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Supplementary Materials.

Upscaling Species Richness and Abundances in Tropical

Forests

S1. Upscaling biodiversity

In this section, we describe in detail the new framework used for upscaling biodiversity. We first

describe the new approach based on the negative binomial distribution (NB) for the relative species

abundance (RSA) and then the method based on Fisher’s log-series (LS)25. Both approaches as-

sume a scale independent form of the RSA. In order to apply the LS method25, one needs to

estimate the total abundance for the whole forest, whereas in the new approach this information is

not needed. See Figure 2 of the main text for a schematic presentation of the methods.

NB method As explained in the Materials and Methods, the SAD is postulated to have a NB

functional form, P(n|r,⇠ ), for non-zero populations, with parameters (r,⇠ ) (r is known as the

clustering coefficient)

P (n|1) = c(r,⇠ )P(n|r,⇠ ) with P(n|r,⇠ ) =
✓
n+ r � 1

n

◆
⇠

n

(1�⇠)

r

, c(r,⇠ ) =

1

1� (1� ⇠)

r

,

(S1)

where c is the normalization constant. The constant c is determined by imposing
P1

n=1 P (n|1) =

1, where the sum starts from n = 1 because species with zero abundance at the scale of the whole

forest will also be absent in the sub-plots. Note that P(n|r,⇠ ) is normalized for n � 0. This is

because, in the sub-plots, there is a non-zero probability of species, present in the whole forest,

section 



having n = 0 individuals, thereby accounting for the number of missing species in the sub-plots.

Let us now consider a sub-sample of area a of the whole forest and define p = a/A the scale

of the sample, that is the fraction of the sampled forest. The first step is to compute the RSA in the

sub-sample.

We will assume that the sub-sample RSA is not affected by spatial correlations due to both interspe-

cific and intraspecific interactions. This hypothesis is well satisfied as we will show in Section S.4

using in silico generated forests with various degrees of spatial correlations. Under this hypothesis,

the conditional probability that a species has k individuals in the smaller area, a = pA, given that

it has total abundance n in the whole region of area A is given by the binomial distribution

P
binom

(k|n, p) =
✓
n

k

◆
p

k

(1� p)

n�k

k = 0, . . . , n (S2)

and P
binom

(k|n, p) = 0 if k > n. Now we want to prove that the sub-sample RSA, P (k|p), is again

a NB, for k � 1, with rescaled parameter ⇠ and the same r. Indeed, the probability, P
sub

(k|p), of

finding a species with population k � 0 in the sub-plot of area a = pA is

P
sub
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n�k
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(S3)
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where we inserted the following explicit relation for ˆ⇠
p

ˆ

⇠

p

=

p⇠

1� ⇠(1� p)

(S5)

Recall that our method uses only the information we can infer from a sub-sample at some scale

p

⇤. Therefore, we only have information on the abundances of the S

⇤
( S) species present in the

surveyed area. By denoting the number of species of abundance k at scale p

⇤ by S

⇤
(k), we get

S

⇤
(k)

S

⇤ ⌘ P (k|p⇤) = P
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(S6)

which, due to Eq.(S1), is a NB normalized for k � 1, whereas P(k|r, ˆ⇠
p

⇤
) is normalized for k � 0.

We have therefore obtained the key result that starting with a NB distribution for the RSA at the

global scale, the RSA at smaller scales is also distributed according to a negative binomial with the

same clustering coefficient r and a rescaled parameter ˆ⇠
p

⇤ depending on both ⇠ and p

⇤. A RSA with

the property of having the same functional form at different scales is said to be form-invariant.

By fitting the RSA of the data at the scale p

⇤ we can thus find both the parameters r and ˆ

⇠

p

⇤ and,

by inverting Eq.(S5) we can get ⇠

⇠ =

ˆ

⇠

p

⇤

p

⇤
+
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⇠

p

⇤
(1� p

⇤
)

(S7)

Using Eq.(S5) to eliminate ⇠ from the last equation, one gets the following relation for the param-

eter ⇠ at the two scales p and p

⇤ referred in the main text

ˆ

⇠

p

=

p

ˆ

⇠
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p

⇤
+
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⇤
(p� p
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p

⇤
). (S8)

from which, of course, one can recover both Eqs.(S5) and (S7) where one has to use that ⇠ ⌘ ˆ

⇠

p=1.



