1	Supplementary information:
2	Hetero-oligomer of dynamin-related proteins participates in the fission of highly divergent
3	mitochondria from Entamoeba histolytica
4	
5	Takashi Makiuchi ^{a*} , Herbert J. Santos ^b , Hiroshi Tachibana ^a , and Tomoyoshi Nozaki ^{b,c,d*}
6	
7	^a Department of Infectious Diseases, Tokai University School of Medicine, 143 Shimokasuya,
8	Isehara, Kanagawa 259-1193, Japan; ^b Department of Parasitology, National Institute of
9	Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; ^c Graduate School of
10	Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki
11	305-8572, Japan; ^d Department of Biomedical Chemistry, Graduate School of Medicine, the
12	University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
13	
14	* Corresponding authors: T. Makiuchi and T. Nozaki
15	TM; E-mail: makky@tokai-u.jp; Phone: +81(Japan)-463-93-1121 ext. 2600; Fax:
16	+81-463-95-5450

17 TN; E-mail: nozaki@m.u-tokyo.ac.jp; Phone: +81(Japan)-3-5841-3526; Fax: +81-3-5841-3444

18 Legends of Supplementary Figures

19 Supplementary Fig. S1

20 Domain prediction of EhDRPs by Pfam. The human (*Homo sapiens*, Hs) Drp1 (NP_036192),

21 which is involved in mitochondrial fission, was predicted to contain a dynamin family GTPase

domain (green box), a middle domain (red box), and a GTPase effector domain (blue box) based

23 on Pfam analysis. The same three domains were likewise detected in human dynamin 1 (HsDyn1:

NP_004399) in addition to the pleckstrin homology (PH) domain (orange box), whereas only the

dynamin family GTPase domain was predicted in human Opa1 (HsOpa1: AAH75805). HsOpa1,

a protein involved in mitochondrial inner membrane fusion, also contains a mitochondrial

27 targeting sequence (MTS) and a transmembrane region (TM). *E. histolytica* possesses four genes

for DRPs (EhDrpA, EhDrpB, EhDrpC, and EhDrpD) in its genome. The previously reported *E*.

29 *histolytica* DLP1 (dynamin-like protein 1)¹, is designated here as EhDrpA for uniformity among

30 the four EhDRPs in this study. The corresponding *e*-values calculated by the Pfam prediction are

31 indicated in the boxes. The amino acid stretch depicted in EhDrpC corresponds to the putative

32 nuclear localization signal predicted by the cNLS Mapper.

33

34 Supplementary Fig. S2

Confirmation of the expression of HA-tagged EhDrpA-D by immunoblot assay. The left panel shows the immunoblot reacted with anti-HA mouse monoclonal antibody (HA.11 16B12), while the right panel corresponds to the blot stained with anti-CS1 rabbit antibody (as a loading control)². Predicted sizes of EhDrpA-HA, EhDrpB-HA, EhDrpC-HA, and EhDrpD-HA are about 80.5-, 78.3-, 94.6-, and 94.1-kDa, respectively. Each lane contains 10 µg protein.

40

41 Supplementary Fig. S3

42 Confocal immunofluorescence images and fluorescence intensity profiles of *E*.

43 *histolytica* transformants expressing EhDRP-HA. These images were acquired as shown in Fig. 2.

44 The line color in graphs on the bottom panels corresponds to the respective fluorescence color in

45 immunofluorescence images. Scale bar = $10 \mu m$. Bottom graphs show the profile of fluorescence

46 intensities on the line from the merged fluorescence micrographs. Each image of EhDrpC-HA

47 and EhDrpD-HA strains on the left is identical to one shown in Fig. 2.

48

49 Supplementary Fig. S4

50 Scatter plots of the distribution of fluorescence signals for the evaluation of co-localization

51 between EhDRP-HA and APSK or TOTO-3. The plots were created and analyzed using the

52 "Coloc" option in Imaris[®] software (Ver. 6. 2. 1, Bitplane). The Diagrams shown in red and blue

53 boxes were generated from images in Fig. 2 and Supplementary Fig. S3, respectively. The

54 diagrams in yellow and green boxes were generated from images of EhDrpC-HA

and EhDrpD-HA strains shown on the right side in Supplementary Fig. S3, respectively.

