x4), 1.44 (1.5H, dd, J=129.0, 4.0, *CH₃ x2 (25%)), 1.44 (13.5H, m, (CH₃)₃ and CH₃ x2 (75%)). ¹³C-NMR (101 MHz, CDCl₃) δ_{c} 175.9 (CO), 175.9 (CO), 175.7 (CO), 175.7 (CO), 175.6 (CO), 175.4 (CO), 174.3 (CO), 174.3 (CO), 174.2 (CO), 174.1 (CO), 173.3 (CO), 173.3 (CO), 79.7 (CMe₃), 63.9 (°C), 56.9 (°C), 56.8 (°C), 56.8 (°C), 56.6 (°C x2), 56.6 (°C x3), 56.0 (°C), 27.9 (C(CH₃)₃), 23.3-26.7 (all CH₃ and *CH₃). The triplet signals arising from the carbons alpha to the 13 C-labels could not be located. IR (neat) v_{max} /cm⁻¹ = 3281, 2982, 2936, 2113, 1648, 1535, 1455. MS (ES⁺, MeOH) 1126.2 (60%, [(¹³C₂)M+H]⁺), 1124.2 (100%, [(¹³C₄)M+H]⁺), 1128.1 (48%, [(¹³C₆)M+H]⁺). Mp >300 °C.

N₃-Aib₂Aib^{25%}**Aib₂Aib^{50%}**Aib₂Aib**Aib₄O^tBu 6c

N₃-Aib₂Aib^{25%}Aib₂Aib^{50%}**Aib₂Aib^{**}-OH** (100 mg, 0.123 mmol) was dissolved in CH_2Cl_2 (5 mL) and the resulting solution cooled to 0 °C. *N*-(3-Dimethylaminopropyl)-*N* -ethylcarbodiimide (0.026 mL, 0.147 mmol) was added, the reaction mixture was allowed to warm to room temperature and stirred for 3 h. The solution was then concentrated *in vacuo*, EtOAc (15 mL) was added and the organic phase washed with KHSO₄ (10%, 3 x 3 mL), brine (3 mL), dried (MgSO₄), filtered and concentrated *in vacuo*. The crude azlactone was then place under high vacuum (<0.1 mbar) before being dissolved in MeCN (3 mL) with **H-Aib₄-OtBu** (51 mg, 0.123 mmol) and the resulting mixture was heated to reflux for 5 d. The solvent was removed *in vacuo*, CH_2Cl_2 (20 mL) was added and the organic phase washed with HCl (1 M, 2 x 5 mL), brine (7 mL), dried (MgSO₄), filtered and

concentrated. The crude residue was purified by column chromatography (3-10% MeOH in CH_2Cl_2) to give N₃-Aib₂Aib^{25%}**Aib₂Aib^{50%}**Aib₂Aib**Aib₄-OtBu 6c (61 mg, 41%) as a white solid. ¹H-NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 7.74 (2H, br m, NH x2), 7.73 (1H, br s, NH), 7.68 (2H, br m, NH x2), 7.66 (1H, br s, NH), 7.64 (1H, br s, NH), 7.56 (1H, br s, NH), 7.41 (2H, br m, NH x2), 7.03 (1H, br s, NH), 6.26 (1H, br s, NH), 1.57 (6H, s, CH₃ x2), 1.54 (6H, s, CH₃ x2), 1.51 (12H, s, CH₃ x4), 1.51 (6H, s, CH₃ x2), 1.50 (12H, s, CH₃ x2), 1.50 (12H, s, CH₃ x4), 1.50 (9H, m, CH₃ x2 and CH₃ x2 (50%)), 1.49 (9H, m, *CH₃ and *CH₃(50%)), 1.48 (12H, s, CH₃ x2), 1.44 (13.5H, m, C(CH₃)₃ and CH₃ x2 (75%)), 1.44 (1.5H, m, *CH₃ x2 (25%)). ¹³C-NMR (126 MHz, CDCl₃) $\delta_{\rm c}$ 176.0 (CO), 176.0 (CO), 175.9 (CO), 175.8 (CO), 175.7 (CO), 175.6 (CO), 175.4 (CO), 174.3 (CO), 174.3 (CO), 174.2 (CO), 173.3 (CO), 173.3 (CO), 79.6 (CMe₃), 63.9 (°C), 56.9 (°C), 56.8 (°C), 56.8 (°C), 56.6 (°C), 56.6 (°C), 56.6 (°C), 56.6 (°C), 27.9, C(CH₃)₃), 23.2-26.7 (all CH₃ and *CH₃). The triplet signals arising from the carbons alpha to the ¹³C-labels could not be located. IR (neat) v_{max}/cm^{-1} = 3281, 2982, 2936, 2113, 1648, 1535, 1455. MS (ES⁺, MeOH) 1209.3 (60%, [(¹³C₂)M+H]⁺), 1211.2 (100%, [(¹³C₄)M+H]⁺), 1213.4 (45%, [(¹³C₆)M+H]⁺). Mp > 300 °C.