We now wish to determine the relationship between the total number of species at the whole

scale p = 1, S, and the total number of species surveyed at scale p, S
p

. For the scale p

⇤, in the

following, we will use the notation S

⇤ ⌘ S

p

⇤ . Note that

P
sub

(k = 0|p⇤) = (S � S

⇤
)/S (S9)

P
sub

(k|p⇤) = S

⇤
(k)/S. (S10)

Using Eq.(S4), the total number of species in the whole forest, in terms of the data on the surveyed

sub-plot is given by

S =

S

⇤

1� P
sub

(k = 0|p⇤)
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⇤ 1� (1� ⇠)

r

1� (1� ˆ
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⇤
)

r

(S11)

where ⇠ is given by Eq.(S7).

LS method Let us now suppose that the RSA at the global scale is distributed according to a

log-series with parameter x:

P (n|1) = P

LS

(n|x) = ↵(x)

x

n

n

, ↵(x) = �(log(1� x))

�1
, (S12)

where ↵ is the normalization constant.

The probability P
sub

(k|p), of finding a species with population k � 0 in the sub-plot of area

a = pA is given by

P
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P
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(k = 0|p) =
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P
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where the parameter x at scale p is found to be:

x̂

p

=

px

1� x(1� p)

(S15)

which is the same as Eq.(S5). Thus the analog of Eq.(S7),

x =

x̂

p

p+ x̂

p

(1� p)

(S16)

and (S8) also holds in this case. The RSA, P (k|p), is obtained as in Eq.(S6) and it is given by

P (k|p) = P
sub

(k|p)P
k

0�1 Psub

(k
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p

)
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k

p

k
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(n|x̂
p

) (S17)

Thus the Fisher log-series, which is a special case of the NB, is of course scale invariant as well.

The number of species with population k � 1, S
p

(k), in the sub-sample of area a = pA is given

by

S

p

(k) ⌘ SP
sub

(k|p) = S↵(x)

x̂

k

p

k

= ↵̂

x̂

k

p

k

(S18)

where we gathered both the constants S and ↵(x) into a unique term ↵̂, which does not de-

pend on the scale p. Again when referring to the scale p

⇤, we will use the shorthand notation

S

⇤
(k) ⌘ S

p

⇤
(k).

Then the total number of species Sj and the total abundance N

⇤ at the scale p

⇤ are given, respec-



tively, by?

S

⇤
=

1X

k=1

S

⇤
(k) = �↵̂ log(1� x̂

p

⇤
) (S19)

N

⇤
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1X

k=1

kS
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(k) = ↵̂

x̂

p
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1� x̂

p

⇤
(S20)

From the sample, because S

⇤ and N

⇤ are known, we can get the ↵̂ parameter by solving the

following equation:

N

⇤ � ↵̂

⇣
exp

⇣
S

⇤

↵̂

⌘
� 1

⌘
= 0, (S21)

which has been obtained by inserting the expression for x̂
p

⇤ from (S19) into (S20).

We now wish to infer information at the global scale p = 1 from the information we have at the

scale p = p

⇤. We know from previous considerations that the ↵̂ parameter is scale-independent.

Therefore, we have the following analogous relations for S and N :

S = �↵̂ log(1� x) (S22)

N = ↵̂

x

1� x

(S23)

from which we obtain

S = ↵̂ log

⇣
1 +

N

↵̂

⌘
, ↵̂ = S↵(x). (S24)

In order to deduce the biodiversity S at the global scale, we first require an estimate of the total

abundance N . Here we set N = N

⇤
/p

⇤
. This is consistent with our theoretical framework that

assumes a form-invariant RSA. In fact, it can be easily proved that the mean total abundance scales

linearly with the area when one assumes a LS-distributed RSA at the global scale

E(N⇤
) =

1X
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⇤
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where we have used Eq.(S15).

The very same result can be obtained if one assumes the RSA distributed as a negative binomial,

Eqs.(S3) and (S10):

E(N⇤
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kSc(r,⇠ )
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(S26)

Another way to infer the total biodiversity at the global scale is by using, as for the NB method,

the following relation

S =

S

⇤
P1

k=1 P(k|x̂
p

⇤
)

= S

⇤ · log(1� x)

log(1� x̂

p

⇤
)

. (S27)

In this case, we do not need an estimate of the total number of individuals N within the area A.

We applied both the methods to extract biodiversity in our empirical forests and verified that the

predictions were essentially the same.

Fisher log-series as a particular limit of the negative binomial We now show that the Fisher

log-series is obtainable as the limiting case of the NB Eq.(S1). To do that we observe that
✓
n+ r � 1

n

◆
=

�(n+ r)

�(n+ 1) � (r)

r⇡0⇡ r

n+ 1

(S28)

and taking the limit of small r of Eq.(S1)

lim

r!0
c(r,⇠ )P(n|r,⇠ ) = lim

r!0
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r

1� (1� ⇠)

r
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n
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�n ln(1� ⇠)

(S29)

which is Eq.(S12) with x = ⇠.