56 Horizontal and vertical axes for each diagram are depicted at the bottom and top of the figure.

57 Values (r) in parentheses indicate Pearson correlation coefficient.

58

59 Supplementary Fig. S5

60 (a) Comparison of DRPs between human and *E. histolytica*. Multiple alignment of a partial

61 GTPase domain in EhDRPs, together with the human Drp1. The lysine residue (K) that plays an

62 important role in the GTPase activity is highlighted^{1,3}. This residue was mutated into alanine to

63 create GTPase-deficient DRPs. Asterisks and dots indicate identical and similar amino acid

residues, respectively. (b) Verification of the expression of GTPase-deficient mutants of EhDrpA,

- 3 -

65 B, C, and D. Expression of HA-tagged mutant EhDRPs was induced with 5 µg/ml Tet. Whole 66 cell lysates (15 µg protein) of each strain cultured with (+) or without (-) Tet were subjected to 67 SDS-PAGE and immunoblot analysis with either anti-HA antibody (left panel) or anti-CS1 68 antibody (right panel). The expression of EhDrpD(K121A)-HA was leaky as it was observed 69 even in the absence of Tet induction (see also Supplementary Fig. S5c). (c) Multiple alignment of 70 the amino terminus of DrpD among five *Entamoeba* species. Two potential initiation codons, as 71 highlighted in green, are conserved in *Entamoeba* DrpDs. Asterisks and dots indicate identical 72 and similar amino acid residues, respectively.

73

74 Supplementary Fig. S6

75 Construction scheme and map of the tetracycline (Tet)-inducible expression vector with 76 neomycin resistance marker: pEhTex/HA. The upper panel shows a schematic diagram 77 summarizing the construction process of pEhTex/HA. The black boxes labeled Neo and Hyg 78 represent resistance genes for neomycin and hygromycin, while the pink boxes labeled TetR and 79 TetO indicate the gene of the Tet repressor and operator sequences, respectively. The gray boxes 80 labeled Lec5' and 3', the white boxes labeled Actin 5' and 3', and the yellow boxes labeled CS 5' 81 and 3', indicate the positions of the 5'- and 3'-untranslated regions (UTR) of Lec (a heavy subunit of Gal/GalNAc lectin: XP_656181), actin, and CS1 genes, respectively. The region containing 82 TetR to TetO of pEhHygtetR O cass vector^{4,5} was PCR amplified using specific primers (pink 83 84 arrows) containing the sequence needed for the In-Fusion system (broken lined boxes) at each 5' 85 end. The red boxes represent the sequence of three copies of the hemagglutinin (HA) tag. The amplified fragment was inserted into pEhEx/HA⁶ digested with *Bgl* II. The lengths in the scheme 86 87 are not proportional to the actual numbers of nucleotides. The lower panel indicates the 88 nucleotide sequence near the cloning site of pEhTex/HA. The newly constructed vector

- 4 -

pEhTex/HA has three main features absent in pEhHygtetRO cass vector. First, the cloning sites
in pEhEx⁵ and pEhTex/HA are interchangeable. Second, selection after transfection is by
neomycin treatment, a more convenient approach compared with hygromycin selection. Third,
like pEhEx⁷, pEhTex/HA can be used for the expression of a second protein by cloning in the
single *Spe* I site.

94

95 Supplementary Fig. S7

96 Growth kinetics of *E. histolytica* trophozoites expressing a GTPase-deficient DRP mutant.

97 Transformants were cultured with [Tet (+)] (red) or without [Tet (-)] (blue) 5 μ g/ml Tet, and cell 98 densities were monitored at indicated time points. Error bars represent standard deviations of 99 three replicates. * *P* < 0.05 (Student's t-test).

100

101 Supplementary Fig. S8

102 (a) Detection of EhDrpA and EhDrpB in whole cell lysate and immunoprecipitated samples by

103 anti-EhDRP antibodies. Lane 1: immunoprecipitated (IP) sample by antiserum against DrpB.