N₃-Aib₂Aib^{25%}**Aib₂Aib^{50%}**Aib₂Aib**Aib₂-OH

N₃-Aib₂Aib^{25%}Aib₂Aib^{50%}**Aib₂Aib**Aib₂-O[†]Bu 6a** (55 mg, 0.053 mmol) was dissolved in CH₂Cl₂ (1 mL) and trifluoroacetic acid (100 μL) was added dropwise. After 2 h, the solvents were removed *in vacuo* and the crude residue purified by column chromatography (2-10% MeOH in CH₂Cl₂) to give **N₃-Aib₂Aib^{25%}**Aib₂Aib^{50%}**Aib₂Aib**Aib₂-OH** (46 mg, 88%) as a white solid. ¹H-NMR (400 MHz, CD₃OD) δ_{H} 7.99 (1H, br s, NH), 7.93 (1H, br s, NH), 7.91 (5H, br m, NH x5), 7.82 (1H, br s, NH), 7.80 (1H, br s, NH), 7.67 (1H, br s, NH), 1.54 (6H, s, CH₃ x2), 1.49 (9H, m, *CH₃ x2 and CH₃ x2 (50%)), 1.49 (39H, m, CH₃ x12 and CH₃ x2 (50%)), 1.46 (6H, s, CH₃ x2), 1.41 (4.5H, s, CH₃ x2 (75%), 1.41 (1.5H, dd, *J*=129.0, 4.0, *CH₃ x2 (25%)). ¹³C-NMR (126 MHz, 90:10 CDCl₃:CD₃OD) δ_{C} 176.2 (CO x4), 176.1 (CO), 175.9 (CO), 175.1 (CO), 174.4 (CO), 174.3 (CO), 173.3 (CO), 173.2 (CO), 63.7 (°C), 57.0 (°C), 56.8 (°C), 56.7 (°C), 56.6 (°C), 56.5 (°C x2), 56.5 (°C), 56.4 (°C), 29.6 (CH₃ x2), 22.0 – 27.7 (all other CH₃ and *CH₃). The triplet signals arising from the carbons alpha to the ¹³C-labels could not be located. IR (neat) ν_{max}/cm^{-1} = 3383, 2984, 2935, 2113, 1651, 1533, 1456. MS (ES⁺, MeOH) 1004.9 (45%, [(¹³C₂)M+H]⁺), 1007.0 (100%, [(¹³C₄)M+H]⁺), 1008.3 (40%, [(¹³C₆)M+H]⁺), Mp >300 °C.

N₃-Aib₂Aib^{25%}**Aib₂Aib^{50%}**Aib₂Aib**Aib₃-OH

N₃-Aib₂Aib^{25%}Aib₂Aib^{50%}**Aib₂Aib**Aib₃-O^fBu 6b** (42 mg, 0.037 mmol) was dissolved in CH₂Cl₂ (1 mL) and trifluoroacetic acid (100 μL) was added dropwise. After 2 h, the solvents were removed *in vacuo* and the crude residue purified by column chromatography (2-10% MeOH in CH₂Cl₂) to give **N₃-Aib₂Aib^{25%}**Aib₂Aib^{50%}**Aib₂Aib**Aib₃-OH** (39 mg, 99%) as a white solid. ¹H-NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 7.90 (1H, br s, NH), 7.76 (4H, br m, NH x4), 7.72 (2H, br m, NH x2), 7.67 (1H, br s, NH), 7.58 (2H, br

