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SUPPLEMENTARY INFORMATION 

 

 

1.0 Data limitations – growth curves and physical oceanography 

 

Temperature-dependent growth data are limited for most fish, and in order to project changes in 

other farmed species, further research is required to establish their TPCs for growth. For 

example, there are currently few controlled experiments on temperature-dependent growth in fish 

across the entire grow-out period. Conducting laboratory temperature and growth experiments 

with fish over several months or years is expensive and logistically difficult, meaning most 

studies focus on short-term temperature-growth relationships, reducing the accuracy of estimated 

TPCs. Further, environmental conditions in offshore grow-out operations differ from laboratory 

conditions and can alter growth rates and bias TPCs. Controlled temperature experiments in 
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grow-out environments are logistically prohibitive but would be the most accurate method to 

estimate the temperature dependence of growth in open ocean aquaculture settings. Farms would 

be the most viable source of this type of data, but the industry currently has little incentive to 

share data (Callaway et al., 2012). There is also evidence that fish health and growth rates may 

be higher offshore than in coastal operations (e.g. Kirchhoff et al., 2011; Maricchiolo et al., 

2011). As such, the growth rates used in this study are likely conservative estimates. TPCs 

change with ontogeny, and although the change within the grow-out period is small relative to 

other lifestages, there are changes in the shape of the TPC and the optimum and extreme 

temperatures (Handeland et al., 2008). An improved understanding of the relationship between 

growth and temperature and growth and other environmental variables (e.g. current and salinity) 

would allow for the use of more robust growth models with additional dynamic parameters.  

 

Future studies would benefit from additional oceanographic data concerning the depth of 

thermocline. Open ocean aquaculture technology is improving rapidly, making it possible to 

establish operations further from shore and in deeper waters. In addition, pens can also be 

submerged further from the surface to avoid unfavorable surface conditions (Lekang, 2013). A 

shallow thermocline may mean that farms have to balance surface threats with potentially 

unfavorable ambient water temperatures at submerged depths below the thermocline. Knowledge 

of thermocline depth and temperature throughout the water column would allow farmers to 

balance these trade-offs and target or avoid specific water temperatures. Incorporating 

thermocline information could also allow the model to exclude areas with seasonally low 

dissolved oxygen concentrations associated with upwelling.  

 



S3 
 

Daily temperature fluctuations have been shown to be physiologically important to TPC 

parameters (Kern et al., 2015). Use of higher frequency temperature data (e.g. hourly), coupled 

with an improved understanding of the physiological mechanisms that govern TPCs, would 

allow for better predictions of how species respond to temperature change, as the monthly means 

used in this study can obscure variation and extremes that could alter growth or lead to mortality 

(Schulte et al., 2011; Sheldon &  Dillon, 2016).  
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Table S1. Values and references for temperature-growth components of each species, Atlantic 

salmon (Salmo salar), gilthead seabream (Sparus aurata), and cobia (Rachycentron canadum). 

Extensive literature searches were conducted using both traditional academic sources (e.g. Web 

of Science and Google Scholar) and industry and gray literature available online. Temperature 

values (Tmin, Topt, and Tmax) are determined based on laboratory and field studies. Growth 

values (monthly growth rate) are determined based on reports from laboratory and field studies 

and industry reports. 

Species Tmin Topt Tmax 

Monthly 

Growth 

Rate 

grams 

month-1 

References 

Salmo salar 1.5 14 19 0.33 
(FAO, 2015a; Handeland et al., 

2008; Marine Harvest, 2015) 

Sparus aurata 12 25 32.9 0.03 

(FAO, 2015b; Hernández et al., 

2003; Lupatsch &  Kissil, 1998; 

Seginer, 2016; Silva et al., 2014; 

Tort et al., 2004) 

Rachycentron 

canadum 
22 29 32 0.5 

(Benetti et al., 2010; Fraser &  

Davies, 2009; Kaiser &  Holt, 

2005; Liao et al., 2004; Miao et al., 

2009; Nhu et al., 2011; Schwarz et 

al., 2007) 

 

 

Table S2. Values of linear function constants for each species, Atlantic salmon (Salmo salar), 

gilthead seabream (Sparus aurata), and cobia (Rachycentron canadum). 

Species a1 a2 b1 b2 

Salmo salar 0.0264 -0.066 -0.0396 1.254 

Sparus aurata 0.026 -0.0042 -0.0308 0.1388 

Rachycentron 

canadum 
0.0714 -0.1667 -1.5714 5.3333 
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Figure S1. Summary of sea surface temperatures increase in Earth System Model CM2.6: The 

difference between the 2016-2020 and 2046-2050 average monthly temperatures. 
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Figure S2. Area available (square kilometers) for salmon growth with application of no 

constraints (a, red), current (b, purple), eez (c, blue), depth (d, green), and all constraints (e, 

orange), over 5 year average from 2016-2020.  
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Figure S3. Area available (square kilometers) for seabream growth with application of no 

constraints (a, red), current (b, purple), eez (c, blue), depth (d, green), and all constraints (e, 

orange), over 5 year average from 2016-2020.  
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Figure S4. Area available (square kilometers) for cobia growth with application of no constraints 

(a, red), current (b, purple), eez (c, blue), depth (d, green), and all constraints (e, orange), over 5 

year average from 2016-2020.  
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