104 Lane 2: IP sample by antiserum against DrpA. Lane 3: IP sample by anti-DrpB antibody. Lane 4:

105 IP sample by anti-DrpA antibody. Lane 5: IP sample by anti-HA antibody. Lane 6: mock IP

sample carried out without antibody. Lane 7: whole trophozoite lysate (WTL) of *E. histolytica*

107 HM-1:IMSS cl6. Approximately 20 µg of WTL protein or approximately 150 µg of

108 immunoprecipitated protein per lane were subjected to SDS-PAGE and immunoblot analysis (left

and right panels are results of anti-DrpA and anti-DrpB antibodies, respectively). Anti-DrpA and

110 anti-DrpB antibodies can detect EhDrpA and EhDrpB as a major band in the lanes loaded with IP

111 sample by anti-DrpA and anti-DrpB antibodies, respectively, although anti-DrpB antibody has

112 nonspecific reaction in WTL lane. Moreover, the reactivity of anti-DrpB antibody to EhDrpB was

- 5 -

113	also demonstrated in the immunoblots of strains expressing EhDrpB-HA (Supplementary Fig.
114	S10) as well as in recombinant EhDrpB (Supplementary Fig. S12b). (b) Comparison of protein
115	expression among control, DrpAgs, and DrpBgs strains. Fresh samples for immunoblot analysis
116	were prepared from three independent cultures. DrpA, DrpB, APSK, and CS1 indicate
117	immunoblots reacted with anti-DrpA, anti-DrpB, anti-APSK, and anti-CS1 antibodies,
118	respectively. Membranes in the 1st trial were cut prior to reaction with respective antibodies. The
119	2^{nd} and 3^{rd} trials were performed at the same time, following a similar procedure to that of the 1st
120	trial, with the samples loaded on the same gel. Approximately 20 μ g of WTL protein per lane
121	was subjected to SDS-PAGE. Bands marked with arrowheads indicate target proteins and band
122	intensities for Fig. 4a were measured using the bands in Supplementary Fig. S8b.
123	
124	Supplementary Fig. S9
125	Alignment of mitosome-associated EhDRPs and putative post-translational modification sites.
126	The asterisks indicate conserved amino acids. Prediction of phosphorylation sites was performed
127	using the NetPhos program (http://www.cbs.dtu.dk/services/NetPhos/). Residues in red, blue, and
128	green are the predicted phosphorylation sites with high (score > 0.9), intermediate (0.8-0.9), and
129	low (< 0.8) probabilities respectively. Putative sumoylation motifs with high (red boxes) and low
130	(blue boxes) probabilities were predicted using the SUMOplot program
131	(http://www.abgent.com/sumoplot). The regions used to raise anti-DRP antibodies are
132	highlighted in gray.
133	
134	Supplementary Fig. S10
135	Immunoprecipitation of EhDrpA and EhDrpB from EhDrpA-HA and EhDrpB-HA strains. The E.

136 *histolytica* line transfected with pEhEx/HA empty vector was used as control. EhDRPs were

- 6 -

137 immunoprecipitated from 1 mg proteins of whole cell lysates of each strain. W.B. denotes 138 antibodies that were used in the immunoblot assay. IP indicates antibodies or antisera used for 139 immunoprecipitation. Immunoprecipitation was also carried out without antibody ("w/o Ab"). 140 Broken boxes were clipped and magnified as shown in Fig. 5a. Approximately 150 ug of 141 immunoprecipitated protein per lane was subjected to SDS-PAGE and immunoblot analysis. 142 Immunoblot assays using strains expressing EhDrpA-HA or EhDrpB-HA were carried out 143 independently from those using control strain. Individual membranes were stained with either 144 anti-HA, anti-DrpA, or anti-DrpB antibodies respectively. 145 146 **Supplementary Fig. S11** 147 Immunoblot analysis of EhDRP complex in *DRP*gs strains. Lysates of trophozoites from *DrpA*gs, 148 *DrpB*gs, and control transformants were subjected to BN-PAGE. After blotting, the samples 149 were reacted with either anti-DrpA or anti-DrpB antibodies. Lanes were labeled as DrpAgs and 150 DrpBgs, for the strains in which either EhDrpA or EhDrpB gene was silenced, and control for the 151 transformant transfected with an empty vector. The arrowhead indicates the major band (about 152 900-kDa) that was used as reference to compare the amount of DRP oligomer among strains. The 153 intensities of the bands on immunoblots were measured and the relative amounts of the proteins 154 were estimated as shown in Fig. 5b. Each lane contains 20 µg protein.

155

156 Supplementary Fig. S12

157 Quantification of EhDrpA and EhDrpB using recombinant histidine (His₆)-tagged EhDRP-HA

- 158 proteins as standards. (a) Coomassie Brilliant Blue (R-250) staining of recombinant
- 159 His₆-EhDRP-HA proteins purified from bacteria. Each lane contains 5 pmol recombinant protein.
- 160 (b) Immunoblot analyses for the quantification of EhDRPs. Anti-DrpA and anti-DrpB antibodies

- 7 -

161 were used to immunoprecipitate the EhDrpA-EhDrpB complex from *E. histolytica* trophozoites.