m, NH x2), 6.80 (1H, br s, NH), 1.62 (6H, s, CH₃ x2), 1.58 (28 H, s), 1.52 (9H, m, CH₃ x2 and CH₃ x2 (50%)), 1.52 (9H, m, *CH₃ x2 and *CH₃ x2 (50%)), 1.49 (30H, m, CH₃ x 10), 1.45 (4.5H, s, CH₃ x2 (75%)), 1.45 (1.5H, *CH₃ x2 (25%). ¹³C-NMR (126 MHz, CDCl₃) δ_{c} 176.2 (CO x3), 176.2 (CO), 176.1 (CO x2), 175.9 (CO), 175.9 (CO), 175.2 (CO), 175.0 (CO), 173.4 (CO x2), 63.8 (°C), 56.9 (°C), 56.8 (°C), 56.7 (°C), 56.6 (°C), 56.5 (°C), 56.5 (°C x2), 29.7 (CH₃ x2), 21.7 – 27.8 (all other CH₃ and *CH₃). The triplet signals arising from the carbons alpha to the ¹³C-labels could not be located. IR (neat) ν_{max} /cm⁻¹ = 3286, 2985, 2935, 2115, 1652, 1534, 1469, 1417. MS (ES⁺, CH₂Cl₂) 1090.0 (35%, [(¹³C₂)M+H]⁺), 1092.0 (100%, [(¹³C₄)M+H]⁺), 1094.1 (20%, [(¹³C₆)M+H]⁺). Mp >300 °C.

N₃-Aib₂Aib^{25%}**Aib₂Aib^{50%}**Aib₂Aib**Aib₄-OH

N₃-Aib₂Aib^{25%}Aib₂Aib^{50%}**Aib₂Aib**Aib₄-O^tBu 6c** (34 mg, 0.028 mmol) was dissolved in CH₂Cl₂ (1 mL) and trifluoroacetic acid (100 μL) was added dropwise. After 2 h, the solvents were removed *in vacuo* and the crude residue purified by column chromatography (2-10% MeOH in CH₂Cl₂) to give **N₃-Aib₂Aib^{25%}**Aib₂Aib^{50%}**Aib₂Aib**Aib₄-OH** (31 mg, 96%) as a white solid. ¹H-NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.86 (1H, br s, NH), 7.76 (8H, br m, NH x8), 7.60 (1H, br s, NH), 7.42 (1H, br s, NH), 7.02 (1H, br s, NH), 1.56 (6H, s, CH₃ x2), 1.48 (6H, dd, *J*=129.0, 4.0, *CH₃ x2), 1.48 (3H, m, *CH₃ x2 (50%)), 1.45 – 1.53 (57H, m, CH₃ x18 and CH₃ x2 (50%), 1.43 (4.5H, s, CH₃ x2 (75%)), 1.43 (1.5H, m, *CH₃ x2 (25%)).¹³C-NMR (101 MHz, 95:5 CDCl₃:CD₃OD) $\delta_{\rm C}$ 176.3 (CO), 176.3 (CO x2), 176.2 (CO x2), 176.0 (CO), 175.9 (CO x2), 175.0 (CO), 174.3 (CO), 174.2 (CO), 173.3 (CO), 173.3 (CO), 63.8 (•C), 56.9 (•C), 56.8 (•C), 56.6 (•C x2), 56.5 (•C x2), 56.5 (•C), 29.7 (CH₃ x2), 21.2 – 28.1 (all other CH₃ and *CH₃). The triplet signals arising from the carbons alpha to the ¹³C-labels could not be located. IR (neat) ν_{max}/cm^{-1} = 3278, 2985, 2117, 1653, 1540, 1456. MS (ES⁺, MeOH) 1175.4 (45%, [(¹³C₂)M+H]⁺), 1177.4 (100%, [(¹³C₄)M+H]⁺), 1179.4 (20%, [(¹³C₆)M+H]⁺). Mp > 300 °C.

