S2 Table. Genes overlapping between AMH and domesticated species

S2 Table. Ge				
GENE NAME	OVERLAPPING SPECIES	ENSEMBL ID	GENE FUNCTION (UniProt)	PATHWAY ANNOTATION
AMBRA1	horse	ENSG00000110497	Regulates autophagy and development of the nervous system. Involved in autophagy in controlling protein turnover during neuronal development, and in regulating normal cell survival and proliferation (By similarity).	Cellular responses to stress (Reactome)
BRAF	cat, horse	ENSG00000157764	Protein kinase involved in the transduction of mitogenic signals from the cell membrane to the nucleus. May play a role in the postymaptic responses of hippocampal neuron. Phosphoryletes MAP2K1, and thereby contributes to the MAP kinase signal transduction pathway.	EGR tyrosine kinase inhibitor resistance. Endocrine resistance. MAPK signaling pathway, ErbB signaling pathway, Rep1 signaling pathway, rAMP signaling pathway, Chenokine signaling pathway, FAO signaling pathway, mCR signaling pathway, Yacata smooth muscle contraction. Dorso-vertral axis formation, Focal adhesion, Natural killer cell mediated dyrotacidir, Long-term potentiation. Natorhisming pathway, Secondergic synapse, Long-term depression. Regulation of actin cytosketon. Insulin signaling pathway, Progesterom-enalisted coopte mutation. Autochismi, Hupetitilis C, Pathway in cancer, Proteodyucans in cancer, Colorectal cancer, Renal cell carcinome, Panceatic cancer, Redometrial cancer, Gloma, Potate cancer, Tivoti cancer, Martonan, Bildader cancer, Chronic myeloid fluxiemia, Acute myeloid leukemia, Non-smail cell lung cancer, Breat cancer (KEG0): VEGE signaling pathway. 2 cell activation, Interfunction signaling pathway, IEGF receptor signaling pathway, Rogo and cytokine signaling pathway, EGF activative, Jacas Pathway, Jacos Patesica, CKR signaling mathway, B cell activation (PANTHER)
CACNA1D	horse	ENSG00000157388	Voltage-sensitive calcium channels (VSOC) mediate the entry of calcium ions into excitable calls and are also modivad in a vanishy of calcium-dependent processes, including muscle contraction, hormore or neurotransmitter melass, gane agreematic, call molity calcium channels belong to the high-to Dgives rise to L-ype calcium currents. Long leating (L-ype) calcium channels belong to the high-voltage activited (HVA) group. They are blocked by dytdroprytifies (DVP) phonylality/metics. Burchinizariane, and by omega-agatouin-IIIA (omega-Aga-IIIA). They are however insensitive to omega-constoxin-GVIA (omega-CTX- GVIA) and omega-agatouin-IVA (omega-Aga-IVA).	Amphetamine addiction, Vascudar amodin muscle contraction, MAPK signaling pathway, Calcium signaling pathway, COMP-PKG signaling pathway, CAMP signaling pathway, Cardiac muscle contraction, Asternegi signaling in cardiomocripes, Taphi Junchon, Circadan synapse, Sorth Reging signaling and the signaling pathway, the contraction and synapse, Sorth Reging signaling and the synapse signaling pathway, the synapse, Sorth Reging signaling, and the synapse signaling pathway, the synapse, section, Type II silabetas malitus, Catchydratia digastion and absorption, Abheimen's disease, Hypertophic cardiomography, Arrhythongenic receptor signaling pathway, Nicolinia exclycholine receptor signaling pathway, Beb2 afferengie receptor signaling pathway, Nicolinia exclycholine receptor signaling pathway, Beb2 afferengie receptor signaling gathway, SH12 type receptor mediated signaling pathway, Baba afferengie receptor signaling pathway, Athythongen (PANTHER)
COA5	dog	ENSG00000183513	Involved in an early step of the mitochondrial complex IV assembly process.	N/A
COL11A1	dog	ENSG0000060718	May play an important role in fibrillogenesis by controlling lateral growth of collagen II fibrils.	Integrin signalling pathway (PANTHER); Extracellular matrix organization (Reactome)