Assumptions of our method In our analysis, we assume that the probability that an individual

tree falls within a given region is proportional to the region’s area a = pA. This allows us to use



the formalism introduced in Section S.1. We refer to this assumption as the mean field hypothesis.

A consequence of the mean field hypothesis is that when we wish to sample the p% of an area

A where every individual has been catalogued into a list according to the species it belongs to,

this is equivalent to sampling the p% of the individuals on this list. This is the only unbiased

procedure one can utilize when neither spatial coordinates of the individuals nor spatial correlations

are available.

In order for this hypothesis to be satisfied, one must first check if the region under study does

not present strong inhomogeneities and anisotropies14, 39, 54 – otherwise some species may tend

to inhabit specific habitats of the region and therefore the assumption of a homogeneous spatial

distribution of the individuals may fail. When extrapolating information to larger scales which

present environmental inhomogeneities, we need a large number of randomly located samples in

order to cover all the possible habitats, as emphasized by Slik25.

It may also not be possible to neglect spatial correlations since they could have a strong influence on

the spatial distribution of the individuals. For example, we test the influence of spatial correlations

between individuals on empirical singleton curves for the French BBS dataset of 2010, which

records the occupancy number of 246 species in 1096 cells located all around France. At variance

with the case of tropical forests, here the curves obtained by considering or neglecting spatial

effects are quite different especially for scales . 60%. This discrepancy suggests that space cannot

be neglected and thus it must be taken into account when analyzing those kinds of datasets.



The LS method suffers from some important limitations. The first, already noted by several

groups14, 17, 18, 28–32, is that in many cases the log-series distribution is not flexible enough18 to de-

scribe the distinct observed RSA patterns: unimodal distributions are the norm, rather than the

exception in tropical forests. This fact is reflected in the better performance of the NB method

in predicting the biodiversity at larger scales in both artificial forests and in empirical tests (see

Section S.4). There are two other important limitations that we describe below in detail.

Lack of flexibility of the LS in describing the singleton curve Using the theoretical framework

described above we can determine the number of singletons in a sub-plot whose area is a fraction

p of the area of the whole forest. The LS method predicts that the number of singletons is given by

(see Eq.(S18)):

S

p

(1) ⌘ SP
sub

(k = 1|p) LS

= S↵(x)x̂

p

= S↵(x)

px

1� x(1� p)

for LS (S30)

(note that in Eq.(S18) we used the notation S

⇤
(k) instead of S

p

(k) used here). This is a monotoni-

cally increasing function of p, since S and ↵(x) are constants depending only on the composition

of the forest at the global scale. In contrast, the number of singletons predicted by our approach,

using a single NB, is given by (see Eq.(S10)):

S

p

(1) ⌘ SP
sub

(k = 1|p) NB

= Scr

ˆ

⇠

p

(1� ˆ

⇠

p

)

r for NB (S31)

This, at variance with Eq.(S30), is not necessarily an increasing function of the sampled area, as

we can see in S1, but it depends on the values of the parameters. The negative binomial

distribution is therefore more flexible.

section S2. Limitation of the LS methods

fig.  
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we can compute the

probability that a species comprises a single individual at the scale p by using eq.   S31.

Left panel: singleton fraction as a function of the fraction p of sampled area for a global RSA with

parameters r = 0.1 and ⇠ = 0.9. Right panel: singleton fraction at different scales p for a global

RSA with parameters r = 0.9 and ⇠ = 0.9. In contrast with the log-series case ,the curve does

not necessarily increase monotonically .

fig. S1. Assuming that the global RSA is distributed according to an NB,



Dependence of Fisher’s ↵ from the sampling scale Slik et al.25 showed that Fisher’s ↵, that they

deduced from three surveyed macro-regions using Eq.(S21), displays an asymptotic behaviour and

they use the corresponding asymptotic value as a reliable estimate for Fisher’s ↵ at the global

scale. This asymptotic ↵ could be an artifact as its behaviour is affected by having sampled too

low a percentage of the area. We have computed Fisher’s ↵ for the Amazonian dataset at different

scales using the same Eq.(S21) and the empirical values of N⇤ and S

⇤ (first panel of Figure S2). In

particular, because no explicit spatial data were available, but just the RSA of the 4962 recorded

species, mean values and error bars at each scale refer to 100 samples and the corresponding frac-

tion of individuals, randomly picked among all the surveyed populations (see Section S.4 for an

assessment of the spatial effects). At small scales (up to ⇠ 10%), we can observe the same increas-

ing behavior as for Slik’s curves (see Figure S2d). Nevertheless, when the sampling percentage

increases, the ↵-curve starts to slowly decrease. This means that in some intermediate range, as

the sampled area increases, singletons disappear (because other individuals of the same species are

found) at a rate faster than that at which new singletons are found. After this regime, the number

of singletons reaches an asymptotic value. This phenomenon is even more evident in other cases,

such as the Barro Colorado Nature Monument and the Caxiuana forest (second and third column

of Figure S2).