N₃-Aib₂Aib^{25%}**Aib₂Aib^{50%}**Aib₂Aib**Aib₂Ala-NH^tBu 7a

N₃-Aib₂Aib^{25%}Aib₂Aib^{50%}**Aib₂Aib**Aib₂-OH** (46 mg, 0.047 mmol) and 1-Hydroxybenzotriazole hydrate (11 mg, 0.061 mmol) were dissolved in CH₂Cl₂ (4 mL) and the suspension cooled to 0 °C. *N*-(3-Dimethylaminopropyl)-*N* -ethylcarbodiimide hydrochloride (10 mg, 0.051 mmol) and triethylamine (10 μL, 0.07 mmol) were added and the reaction was allowed to warm to room temperature and stirred until it was homogenous. H-Ala-NH^tBu (13 mg, 0.09 mmol) and triethylamine (10 μL, 0.07 mmol) were added and the reaction mixture stirred for 72 h. The solvent was removed *in vacuo* and CH₂Cl₂ (15 mL) was added. The organic phase was washed with KHSO₄ (5%, 2 x 5 mL), NaHCO₃ (2 x 5 mL), brine (5 mL), dried (Na₂SO₄), filtered and concentrated. The crude residue was purified by column chromatography (1-5% MeOH in CH₂Cl₂) to give **N₃-**

Aib₂**Aib**^{25%}****Aib**₂**Aib**^{**}**Aib**₂**Aib******Aib**₂**Ala**-**NH**^f**Bu 7a** (26 mg, 50%) as a white solid. ¹H-NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.74 (5H, br m, NH x5), 7.69 (1H, br s, NH), 7.67 (1H, br s, NH), 7.57 (1H, br s, NH), 7.56 (1H, br s, NH), 7.12 (1H, br s, NH), 6.91 (1H, br s, NH), 6.41 (1H, br s, NH), 4.32 (1H, dq, *J*=7.5, 7.5, •CH), 1.60 (3H, s, CH₃), 1.58 (3H, s, CH₃), 1.56 (3H, s, CH₃), 1.53 (6H, s, CH₃ x2), 1.52 (3H, s, CH₃), 1.50 (3H, dd, *J*=129.0, 4.0, *CH₃), 1.49 (3H, dd, *J*=129.0, 4.0, *CH₃), 1.46 – 1.51 (30H, m, CH₃ x10), 1.46 (3H, dd, *J*=129.0, 4.5, *CH₃ x2 (50%)), 1.46 (3H, s, CH₃ x2 (50%)), 1.40 (1.5H, m, *CH₃ x2 (25%), 1.40 (13.5H, m, C(CH₃)₃ and CH₃ x2 (75%)). ¹³C-NMR (101 MHz, CDCl₃) $\delta_{\rm c}$ 176.2 (CO), 176.1 (CO), 176.0 (CO x2), 175.8 (CO x2), 175.5 (CO), 175.2 (CO), 174.3 (CO), 173.5 (CO), 173.3 (CO), 172.8 (CO), 63.9 (-C), 56.9 (-C), 56.9 (-C), 56.8 (-C), 56.6 (-C), 56.6 (-C), 56.5 (-C), 50.9 (CMe₃), 50.2 (-CH), 28.7 (C(CH₃)₃), 26.3 – 27.4 (*CH₃ (25,50,100%) and CH₃ x6), 24.9 (CH₃), 24.4 (CH₃), 24.2 (CH₃), 22.3 – 23.4 (*CH₃ (25,50,100%) and CH₃ x6), 23.4 (CH₃), 17.3 (CH₃-CH). The triplet signals arising from the carbons alpha to the ¹³C-labels could not be located. IR (neat) ν_{max} /cm⁻¹ = 3394, 2986, 2469, 2113, 1645, 1531, 1472, 1418. MS (ES⁺, MeOH) 1131.1 (55%, [(¹³C₂)M+H]⁺), 1133.1 (100%, [(¹³C₄)M+H]⁺), 1135.2 (25%, [(¹³C₆)M+H]⁺). Mp > 300 °C. [*α*]_D²⁰ = 117.6 (*c* 0.5, CH₂Cl₂).