COQ10B DLGAP1	dog horse	ENSG00000115520 ENSG00000170579	Required for the function of coenzyme Q in the respiratory chain. May serve as a chaperone or may be involved in the transport of Q6 from its sile of synthesis to the catalytic siles of the respiratory complexes (By similarity). Part of the postsynaptic scaffold in neuronal cells.	Metabolism (Reactome) Glutamatergic synapse (KEGG)
ERBB4	cattle	ENSG00000178568	Tyrosine-protein kinase that plays an essential role as cell surface receptor for neuroguins and EGF family members and regulates development of the heart, the certral nervous system and the mammary gland, gene transcription, cell proliferation, differentiation, migration and apoptosis. Required for normal calculates muscle differentiation during embryonic development, and for posthatial calculation (sector) and and calculates muscle differentiation during embryonic development, and for posthatial calculation (sector) and the differentiation during embryonic development, and for posthatial calculation (sector) and the differentiation during embryonic development, and for posthatial calculation (sector) and the differentiation during embryonic development, and for posthatial calculation (sector) and the differentiation during embryonic development, and for posthatial calculation (sector) and the differentiation of the field differentiation (sector) and the distribution of the distribution of distribution distributi	Erb8 signaling pathway, Calcium signaling pathway, Endocytosis, Proteoglycans in cancer (KEGG); Alzheimer disease-preseniin pathway, EGF receptor signaling pathway, Cadherin signaling pathway (PANTHER)
FAM172A GGT7	cattle, dog	ENSG00000113391 ENSG00000131067	N/A	N/A N/A
GG17	dog	ENSG00000131067	Cleaves glutathione conjugates.	N/A
GRIA1	cat	ENSG00000155511	Ionotopic glutamate receptor. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L-glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical imputes. The receptor the desensitizer anglut and enters a transmin inactive stata, characterized by the presence of bound agonist. In the presence of CACNGG or CACNGG or CACNG8, shows resensitization which is characterized by a delayed accumulation of current flux upon continued application of glutamate.	Amphetamine addiction, Circadian entrainment, Long-term depression, Nicothe addiction, cAMP signalle pathway, Neuroache Bignad-seegoly, Interaction, Long-term potentiation, Retrograde endocannabinold signaling, Glutamatergic synapse, Dopaminergic synapse, Amyotrophic lateral scienceis (ALS) (KEGG)
GRIK3	dog, cattle	ENSG00000163873	Receptor for glutamete that functions as ligand-gated ion channel in the central nervous system and plays an important role in excitatory synaptic transmission. L-guitamete acts as an excitatory neurotransmitter at many synapses in the central nervous system. The postsynaptic actions of Qia are mediated by a variety of receptors that are named according to their selective agonists. This receptor binds domoste > kainate >> L-glutamate = quisqualate >> AMPA = NMDA.	Glutamatergic synapse, Neuroactive ligand-receptor interaction (KEGG); Huntington disease (PANTHER)
HSD3B7	cat	ENSG00000099377	The 3-bets-HSD enzymatic system plays a crucial role in the biosynthesis of all classes of hormonal steroids. HSD WI is active against four 7-alpha-hydroxylated sterols. Does not metabolize several different C(1921) steroids as substantes. Involved in bias dia synthesis [PubMet11098780], Pubys a kay role in objectioning and movement in lymphoid itsues by mediating degradation of 7-alpha.25-dihydroxycholesterol (7-alpha.25- OHC); 7-alpha.25-OHC acts as a ligand for the C protein-coupled receptor GPR153/EBI2, a chemotactic receptor for a number of lymphoid cells.	Primary bile acid biosynthesis, Metabolic pathways (KEGG); Andorgen/estrogene/progesterone biosynthesis (PANTHER)
HSPD1	dog	ENSG00000144381	Implicated in mitochondrial protein import and macromolecular assembly. May facilitate the correct folding of imported proteins. May also prevent misfolding and promote the refolding and proper assembly of unfolded polypeptides generated under stress conditions in the mitochondrial matrix.	Gene Expression, Metabolism of proteins (Reactome)