The choice of the value of the parameter ↵ strongly affects the predictions of both the number

of species and singletons at the global scale, since both estimates are proportional to ↵ itself (see

Eqs.(S24) and (S30)). We have computed the number of singletons inferred with NB and LS meth-

ods for all the forests in our dataset (see able S1). Except for few cases, where the results aret



comparable, usually the number of singletons predicted by the LS method is much larger than the

one inferred by the NB approach.

Our method can be generalized to any linear combination of NBs with the same parameter ⇠ and

different parameters r. For example, this result is particularly useful when dealing with data which

present unusual behaviors which cannot be captured by a single NB distribution (see Figure S3).

Indeed, one finds that in this case the predicted biodiversity is given by

S = S

⇤ �[1� (1� ⇠)

r1
] + (1� �)[1� (1� ⇠)
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�[1� (1� ˆ
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p

⇤
)

r2
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, (S32)

where � 2 (0, 1) is the coefficient of the linear combination of the two negative binomials. The

parameter ⇠ is given by Eq.(S7) whereas the parameters r1, r2, � and ˆ

⇠

p

⇤ are obtained by the best

fit of the RSA of the surveyed area at scale p

⇤ using the linear combination

�c(r1,
ˆ

⇠

p

⇤
) · P(k|r1, ˆ⇠p⇤) + (1� �)c(r2,
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⇤
) · P(k|r2, ˆ⇠p⇤). (S33)

In principle, one could use a generic combination of an arbitrary number of negative bino-

mials to better fit the distribution. In fact, this can be done to any degree of precision due to the

following considerations. The generating functions of the negative binomials, defined by

G(z|r,⇠ ) =
X

n�0

z

nP(n|r, ˆ⇠) =
⇣
1� ⇠

1� z⇠

⌘
r

, (S34)

section S3. Flexibility of NB distribution
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obtained by applying our method (NB Method). In the last column, we show the results of the LS

method. The NB method yields similar results to the LS method, but without needing an estimate

of N , the total number of trees.

Forest Observed Singletons NB Method LS Method

AMAZONIA 645 581 751

BARRO COLORADO NATURE MONUMENT 17 16 34

BUKIT BARISAN 13 2 62

BWINDI IMPENETRABLE FOREST 3 1 19

CAXIUANA 1 1 61

COCHA CASHU MANU NATIONAL PARK 12 3 94

KORUP NATIONAL PARK 0 1 37

MANAUS 11 0 175

NOUABALE NDOKI 0 0 18

PASOH FOREST RESERVE 94 30 118

RANOMAFANA 3 2 40

UDZUNGWA MOUNTAIN NATIONAL PARK 3 1 15

VOLCAN BARVA 5 1 59

YANACHAGA CHIMILLEN NATIONAL PARK 52 58 58

YASUNI NATIONAL PARK 7 4 97

table S1. Predicted number of singletons in the whole area of each tropical forest



Number of Individuals Number of Individuals

R
SA R
SA

1 Negative Binomial Mix of 2 Negative Binomials

On the left the RSA has been fitted through a negative binomial, which cannot capture the

unusual behavior of the distribution. On the right is shown an improved fit with a combination

of two negative binomials with the same parameter ⇠ and different clumping parameters like in

Eq.(S33).

with 0  z  1 and r � 0, generate an algebra of functions when considered as a function

of r, with ⇠ parameter fixed. Such an algebra satisfies the hypothesis of Nachbin theorem33, 34,

since its separates the points and the tangent vectors of C. In particular, in our case this second

hypothesis reduces to the existence, for each point x 2 C, of a function f of the algebra such that

df(x) 6= 0. Thus, from Nachbin theorem, the algebra is dense in the space of complex functions

with the topology induced by the derivatives up the k

th order, Ck

(C). This implies that any k-

times differentiable function of z 2 [0, 1] can be approximated together with its k derivatives to an

arbitrary degree of precision by a linear combination

`X

i=1

�

i

G(z|r
i

, ⇠) (S35)

where ` depends on the desired precision and the �

i

’s are suitable coefficients. Thus, given an

fig.  S3.  Fit of RSA consisting of a combination o    f and a log-normal distribution.an     an       LS      
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(a binomial distribution of parameters r = 40 and ⇠ = 0.8, a geometric distribution of parameter