N₃-Aib₂Aib^{25%}**Aib₂Aib^{50%}**Aib₂Aib**Aib₃Ala-NH^tBu 7b

N₃-Aib₂Aib^{25%}**Aib₂Aib^{50%}**Aib₂Aib**Aib₃-OH (37 mg, 0.035 mmol) and 1-Hydroxybenzotriazole hydrate (8 mg, 0.045 mmol) were dissolved in CH₂Cl₂ (4 mL) and the suspension cooled to 0 °C. N-(3-Dimethylaminopropyl)-N -ethylcarbodiimide hydrochloride (7 mg, 0.051 mmol) and triethylamine (7.5 μ L, 0.05 mmol) were added and the reaction was allowed to warm to room temperature and stirred until it was homogenous. H-Ala-NH^tBu (8 mg, 0.055 mmol) and triethylamine (7.5 μ L, 0.05 mmol) were added and the reaction mixture stirred for 72 h. The solvent was removed in vacuo and CH_2Cl_2 (15 mL) was added. The organic phase was washed with KHSO₄ (5%, 2 x 5 mL), NaHCO₃ (2 x 5 mL), brine (5 mL), dried (Na₂SO₄), filtered and concentrated. The crude residue was purified by (1-5% column chromatography MeOH in CH_2Cl_2) to give N₃-Aib₂Aib^{25%}**Aib₂Aib^{50%}**Aib₂Aib**Aib₃Ala-NH^tBu 7b (26 mg, 62%) as a white solid. ¹H-NMR (400 MHz, CDCl₃) δ_H 7.75 (5H, br m, NH x5), 7.73 (1H, br s, NH), 7.70 (1H, br s, NH), 7.69 (1H, br s, NH), 7.58 (1H, br s, NH), 7.57 (1H, br s, NH), 7.18 (1H, br s, NH), 6.91 (1H, br s, NH), 6.50 (1H, br s, NH), 4.31 (1H, dq, J=7.5, 7.5, "CH), 1.60 (3H, s, CH₃), 1.57 (3H, s, CH₃), 1.56 (3H, s, CH₃), 1.53 (6H, s, CH₃ x2), 1.52 (3H, s, CH₃), 1.50 (3H, dd, J=130.0, 4.5, *CH₃), 1.48 - 1.51 (33H, m, CH₃ x10 and CH₃ x2 (50%)), 1.48 (6H, m, *CH₃ and *CH₃ x2 (50%)), 1.46 (3H, s, CH₃ x2), 1.40 (13.5H, m, C(CH₃)₃ and CH₃ x2 (75%)), 1.40 (1.5H, m, *CH₃ x2 (25%)). ¹³C-NMR (101 MHz, CDCl₃) δ_c 176.2 (CO), 176.1 (CO x2), 176.0 (CO x2), 175.9 (CO x2) 175.6 (CO), 175.2 (CO), 174.4 (CO), 173.6 (CO), 173.3 (CO), 172.8 (CO), 63.9 (°C), 56.9 («C), 56.9 («C), 56.7 («C), 56.6 («C), 56.6 («C), 56.6 («C), 56.5 («C x2), 50.9 (CMe₃), 50.3 («CH), 28.7 $(C(CH_3)_3)$, 26.3 – 27.4 (*CH₃ (25,50,100%) and CH₃ x8), 24.4 (CH₃), 24.2 (CH₃), 22.4 – 23.4 (*CH₃) (25,50,100%) and CH₃ x8), 17.3 (CH₃-CH). The triplet signals arising from the carbons alpha to the 13 Clabels could not be located. IR (neat) v_{max}/cm^{-1} = 3294, 2986, 2469, 2113, 1645, 1531, 1418. MS (ES⁺, CH₂Cl₂) 1216.1 (40%, [(¹³C₂)M+Na]⁺), 1218.2 (100%, [(¹³C₄)M+Na]⁺), 1220.1 (70%, [(¹³C₆)M+Na]⁺). Mp >300 °C. $[\alpha]_D^{20}$ = 176.0 (*c* 0.5, CH₂Cl₂).