HSPE1	dog	ENSG00000115541	Eukaryotic CPN60 binding which is essential for mitochondrial protein logenesis, together with CPN60. Binds to CPN60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter.	N/A
ITGA9	cat	ENSG00000144668	Integrin alpha-9/beta-1 (ITGA9:ITGB1) is a receptor for VCAM1, cytotactin and osteopontin. It recognizes the sequence A-E-I-D-G-I-E-L in cytotactin.	Cell adhesion molecules, P13K-Akt signaling, Focal adhesion, ECM-receptor interaction, Regulation of actin cytoskeleton, Hypertrophic cardiomyopathy, Arrhythmogenic right ventricular cardiomyopathy, Dilated cardiomyopathy (KEGG); Integrin signalling pathway, Inflammation
LRP1B	cattle			
LYST		ENSG00000168702	otential cell surface proteins that bind and internalize ligands in the process of receptor-mediated endocytosis. May be required for sorting endosomal resident proteins into late multivesicular endosomes by a mechanism	mediated by chemokine and cytokine signaling pathway (PANTHER) Alzheimer disease-presenilin pathway (PANTHER)
MOB4	dog dog	ENSG00000168702 ENSG00000143669 ENSG00000115540	May be required for sorting endosomal resident proteins into late multivesicular endosomes by a mechanism involving microtubules. May play a role in membrane trafficking, specifically in membrane budding reactions.	Alzheimer disease-presenilin pathway (PANTHER) Tropane, piperidine and pyridine alkaloid biosynthesis (KEGG) N/A
	-	ENSG00000143669	May be required for sorting endosomal resident proteins into late multivesicular endosomes by a mechanism involving microtubules. May play a role in membrane trafficiant, specifically in membrane budding reactions. Kinase that phosphorytates MYL2 in vitro. Promotes sarcomere formation in cardiomycoytes and increases cardiomycoyte contractility (By inimitrity). Noclear receptor coactivator that directly binds nuclear exoptors and simulates the transcriptional activities in a hormone-dependent fashion. Coactivates expression in an agonist- and AF2-dependent marrier. Involved in the coactivation of Hierent nuclear receptor scal strains of stratodis (RP and RPs), inclusity (RAS and RXRa), thyroid hormone (TRa), vitamin D3 (VDR) and prostancids (PPARs). Probably functions as a general ocactivator, arther than just a nuclear receptor caccitivator. May also be involved in the caccitivation of the NF-	Alzheimer disease-presenilin pathway (PANTHER) Tropane, piperidine and pyridine alkaloid biosynthesis (KEGG)
MOB4 MYLK3 NCOA6	dog cat	ENSG00000143669 ENSG00000115540 ENSG00000140795 ENSG00000198646	May be required for sorting endocomal resident proteins into late multivesicular endocomes by a mechanism involving microtubules. May play a role in membrane trafficiant, specifically in membrane budding reactions. Kinase that phosphoritate MVCI with vite. Promotes acromere formation in cardiomycoytes and increases cardiomycoyte contractility (By aimlarity). Nuclear receptor coactivator that directly bins in uclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Coactivates appression in an agoinst- and AF2-dependent moment. Involved in the coactivity of the structure of the struct	Alzheimer diaesas-presentiin pathway (PANTHER) Tropane, piperidine an dyndine alkakid biosynthesis (KEGG) Marking and the second