µ = 0.15 � = 15) and fit these data with one, three,    and

six NBs, respectively. As shown, with six negative binomials, we obtain a perfect fit of the data,

as suggested by the theorem.

arbitrary (discrete) probability distribution, P (n), we can approximate its generating function,

G(z) =

P
n�0 z

n

P (n), with a linear combination such as Eq.(S35), and its n-th derivative at

z = 0 gives us the estimate of P (n) at the desired precision. Beware that the approximating linear

combination may fail to be a probability generating function. It may not be normalised or some of

its derivatives may be negative. Anyway, within our framework the error can be managed as long

as we restrict to the case of finite population size.

In order to test the LS method and our approach based on the NB distribution, we have generated

various kinds of artificial forests with and without spatial correlations.

fig.      S4.       We have generated synthetic data from a combination      of discrete distributions

section S4. Test on computer-simulated forests

,      and a Poisson distribution with parameter



Artificial forests without spatial correlations In this case, the forests are obtained by drawing

5000 species from two of the commonly used RSA for modeling/fitting tropical forest abundances:

a negative binomial (NB forest) and a log-normal (LN forest) distribution. We note that an LS

forest would be the limit of r ! 0 of a NB forest, as shown above. When a zero abundance is

generated, the corresponding species is deleted from the dataset.

In the mean field hypothesis (the random sampling described in Section S.1), sampling the fraction

p of the whole forest area is equivalent to randomly sample a fraction p of the individuals. We

thus tested the two methods predicting the total biodiversity starting from different spatial scales,

p. The results are reported in Table S2 (NB forest) and in the Results section of the main text (LN

forest). In particular, we see that the NB method, even using a single negative binomial, works

well in all cases, while the LS method overestimates the biodiversity when the generated forest has

a RSA which is not a log-series. Therefore, the NB method is more flexible and robust even when

a negative binomial distribution is not the RSA of the whole forest.

We want to stress that when fitting the sample of the simulated forest with the log-series (LS

method), we use as the number of individuals N of the whole area its exact value (that we know

as we have generated the forest). We do this to favorably bias the chances of success of the LS

method.

Artificial forests with spatial correlations To test the robustness of our method with respect to

spatial correlations and sampling methods, we distributed the individuals of the NB and LN forests

in a 8900x8900 and in a 4900x4900 grid (where a unit corresponds to 1 meter) respectively, ac-

cording to two modified Thomas processes12, 38, 39. We recall that this process can be simulated



by first distributing the parents’ locations (clusters’ centers) according to a Poisson process with

intensity ⇢. Given then the total number of individuals to be placed within the area of the sample,

we randomly assign each of them to one of the previously generated parents. We thus place the

offspring at a position drawn from a two-dimensional Gaussian distribution centered at the loca-

tion of the parent and with variance �. We have imposed toroidal boundary conditions in order to

minimize finite size effects for the whole (artificial) forest. Finally, the parents are removed from

the dataset, leaving just the off-springs at their locations.

We set the density of clusters ⇢ = 6 · 10�5 and we chose two clump sizes � = 15 and 200 in order

to compare the performance of the methods for different degrees of spatial correlations. The area

of the global region was chosen with the same ratio N/A of individuals per unit area. We then

infer the number of species in the whole area by sampling a percentage p% = 1% and 5% of it.

For the NB forest, we consider two different sampling methods: a first one where we survey non-

overlapping 1-ha plots at randomly chosen locations within the available area and a second one

where we collect data within a unique plot of the same total desired area. Our results are shown in

different clumping parameters and of the different sampling methods.

We also tested the robustness of the method with respect to different clumping coefficients of the

generating Thomas process for the LN forest. Even in this case, no significant difference was

recorded (see Results section of the main text). In all cases, the mean values and standard errors

refer to 100 trials.

The NB method gives the same results both with different sampling methods and spatial correla-

table S2. In fig.  S5, we show a schematic presentation of the datasets generated according to



tions and works well at all spatial scales.