N₃-Aib₂Aib^{25%}**Aib₂Aib^{50%}**Aib₂Aib**Aib₄Ala-NH^tBu 7c

$$N_{3} \xrightarrow{0}_{H} \underbrace{H}_{O} \underbrace{H}_{(25\%)} \underbrace{H}_{O} \underbrace{H}_{O}$$

N₃-Aib₂Aib^{25%}**Aib₂Aib^{50%}**Aib₂Aib**Aib₄-OH (25 mg, 0.022 mmol) and 1-Hydroxybenzotriazole hydrate (5 mg, 0.028 mmol) were dissolved in CH₂Cl₂ (2 mL) and the suspension cooled to 0 °C. N-(3-Dimethylaminopropyl)-N -ethylcarbodiimide hydrochloride (5 mg, 0.024 mmol) and triethylamine (3 μ L, 0.022 mmol) were added and the reaction was allowed to warm to room temperature and stirred until it was homogenous. H-Ala-NH^tBu (10 mg, 0.069 mmol) and triethylamine (6 µL, 0.044 mmol) were added and the reaction mixture stirred for 72 h. The solvent was removed in vacuo and CHCl₃/ⁱPrOH (3:1, 15 mL total) was added. The organic phase was washed with KHSO₄ (5%, 2 x 3 mL), NaHCO₃ (2 x 3 mL), brine (3 mL), dried (Na₂SO₄), filtered and concentrated. The crude residue was purified by column chromatography (1-5% MeOH in CH_2Cl_2) to give N₃-Aib₂Aib^{25%}**Aib₂Aib^{50%}**Aib₂Aib**Aib₄Ala-NH^tBu 7c (13 mg, 47%) as a white solid. ¹H-NMR (500 MHz, CDCl₃) δ_H 7.76 (5H, br m, NH x5), 7.73 (2H, br m, NH x2), 7.69 (1H, br s, NH), 7.66 (1H, br s, NH), 7.57 (1H, br s, NH), 7.56 (1H, br s, NH), 7.13 (1H, br s, NH), 6.91 (1H, br s, NH), 6.43 (1H, br s, NH), 4.32 (1H, dq, J=7.0, 7.5, "CH), 1.60 (3H, s, CH₃), 1.58 (3H, s, CH₃), 1.56 (3H, s, CH₃), 1.53 (6H, s, CH₃ x2), 1.52 (3H, dd, J=128.0, 4.0, *CH₃), 1.52 (3H, s, CH₃), 1.49 (6H, m, *CH₃ and *CH₃ x2 (50%)), 1.48 – 1.51 (39H, m, CH₃ x12 and CH₃ x2 (50%)), 1.47 (6H, s, CH₃ x2), 1.41 (13.5H, s, C(CH₃)₃ and CH₃ x2 (75%)), 1.41 (1.5H, m, *CH₃ x2 (25%)). ¹³C-NMR (126 MHz, CDCl₃) δ_c 176.2 (CO), 176.2 (CO), 176.2 (CO), 176.1 (CO), 176.0 (CO), 176.0 (CO), 175.8 (CO x2), 175.5 (CO), 175.2 (CO), 174.3 (CO), 173.5 (CO), 173.3 (CO), 172.8 (CO), 63.9 (°C), 56.9 (°C), 56.9 (°C), 56.8 (°C), 56.8 (°C), 56.6 (°C), 56.6 (°C), 56.5 (°C x3), 50.9 (CMe₃), 50.2 ([•]CH), 29.7 (CH₃), 28.8 (C(CH₃)₃), 26.1 – 27.6 (*CH₃ (25,50,100%) and CH₃ x6), 25.0 (CH₃), 24.4 (CH₃), 24.2 (CH₃), 22.4 – 23.5 (*CH₃ (25,50,100%) and CH₃ x6),17.3 (CH₃-CH). The triplet signals arising from the carbons alpha to the ¹³C-labels could not be located. IR (neat) v_{max}/cm^{-1} = 3283, 1984, 2936, 2113, 1646, 1535, 1421. MS (ES⁺, CH₂Cl₂) 1301.4 (40%, [(¹³C₂)M+Na]⁺), 1302.8 (100%, $[(^{13}C_4)M+Na]^+)$, 1304.5 (80%, $[(^{13}C_6)M+Na]^+)$. Mp >300 °C. $[\alpha]_D^{20} = 27.2(c \ 0.5, CH_2Cl_2)$.