MOB4 MYLK3 NCOA6 NEK4	dog cat dog cat	ENSG00000143669 ENSG00000115540 ENSG00000140795 ENSG00000198646 ENSG00000114904	May be required for sorting endosomal resident proteins into late multivesicular endosomes by a mechanism involving microtubules. May play a role in membrane trafficiant, specifically in membrane budding reactions. Kinase that phosphoratise MVCI with Vite. Promotes screenere formation in cardiomycoytes and increases cardiomycoyte contractively (By similarity). Nuclear receptor coactivator that directly bins an uclear receptors and similarity. Nuclear receptor coactivator that directly bins an uclear receptors and similarity. Nuclear receptor coactivator that directly 0.0 (With an operation of the March and M2-Selpendent manner. Involved in the hormone-dependent fashion. Coactivates expression is an aquisite and A2-Selpendent manner. Involved in the tyroid hormone (TR), viennen (JO (WI)) and prostationals (PMR). Proceedly fonctions as a general coactivator, rather than just a nuclear tracegior coactivator. May also be involved in the coactivation of the N1- kapopa-B pathway. Way coactivate expression via a removed leng of chromatin and its interaction with histone acetylaranferase proteins. Protein kinase that seems to ad exclusively upon threading distribution. Required for normal entry into profilerative arreat later a limited number of call divisions, also called replicative sensences. Required for normal cell cycles areast in response to coloubiestraded DNA damage.	Alzheimer diaesas-presentini pathway (PANTHER) Tropane, piperidine and pyridine alkakidi biosynthesis (KEGG) NA Inflammation mediated by chemokina and praka ginaling pathway. Cytoskeletal regulation by Rho GTPase (PANTHER) Croadian Clock, Developmental Biology, Gane Expression, Metabolism, Organelle biogenesis and maintenance (Reactome) NK
MOB4 MYLK3 NCOA6	dog cat	ENSG00000143669 ENSG00000115540 ENSG00000140795 ENSG00000198646	May be required for sorting endocomal resident proteins into late multivesicular endocomes by a mechanism involving microtubules. May play a role in membrane infinition, specifically in membrane budding reactions. Microse that phosphorites MT-2004 endocrypole contractive list of informations and increases and increases and increases and increases and increases and increases anomone-dependent fashion. Caccitives expression in an agoint- and AZ-edependent marrier. Involved in the coachivation of different nuclear receptors, and a sport-ad AZ-edependent marrier. Involved in the coachivation of different nuclear receptors, and a for storids (RPARs and RXRs), thyroid homeone (FRa), vitamin DS (URA) and prostandis (PPARs). Probably functions as a general coachivator, rather than just a nuclear receptor coachivator. May also be involved in the coachivation of the NT- espres D pathway. May coachivate expression in an apoint-and AZ-edably functions as a general coachivator, rather than just a nuclear receptor coachivator. May also be involved in the coachivation of the NT- to protein them error and the interperiod on the histone coachivator error and the interperiod on the histone coachivator error and the stements to ad exclusively upon threonine residues (by similarly). Required for normal entry into professionary carett after a limited number of ad histones, also caled registerials researces normal similar to provide the stements the advective stements concellations, also caled registerials researces and the and the provident stemes and the stements the stements the similar the stements the similar the stements the similar the stements the similar to the stements the similar the similar the stements the similar the stements the similar the stements the similar the similar the stements the similar the stements the similar theorem and the similar the similar the stements the similar the similar the similar the stements the similar the sinter similar theorem and the similar theorem and theorem and the	Alzheimer diaesas-presentiin pathway (PANTHER) Tropane, piperidine an dyndine alkakid biosynthesis (KEGG) Marking and the second state of the seco