In this section we compare our method with the most popular ones proposed in literature20, 25,

which are summarized in Table S3. We found that our method outperforms that of Chao (denoted

with Chao

wor

in Table 3) for Amazonia, Pasoh and Yasuni. while it is better than LS method

and comparable to Chao for the remaining forests. In the latter, the difference between S

p

⇤ - the

number of observed species at the sampled scale p

⇤ - and S

p

- the one at sub-sample scale p - goes

to zero very fast as p approaches p⇤. At the same time, the number of singletons quickly decreases

to (very) small values (even zero). In these cases, Chao’s predictions, based on singleton and

doubleton species lead to S

p

⇡ S

p

⇤ . This effect is very clear when we compare the SAR produced

by NB and Chao’s methods (see Figure 4 of the main text). In the latter case the SAR remained

constant for a great part of the scale range larger than p

⇤, (see Table S6). Indeed for this range of

p

⇤, the SAR predicted by Chao can be approximated as Sp

pred

⇡ S

p

⇤
+

(# singletons)2
2 # doubletons. On the other

hand, the SAR predicted by the NB method displayed the typical shape of the SAR observed in real

ecosystems. We finally found that other methods19, 20 do not converge to S

p

⇤ as p ! p

⇤, i.e., they

do not have an explicit dependence on the surveyed area, rather they give an upscaled biodiversity

estimates only based on the number of singletons or doubletons (see Figure S6). Therefore we

excluded these predictors from our analysis.

section S5 ,. Comparison with other popular estimators
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FOREST FOREST

Robustness of the Method. A) We test the robustness of the method

with respect to different spatial correlations and sampling methods. We distribute the individuals

of an ”artificial” forest on an area A according to two modified Thomas processes with the same

density of clusters ⇢ = 6 · 10�5, two different clump sizes � = 15, 200 and different RSAs (see

Table S2 below and Results section of the main text). In A)-B) green dots are plants’ individuals

which are either clumped (A) or uniformly distributed (B). We then wish to infer the number of

species in the whole area by sampling a fraction p

⇤ of it. We consider two different sampling

methods: a first one where we survey non-overlapping plots at randomly chosen locations within

the available area (left panel) and a second one where we collect data within a unique plot of the

same desired area (right panel). In the figure, orange squares correspond to p

⇤
= 0.01 sampling,

while black squares represent p⇤ = 0.001 (i.e. 1% and 0.1% respectively). C-D) RSA of the

species sampled at the 1% and 0.1% scale. We note that the RSA in (D) does not exhibit a mode

due to the effect of the veil-line27: the rarest species in the 1% case are not sampled in the 0.1%,

leading to a mode of the observed distribution in the 1% case and not in the 0.1% case.

20

fig.  S5.



LS methods to the forest generated according to an NB and distributed in 8900 x 8900 units 

⇢ = 6

�5 and different clump sizes � 15 and 200. Mean values and related standard

errors on 100 trials are reported for each percentage of sampling. The NB method works well in

all cases and its results are robust with respect both to the sampling method and the presence of

spatial correlations. In contrast, the LS method does not give reliable results, because the basic

hypothesis of a log-series RSA does not hold.

p=1% Empirical Data NB Method LS Method

High-clustered forest
random samples 4974 4973±5 9823±20

increasing-area sample 4974 4961±5 9918±35

Low-clustered forest
random sample 4974 4970±4 9834±5

increasing-area sample 4974 4968±4 9876±21

p=5% Empirical Data NB Method LS Method

High-clustered forest
random sample 4974 4974±1 7448±7

increasing-area sample 4974 4981±1 7567±26

Low-clustered forest
random sample 4974 4975±1 7440±1

increasing-area sample 4974 4975±1 7550±26

table S2. Prediction of the total number of species obtained by applying both NB and 

units        according to two different modified Thomas processes with the same density of clusters
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table S3. Summary table of the most popular biodiversity estimators.
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forests. p

⇤
= 1 from sub-samples at scales p < p

⇤ with

the most popular estimators summarized in Table S3. While the NB, Slik and Chao
wor

methods do

converge at S
p

⇤ as p goes to p

⇤
, all the others20 have a monotonically increasing behaviour due to

the independence, in their predictions, of the scale p.

fig.    S6.      Comparison between biodiversity estimators for Amazonia and BCI

    Predicted biodiversity at the sample scale



Finally, we compared our method to another important upscaling technique based on the

principle of Maximum Entropy proposed by Harte and collaborators 21. In Table S4 we display

the results on four empirical forests. For each of them, we sub-sampled a fraction p = 0.1 of

the individuals and predicted the species richness at a larger scale, where the true value of S⇤ is

known (second column of the table). Because Harte’s upscaling procedure allows one to scale up

by successive factors of two 21, we cannot obtain an estimate at p = 1. The last two columns of

Table S4 refer to the predictions at p = 0.8 and p = 1.6, which represent lower and upper bounds

for the species richness at the desired scale of p = 1. For the first three forests, Harte’s method

does not perform as well as the others, with typical errors around 20%. For the last forest, the

performance is comparable to Chaowor, while being a bit worse than both the NB and LS methods.