Example spectra showing ¹³C-labelled Aib** of 7a

Calculation of decay rate *f*

$$\Delta \delta_n = \Delta \delta_i \cdot (1 - f)^n = \Delta \delta_n \cdot e^{-mn}$$
$$(1 - f)^n = e^{-mn}$$
$$nln(1 - f) = -mn$$
$$1 - f = e^{-m} \text{ or } f = 1 - e^{-m}$$

Where $\ \Delta \delta_i$ and m are obtained from the exponential fit of the data using Excel.

Details of NMR experiment used to resolve glycines in compound 3

The PSYCHE^{5,6} J-refocusing element was used in a 2D J-resolved pulse sequence to allow the measurement of absorption mode phase-sensitive 2DJ spectra. PSYCHE has the added advantage of attenuating the artefact signals due to strong coupling that can complicate analysis of 2DJ spectra. Adding the F_1 scalar coupling dimension to the PSYCHE experiment gives access both to the high resolution 1D pure shift spectrum, with all homonuclear couplings suppressed, and to shift-resolved absorption mode multiplets from which coupling constants can be determined.

1D PSYCHE

2DJ PSYCHE

¹H-NMR of Aze-Aib₁₁AlaNH^tBu 8c

¹H-NMR of Aze-Aib₁₂AlaNH^tBu 8d

¹H-NMR of N₃-AibAib**-OMe

$^{\rm 13}\text{C-NMR}$ of N₃-AibAib**-OMe 7

¹H-NMR of H-AibAib**-OMe

¹H-NMR of N₃-Aib₂Aib**-OMe

¹H-NMR of H-Aib₂Aib**-OMe

¹H-NMR of N₃-Aib₂Aib^{**}-OH 4^{**}

 $^{\rm 13}\text{C-NMR}$ of $N_3\text{-Aib}_2\text{Aib}^{**}\text{-OH}$ 4**

$^1\text{H-NMR}$ of $N_3\text{-Aib}_2\text{Aib}^{50\%\ast\ast}\text{Aib}_2\text{Aib}^{\ast\ast}\text{-OMe}$

7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4

$^{13}\text{C-NMR}$ of $N_3\text{-Aib}_2\text{Aib}^{50\%}\text{**Aib}_2\text{Aib}^{**}\text{-OMe}$

$^1\text{H-NMR}$ of H-Aib_2Aib $^{50\%}**\text{Aib}_2\text{Aib}^{**}\text{-OMe}$

 $^1\text{H-NMR}$ of N3-Aib2Aib $^{25\%}**\text{Aib}_2\text{Aib}^{50\%}**\text{Aib}_2\text{Aib}^{**}\text{-OMe}$ 5

S29

$^{1}\text{H-NMR of N_{3}-Aib_{2}Aib}^{25\%**Aib_{2}Aib}^{50\%**Aib_{2}Aib}^{**Aib_{2}-O^{t}Bu \ 6a}$

 $^{13}\text{C-NMR of N}_3\text{-}Aib_2\text{Aib}^{25\%}\text{*}\text{*}Aib_2\text{Aib}^{50\%}\text{*}\text{*}Aib_2\text{Aib}^{**}\text{Aib}_2\text{-}O^t\text{Bu 6a}$

 $^{1}\text{H-NMR of N}_{3}\text{-Aib}_{2}\text{Aib}^{25\%}\text{**Aib}_{2}\text{Aib}^{50\%}\text{**Aib}_{2}\text{Aib}^{**}\text{Aib}_{3}\text{O}^{t}\text{Bu 6b}$