MOB4 MYLK3 NCOA6 NEK4 NT5DC2	dog cat dog cat horse	ENSG00000143669 ENSG00000115540 ENSG00000140795 ENSG00000198646 ENSG00000114904 ENSG00000114904	May be required for sorting endosomal resident proteins into late multivesicular endosomes by a mechanism involving microtubules. May play a role in membrane trafficiant, specifically in membrane budding reactions. Kinase that phosphorites MVCI with vitor. Promotes sarchourse formation in cardiomycoytes and increases cardiomycoyte contractility (By initiarity). Nuclear receptor caactivator that directly binds nuclear experisons and stimulates the transcriptional activities in a hormone-dependent fashion. Coactivates expression in an agonist- and AF2-dependent mamer. Involved in the caactivation of different nuclear necesions, such as for stratoris (RPA and FRA), Probably functions as a general coactivator, after than just a nuclear receptor coactivator. May also be involved in the coactivation of the NF- kappe B pathway. May coactivate expression via a remodeling of chromatin and its interaction with histone anolyticantiferent proteins and as for the RS, also also directly and the security of the nuclear test and a line table of the nuclear anolyticantifere proteins, also also for stratoris, also calied reglicative sensecience. Required for normal entity into profilerative areas thar a limited number of ad divisions, also calied reglicative sensecience. Required NDA	Alzheimer diasasa-presentlin pathway (PANTHER) Tropane, piperidine and pyridine akkaloid biosynthesiis (KEGG) NA Inflammation mediated by chemokine and cytokine signaling pathway, Cytoskeletal regulation by Rho GTPase (PANTHER) Circadian Clock, Developmental Biology, Gene Expression, Metabolism, Organelle biogenesis and maintenance (Reactome) N/A N/A
MOB4 MYLK3 NCOA6 NEK4 NT5DC2 NTM	dog cat dog cat horse	ENSG00000143669 ENSG00000115540 ENSG00000140795 ENSG00000198646 ENSG00000114904 ENSG00000168268 ENSG00000182667	May be required for sorting endocomal resident proteins into late multivesicular endocomes by a mechanism involving microtubules. May play a role in membrane traffician, specifically in membrane budding reactions. Kinste hat phosphoriste MTVL a two. Provides automatic formation in cardiomycoyles and increases incomes dependent failability. Nuclear receptor coactivator that directly birds nuclear receptors and simulates the transcriptional activities in a hormone-dependent failability. Cardiomycoyles and the second simulates the transcriptional activities in a coactivation of different nuclear receptors, such as for seriods (RM and ERA), retinoids (RARs and RXRs), thyroid hormone (RRs), vitamilo 30 (XDR) and prostandis (PARs). Probably functions as a general coactivitor, rather than just a nuclear receptor coactivitor. May also be involved in the coactivitation of the NT- supped pathway. May coactivate accession via a removating of chromatin and is interaction with historic protein kinase that a semitiant bact exclusively under the resolution of the NT- tion proliferative arreta that ar similar during the resonance (By similarity). Required for normal entry normal cell cycle arrets in response to double-stranded DNA damage. NA Neural cell achesion molecule.	Alzheimer diasase-presentlin pathway (PANTHER) Tropane, piperidine ad pyridine akkaloid biosynthesiis (KEGG) NA Inflammation mediated by chemokine and cytobic signaling pathway, Cytoskeletal regulation by Rho GTPase (PANTHER) Croadian Clock, Developmental Biology, Gene Expression, Metabolism, Organelle biogenesis and maintenance (Reactome) N/A N/A cellular process, developmental process (PANTHER)
MOB4 MYLK3 NCOA6 NEK4 NT5DC2 NTM PLAC8L1	dog cat dog cat horse cat, cattle	ENSG0000143669 ENSG00000116540 ENSG00000140735 ENSG00000198646 ENSG00000114904 ENSG0000018268 ENSG00000182687 ENSG00000173261	May be required for sorting endocomal resident proteins into late multivesicular endocomes by a mechanism involving microtabules. May play a role in membrane traffician, specifically in membrane budding reactions. Kinses that phosphorylask MV2 in two: Promotes acromes formation in cardomycoytes and increases <i>Landomycoyte contractility</i> (B) animatry). Nuclear receptor coactivities and increases and a specifical of the specification of the spe	Alzheimer diaesas-presentiin pathway (PANTHER) Tropane, piperidine and pytidine alkakaidi biosynthesis (KEGG) NA Inflammation mediated by chemokine and poliariling pathway. Cytoskeletal regulation by Rho GTPase (PANTHER) Circadian Clock, Developmental Biology, Gane Expression, Metabolism, Organelle biogenesis and maintenance (Reactome) NA NA Cellular process, developmental process (PANTHER) NA