These two latter methods yield very similar results because the best fitting of the empirical SAD

with a negative binomial resulted in an r parameter very close to zero. The SAD, in this case, does

in fact resemble a log-series, a result also valid for Hartes method. We also compared the NB,

LS, Chaowor and Harte methods on BCI empirical data, when a contiguous area is sampled (see

Table 5). More precisely, we sub-sampled a fraction p = 0.25 and p = 0.5 of the individuals and

predicted the species richness at the p = 1 scale, where the true value of S⇤ is known (301 species).

In both cases, the NB method outperformed those of Harte, whose estimates are comparable to

those of the LS method. This is in accord with theoretical expectations because both the LS and

Harte procedures are based on the assumption of a log-series SAD.



wor and the Harte methods on em-

pirical data. For each tropical forest, we sub-sampled a fraction p = 0.1 of the individuals and

predicted the species richness at the p = 1 scale, where the true value of S⇤ is known (second col-

umn). For Harte’s method, two estimates are shown because the iterative method permits upscaling

at scales which is a factor of two higher than the previous scale 21. Here we show predictions at

p = 0.8 and p = 1.6, which are bounds on the species richness at p = 1.

FOREST True S⇤
NB LS Chaowor Harte

Spred % err Spred % err Spred % err Spred % err

BCI 301 327 8.6 341 13.3 272 9.6 382/430 26.9/42.9

PASOH 927 910 1.8 1049 13.2 805 13.2 1192/1362 28.6/49.9

AMAZONIA 4962 5127 3.3 5130 3.4 3991 19.6 6060/7107 22.1/43.2

YANACHAGA 209 182 12.9 182 12.9 148 29.2 241/320 15.3/53.1

wor and Harte methods on BCI empirical data.

We considered two sub-samples consisting of contiguous fractions p = 0.25 and p = 0.5 of the

surveyed area

p* True S⇤
NB LS Chaowor Harte

Spred % err Spred % err Spred % err Spred % err

0.25 301 310 3.0 325 8.0 287 4.7 333 10.6

0.5 301 306 1.7 313 4.0 298 1.0 315 4.7

table S5. Comparison between the NB, LS, Chao

.

table S4. Comparison between NB, LS, Chao ,

,



We collected data of 15 forests around the planet on different tropical field stations of the equato-

rial zone. The number of observed species and singletons for each forest are reported in Table S6.

All datasets are publicly available or upon request.

Datasets of Bukit Barisan, Bwindi Impenetrable Forest, Caxiuana, Cocha Cashu - Manu National

Park, Korup National Park, Manaus, Nouabalé Ndoki, Ranomafana, Udzungwa Mountain National

Park, Yanachaga Chimillen National Park and Yasuni National Park have been provided by Trop-

ical Ecology, Assessment and Monitoring (TEAM) Network of Conservation International (see

http://www.teamnetwork.org/data/use).

The Amazonian dataset came from the paper Hyperdominance in the Amazonian Tree Flora by

Hans ter Steege et al.24 (http://science.sciencemag.org/content/342/6156/1243092.figures-only).

The Pasoh and Barro Colorado Island datasets have been provided by the Center of Tropical Re-

search Science of the Smithsonian Tropical Research Institute (http://www.ctfs.si.edu/site).

In particular, for Barro Colorado Island we used the 2005 census and we conducted our analysis by

considering all provided species, with no restriction based on dbh (saplings included). Following

the analysis in Slik et al.25, we removed individuals whose taxa were classified as unknown.

section S6. Data set 



able

percentage p% (last column of the table) of surveyed area.

Forest Species Singletons p%=100p

AMAZONIA 4962 645 0.00016

BARRO COLORADO NATURE MONUMENT 301 17 3.20513

BUKIT BARISAN 340 13 0.00169

BWINDI IMPENETRABLE FOREST 128 3 0.01813

CAXIUANA 386 1 0.01818

COCHA CASHU - MANU NATIONAL PARK 489 12 0.00035

KORUP NATIONAL PARK 226 0 0.00473

MANAUS 946 11 0.06000

NOUABALÉ NDOKI 110 0 0.00143

PASOH FOREST RESERVE 927 94 0.35714

RANOMAFANA 269 3 0.01463

UDZUNGWA MOUNTAIN NATIONAL PARK 109 3 0.00302

VOLCAN BARVA 392 5 0.02025

YANACHAGA CHIMILLEN NATIONAL PARK 209 52 0.00372

YASUNI NATIONAL PARK 481 7 0.61100

t S6. Number of species and singletons in 15 forests in our data set with the



p

⇤: How much remains to be sampled?