162 One mg protein from whole cell lysates was used in immunoprecipitation (IP). Each lane of

163 SDS-PAGE was loaded with 3 %, 9 %, and 9 % (in volume) of the total immunoprecipitated

164 samples with anti-DrpA or anti-DrpB antibody, and without antibody, respectively. Intensities of

165 the corresponding EhDRP bands in immunoblots were measured and the amounts/molecular

166 numbers of the proteins were estimated using standard curves shown in Fig. 5c.

167

168 Supplementary Fig. S13

169 The constriction site-like structures (CLSs) on the *E. histolytica* mitosome. (a) Immunoelectron 170 micrograph of an *E. histolytica* mitosome with a CLS. (b) Yellow lines indicate the positions 171 used for measuring the CLSs and the diameter of mitosomes. (c) A representative image of E. 172 histolytica mitosomes. Immunoelectron microscopic observation was performed as previously described⁸⁻¹⁰. Gold particles indicate the localization of chaperonin 60 (Cpn60), a marker protein 173 174 of E. histolytica mitosomes. Scale bar = 200 nm. (d) Comparison of lengths of CLSs (n = 11) and 175 mitosome diameter (n = 22). Error bars and p-values denote standard deviations and the result of 176 Student's t-test, respectively.

177

178 Supplementary Fig. S14

179 Expression level of DrpA and DrpB homologs during stage conversion of *E. invadens*. (a)

180 Expression profile of EhDRP homologs during encystation. This profile was based on our

181 previous paper published by De Cadiz, A. E., *et al*¹¹. The horizontal axis shows the time (in

182 hours) after induction of encystation, while the vertical axis demonstrates the fold changes of the

- 183 transcripts of *E. invadens DRP* homologs relative to their expression level at the trophozoite
- 184 stage (i.e., Time 0). The broken lines denote the level of EhDrpA (red) and EhDrpB (blue)

- 8 -

185	transcripts that presented the mitosome elongation phenotype in <i>EhDrpA</i> and <i>EhDrpB</i>
186	gene-silenced strains as shown in Fig. 4. (b) The transcript levels of <i>E. invadens DRP</i> homologs
187	relative to the trophozoite stage at 2 hours post-induction of excystation. This profile was based
188	on a previous paper published by Ehrenkaufer, G. M. <i>et al</i> ^{12} .
189	
190	Supplementary Fig. S15
191	Immunoblot analysis of phosphorylated EhDrpA and EhDrpB. Strains expressing EhDrpA-HA,
192	EhDrpB-HA, and control transformant (transfected with an empty vector), were used in this
193	analysis. Immunoprecipitation by anti-HA antibody was performed with $PhosSTOP^{\mathbb{R}}$
194	phosphatase inhibitor cocktail (Roche). After immunoprecipitation, the proteins were separated
195	by SDS-PAGE using 6% acrylamide gel containing 50 μ M Phos-tag TM (Wako Pure Chemical
196	Industries, Ltd., Osaka, Japan) followed by immunoblot analysis using anti-HA antibody. Closed
197	and open arrowheads indicate unmodified and phosphorylated EhDrpA-HA (red) and
198	EhDrpB-HA (blue) respectively. Red and blue asterisks indicate His ₆ -EhDrpA-HA and
199	His ₆ -EhDrpB-HA treated with AcTEV TM protease (Life Technologies) respectively, however the
200	His-tag was not cleaved by this treatment.
201	
202	
203	Supplementary Table. S1
204	List of proteins known to be involved in mitochondrial dynamics ¹³⁻¹⁷
205	
206	Supplementary Table. S2
207	List of primers