MOB4 MYLK3 NCOA6 NEK4 NTSDC2 NTM PLAC8L1 PPAP2A PPAP2C18	dog cat dog cat horse horse cat, cattle cat	ENSG0000143669 ENSG000011540 ENSG0000118540 ENSG0000114904 ENSG000001182667 ENSG00000182268 ENSG00000173281 ENSG00000173281	May be required for sorting endocomal resident proteins into late multivesicular endocomes by a mechanism involving microtabules. May play a role in membrane traffician, specifically in membrane budding reactions. May play a role in membrane traffician, specifically in membrane budding reactions. May play a role in membrane traffician, specifically in membrane budding reactions. Nuclear receptor coace/wator that directly birds nuclear receptors and simulates the transcriptional activities is a hormone-dependent failabin. Cacatives expression in a agoint-and AF2-dependent marner. Involved in the coactivation of different nuclear receptor, such as for storids (RM and ERA), retinoids (RARs and RXRs), thyroid hormore (TRA) vitamin D3 (VDR) and prostandis (PARAs). Probably functions as a general coactivation of different nuclear receptor coactivator. May also be involved in the coactivation of the NT- tages 2 pathway. May coachade searce protons: also called called as searced as the start of the NT- trafficient searce and the searce of the start and the start and the start of the NT- normal cell cycle arrest in response to double-stranded DNA damage. NA Recard call achieving and the start and the deprosphorylates exogenous bloactive glyceroliptis and sphirogliptids. and sphirogliptids called (PA) biggenetic (LPA), bigget regulator of hysophosphated and (LPA) signaling in the cardiovascular system. Major enzyme response to double-stranded DNA damage. Protein thermitaets signaling actions of LPA May cortor circulative sensence. Required for normal cell cycle arrest in response to double-stranded DNA damage. NA Recard specificity phosphorylotases that dephosphorylates exogenous bloactive glyceroliptids and sphirogliptids. and (LPA) signaling in the cardiovascular system. Major enzyme responsible of dephosphorylating LPA in phasitele, which memilates signaling extons of LPA May cortor circulative correstored or phosphate (LPA) bigget to the minites signaling actions of LPA Mayor correstore and the	Alzheimer diaesas-presentin pathway (PANTHER) Tropane, piperidine and koylane signaling pathway. Cytoskeletal regulation by Rho OTPase (PANTHER) Circadian Clock, Developmental Biology, Gene Expression, Metabolism, Organelle biogenesis and maintenance (Reactome) NA NA cellular process, developmental process (PANTHER) NA Metabolism (Reactome) Immune System (Reactoms)

RNPC3	cat, dog	ENSG00000185946	Participates in pre-mRNA U12-dependent splicing, performed by the minor spliceosome which removes U12- type introns. U12-type introns comprises less than 1% of all non-coding sequences. Binds to the 3'-stem-loop of m7G-capped U12 smRNA.	Gene Expression (Reactome)
SF3B1	dog	ENSG00000115524	Subuit of the splicing factor SF38 required for X ⁴ complex assembly formed by the stable binding of U2 anRNP to the branchynoin sequence (IPS) in pre-mRNA. Sequence independent binding of SF3AF38 complex upstream of the branch atle is essential, it may anchor U2 anRNP to the pre-mRNA. May also be involved in the assembly of the ¹ C complex. Belongs also to the minor U12-dependent splicescome, which is involved in the splicing of rare class of nuclear pre-mRNA intron.	Spliceosome (KEQG)