7.8 7.6 7.4 7.2 7.0 6.6 6.2 5.8 5.4 5.0 4.6 4.2 3.8 3.4 3.0 2.6 2.2 1.8 1.4

 $^{13}\text{C-NMR}$ of $N_3\text{-}Aib_2\text{Aib}^{25\%}\text{**}Aib_2\text{Aib}^{50\%}\text{**}Aib_2\text{Aib}^{**}$ 6b

 $^{1}\text{H-NMR of N}_{3}\text{-Aib}_{2}\text{Aib}^{25\%}\text{**Aib}_{2}\text{Aib}^{50\%}\text{**Aib}_{2}\text{Aib}^{**}\text{Aib}_{4}\text{O}^{t}\text{Bu 6c}$

7.8 7.6 7.4 7.2 7.0 6.6 6.2 5.8 5.4 5.0 4.6 4.2 3.8 3.4 3.0 2.6 2.2 1.8

 $^{13}\text{C-NMR of N_3-Aib_2Aib}^{25\%}**\text{Aib}_2\text{Aib}^{50\%}**\text{Aib}_2\text{Aib}^{**}\text{Aib}_4\text{O}^{t}\text{Bu 6c}$

 $^{1}\text{H-NMR of N_{3}-Aib_{2}Aib}^{25\%**Aib_{2}Aib}^{50\%**Aib_{2}Aib}^{**Aib_{3}-OH}$

 $^1\text{H-NMR}$ of N3-Aib2Aib $^{25\%}\text{**Aib}_2\text{Aib}^{50\%}\text{**Aib}_2\text{Aib}^{**}\text{Aib}_4\text{-OH}$

 $^{1}\text{H-NMR of N_{3}-Aib_{2}Aib}^{25\%**Aib_{2}Aib}^{50\%**Aib_{2}Aib^{**}Aib_{2}Ala-NH^{t}\text{Bu 7a}}$

7.8 7.6 7.4 7.2 7.0 6.6 6.2 5.8 5.4 5.0 4.6 4.2 3.8 3.4 3.0 2.6 2.2 1.8 1.4

 $^{13}\text{C-NMR of N}_3\text{-}Aib_2\text{A}ib^{25\%}\text{**}Aib_2\text{A}ib^{50\%}\text{**}Aib_2\text{A}ib^{**}\text{A}ib_2\text{A}la\text{-}N\text{H}^t\text{Bu 7a}$

 $\label{eq:hardenergy} ^1 \text{H-NMR of } N_3\text{-}Aib_2\text{Aib}^{25\%}\text{**}Aib_2\text{Aib}^{50\%}\text{**}Aib_2\text{Aib}^{**}\text{Aib}_3\text{Ala-NH}^t\text{Bu 7b}$

 $^{1}\text{H-NMR of N}_{3}\text{-Aib}_{2}\text{Aib}^{25\%}\text{**Aib}_{2}\text{Aib}^{50\%}\text{**Aib}_{2}\text{Aib}^{**}\text{Aib}_{4}\text{Ala-NH}^{t}\text{Bu 7c}$

Notes and References

- 1. S. P. Fletcher, J. Solà, D. Holt, R. A. Brown and J. Clayden, *Beilstein J. Org. Chem.* **2011**, 7, 1304
- 2. J. Clayden, A. Castellanos, J. Solà and G. A. Morris, Angew. Chemie Int. Ed. 2009, 48, 5962
- 3. S. J. Pike, S. Webb and J. Clayden, Org. Biomol. Chem 2014, 12, 4124
- 4. L. Byrne, J. Solà, T. Boddaert, T. Marcelli, R. W. Adams, G. A. Morris and J. Clayden, *Angew. Chemie Int. Ed.* **2014**, *53*, 151
- 5. M. Foroozandeh, R. W. Adams, N. J. Meharry, D. Jeannerat, M. Nilsson and G. A. Morris, *Angew. Chemie Int. Ed.* **2014**, *53*, 6990
- 6. M. Foroozandeh, R. W. Adams, D. Jeannerat, M. Nilsson and G. A. Morris, J. Am. Chem. Soc. **2014**, 136, 11867
- 7. The symmetrical signals observed around the ¹³C-labelled *CH₃ group are from composite pulse decoupling artefacts.