To check the self-consistency of our framework, we run the following test on the empirical forests.

We generate the corresponding global forests according to the RSA and the number of species

predicted by our method at the global scale. We then sample N

p⇤ = p

⇤
N individuals and measure

the number of different species (S
p⇤) to which they belong. In summary, from the predicted RSA

at the global scale, we can reproduce, by sub-sampling, the empirical values of the number of

species, S
p⇤, and the number of individuals, N

p⇤, at the scale p⇤. For each forest, we run the test

100 times and produced the histograms in Figure S7. For all the forests, the red lines representing

the empirical values of S
p⇤ and N

p⇤ in our dataset turn out to be typical values.

Using our results on the up-scaled forest biodiversity, it is possible to estimate the percentage

of the forest that still needs to be sampled in order to have an estimation error around 5%. We

proceed as follows:

1. employing our estimation of the RSA parameters and of the total number S of the species at

the global scale, we generate the predicted forest;

2. we sample the global forest at larger and larger scales p, extracting for each of them 100

samples consisting of N
p

= pN randomly chosen individuals;

3. we apply our method to each sample obtaining an estimation S

pred

of S;

4. we compute for each scale mean values µ and standard deviations � of the 100 relative errors

obtained (S

pred

� S)/S;

section S7 ,. Self-consistency and estimation of the critical
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(a) Barro Colorado Nature Monument
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(c) Bwindi Impenetrable Forest
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(d) Caxiuana
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(e) Korup National Park
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(f) Manaus
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(g) Nouabalé Ndoki
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(h) Pasoh Forest Reserve
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(i) Ranomafana
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(j) Udzungwa Mountain National Park
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(k) Volcan Barva
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(l) Yanachaga Chimillen National Park
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(m) Yasuni National Park

Starting with the RSA and the

number of species at the global scale predicted by our method, we generated an artificial forest.

We then sampled a fraction p

⇤ of the area and measured the number of different species (S
p

⇤) and

the number of individuals (N
p

⇤) at the scale p

⇤. For each RSA of an empirical forest, we run this

test 100 times and produced the histograms depicted above. The red lines represent the empirical

value of S
p

⇤ and N

p

⇤ in our dataset.

fig. S7 . Self-consistency test of our framework.



5. we select the scale at which 95% of the samples lead to an error less or around 5% with

respect to the true value of S (see main text).

In Figure S8, we plot these values against the percentage of hyper-rare species for each forest in

log-log scale (see Table 3 of the main text). Intuitively, the higher the number of the rare species of

a forest, the bigger the percentage one should sample in order to get an estimate of the total number

of species within a given error. Indeed, we can observe a slight increasing trend in the data points.

If we exclude the Amazonia dataset, which is clearly an outlier, we get a correlation coefficient

of 0.5. If we also exclude the three forests of Bwindi, Udzungwa and Yanachaga, for which we

would need a few hundred times the actual sampling to have an estimation precision around 5%,

the correlation coefficient rises up to 0.8.

The parameters of the NB method, which provide the best predictions are very close to r = 0 and

⇠ = 1, regardless of the forest. This is somewhat unexpected, because there are neither theoretical

nor biological reasons why tropical forests in different geographical locations and with different

biodiversity richness should have abundances distributed across species in a very similar manner.

As underscored in the main text, a closer look at the NB distribution reveals that, in this region of

parameter space, the relative fluctuation of abundances is maximized.

Let (see Eq.(S1)) P (n|1) = c(r,⇠ )P(n|r,⇠ ) =
�
n+r�1

n

�
⇠

n

(1� ⇠)

r

/[1� (1� ⇠)

r

] be the RSA in the

NB hypothesis and let us compute its first two moments, which we denote by < n > and < n

2
>

section S8. RSA parameters maximize relative fluctuation in abundances
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respectively. These can be easily calculated to give

< n >=

1X

n=1

nP (n|1) = ⇠r

(1� ⇠)(1� (1� ⇠)

r

)

(S36)

and

< n

2
>=

1X

n=1

n

2
P (n|1) = ⇠r(1 + ⇠r)

(1� ⇠)

2
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)

(S37)

Then the relative fluctuation in abundances, F (⇠, r), is given by

F (⇠, r) =

< (n� < n >)

2
>

< n >

2
=

< n

2
> � < n >

2

< n

2
>

=

(1� (1� ⇠)

r

)(1 + ⇠r)

⇠r

� 1,

(S38)

whose contour plot in shown in the main text, Figure 5.
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