SKA2	dog	ENSG00000182628	Component of the SKA1 complex, a microbuble-binding subcomplex of the outer kinetochore that is essential for proper chromosome segregation. Required for timely anaphase onset during milosis, when chromosomes undergo biplar attachment on spinel microbuble sending to selanding of the spinde checkpoint. The SKA1 complex is a direct component of the kinetochore-microbuble interface and directly associates with microbubles as oligomeric assembles. The complex facilitations the processive movement of microbubles along a microbuble in a depolymentiation-coupled manner. In the complex, it is required for SKA1 localization. Affinity for microbubles is synregistically enhanced in the presence of the not-60 complex and may allow the nde-80 complex to track depolymenting microbubles.	Cell Cycle, Signal Transduction (Reactome)
SNRPD1	cattle	ENSG00000167088	Core component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. Thereby, plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal and rNRPs contain a common set of Sm provins SNRPB, SNRP101, SNRPD2, SNRPE, SNRP5, SNRP5, SNRP5 and SNRP5 an	Spliceosome, Systemic lupus erythematosus (KEGG)
STAB1	horse	ENSG00000010327	Acts as a scavenger receptor for acetylated low density lipoprotein. Binds to both Gram- negative bacteria and may play a role in defense against bacterial infection. When inhibited in endothelial tube formation assays, there is a marked decrease in cell-all interactions, suggesting a role in angiogenesis. Involved in the delivery of newly synthesized CHID ISI-CLP from the biosynthetic compartment to the endosmallysocianal system.	Vesicle-mediated transport (Reactome)
SYTL1	cat	ENSG00000142765	May play a role in vesicle trafficking (By similarity). Binds phosphatidylinositol 3,4,5-trisphosphate. Acts as a RAB27A effector protein and may play a role in cytotoxic granule exocytosis in lymphocytes (By similarity).	Vesicle-mediated transport (Reactome)
TAS2R16	cattle	ENSG00000128519	Gustducin-coupled receptor implicated in the perception of bitter compounds in the oral cavity and the gastrointestinal tract. Signals through PLCB2 and the calcium-regulated cation channel TRPM5.	Taste transduction (KEGG)
TEX14	cat	ENSG00000121101	Required both for the formation of Intercellular bridges during metoils and for Lindschoter-microlubule statischmet during mitosis. Intercellular bridges are evolutionarily consumed durburus that connect differentiating germ cells and are required for spematogenesis and male fertility. Acts by promoting the conversion of mutobies into intercellular bridges visit literaction with CEPS5 inhibits the interaction between CEP55 and PPCCDBIPALIX and TSG101, blocking cell abscission and leading to transform mitodies into intercellular bridges. Also lights are lot during mitosis: recurlute to bisinchcores by PLK1 during early mitosis and regulates the maturation of the outer kinetechores and microbuble attachment. Has no protein kinesa earlying visit (or the intercellul).	NJA
TP53BP1	cat	ENSG0000067369	Plays a key role in the response to DNA damage. May have a role in checkpoint signaling during mitosis. Enhances TP53-mediated transcriptional activation.	NOD-like receptor signaling pathway (KEGG)
ZMYND10	cat	ENSG0000004838	Required for motile ciliary function. Probably involved in axonemal assembly of inner and outer dynein arms (IDA and ODA, respectively) for proper axoneme building for cilia motility. May act by indirectly regulating transcription of dynein proteins.	N/A
ZNF521	cattle	ENSG00000198795	Transcription factor that can both act as an activator or a repressor depending on the context. Involved in BMP signaling and in the regulation of the immuture compariment of the hematopolitie system. Accountes with SMADs in response to BMP2 leading to activate transcription of BMP larget genes. Acch as a transcriptional repressor via list interaction with EEP1 1, a transcription factor involved specification of 3-call lineage; this interaction preventing EBF1 to blind DNA and activate target genes.	NA