- 9 -

208	Refe	rences
209	1	Jain, R., Shrimal, S., Bhattacharya, S. & Bhattacharya, A. Identification and partial
210		characterization of a dynamin-like protein, EhDLP1, from the protist parasite Entamoeba
211		histolytica. Eukaryot Cell 9, 215-223, doi:10.1128/EC.00214-09 (2010).
212	2	Nozaki, T. et al. Molecular cloning and characterization of the genes encoding two
213		isoforms of cysteine synthase in the enteric protozoan parasite Entamoeba histolytica.
214		Mol. Biochem. Parasitol. 97, 33-44 (1998).
215	3	Smirnova, E., Shurland, D. L., Ryazantsev, S. N. & van der Bliek, A. M. A human
216		dynamin-related protein controls the distribution of mitochondria. J. Cell Biol. 143,
217		351-358 (1998).
218	4	Hamann, L., Buss, H. & Tannich, E. Tetracycline-controlled gene expression in
219		Entamoeba histolytica. Mol. Biochem. Parasitol. 84, 83-91 (1997).
220	5	Ramakrishnan, G., Vines, R. R., Mann, B. J. & Petri, W. A., Jr. A tetracycline-inducible
221		gene expression system in Entamoeba histolytica. Mol. Biochem. Parasitol. 84, 93-100
222		(1997).
223	6	Nakada-Tsukui, K., Okada, H., Mitra, B. N. & Nozaki, T.
224		Phosphatidylinositol-phosphates mediate cytoskeletal reorganization during phagocytosis
225		via a unique modular protein consisting of RhoGEF/DH and FYVE domains in the
226		parasitic protozoon Entamoeba histolytica. Cell. Microbiol. 11, 1471-1491,
227		doi:10.1111/j.1462-5822.2009.01341.x (2009).
228	7	Saito-Nakano, Y., Yasuda, T., Nakada-Tsukui, K., Leippe, M. & Nozaki, T.
229		Rab5-associated vacuoles play a unique role in phagocytosis of the enteric protozoan
230		parasite Entamoeba histolytica. J. Biol. Chem. 279, 49497-49507,
231		doi:10.1074/jbc.M403987200 (2004).

-10-

- 8 Mi-ichi, F., Makiuchi, T., Furukawa, A., Sato, D. & Nozaki, T. Sulfate activation in
- 233 mitosomes plays an important role in the proliferation of *Entamoeba histolytica*. *PLoS*
- 234 *Negl. Trop. Dis.* **5**, e1263, doi:10.1371/journal.pntd.0001263 (2011).
- Baba, M. Electron microscopy in yeast. *Methods Enzymol.* **451**, 133-149,
- 236 doi:10.1016/S0076-6879(08)03210-2 (2008).
- Santos, H. J. *et al.* A novel Mitosomal β-barrel Outer Membrane Protein in *Entamoeba*. *Sci. Rep.* 5, 8545, doi: 10.1038/srep08545 (2015).
- 239 11 De Cadiz, A. E., Jeelani, G., Nakada-Tsukui, K., Caler, E. & Nozaki, T. Transcriptome
- analysis of encystation in *Entamoeba invadens*. *PLoS One* **8**, e74840,
- 241 doi:10.1371/journal.pone.0074840 (2013).
- 242 12 Ehrenkaufer, G. M. *et al.* The genome and transcriptome of the enteric parasite
- 243 *Entamoeba invadens*, a model for encystation. *Genome Biol.* 14, R77,
- 244 doi:10.1186/gb-2013-14-7-r77 (2013).
- 24513Roy, M., Reddy, P. H., Iijima, M. & Sesaki, H. Mitochondrial division and fusion in
- 246 metabolism. *Curr. Opin. Cell Biol.* **33**, 111-118, doi:10.1016/j.ceb.2015.02.001 (2015).
- 247 14 Wienke, D. C., Knetsch, M. L., Neuhaus, E. M., Reedy, M. C. & Manstein, D. J.
- Disruption of a dynamin homologue affects endocytosis, organelle morphology, and cytokinesis in *Dictyostelium discoideum*. *Mol. Biol. Cell* **10**, 225-243 (1999).
- 250 15 Schimmel, B. G., Berbusse, G. W. & Naylor, K. Mitochondrial fission and fusion in
- 251 *Dictyostelium discoideum*: a search for proteins involved in membrane dynamics. *BMC*
- 252 *Res. Notes* **5**, 505, doi:10.1186/1756-0500-5-505 (2012).
- 253 16 Leger, M. M. *et al.* An ancestral bacterial division system is widespread in eukaryotic
- 254 mitochondria. Proc. Natl. Acad. Sci. U. S. A. 112, 10239-10246,
- doi:10.1073/pnas.1421392112 (2015).

-11-

- 256 17 Sesaki, H. & Jensen, R. E. Ugo1p links the Fzo1p and Mgm1p GTPases for mitochondrial
- 257 fusion. J. Biol. Chem. 279, 28298-28303, doi:10.1074/jbc.M401363200 (2004).

-15-

Vertical axis:

Horizontal axis: EhDRP-HA

HsDrp1	28 IVVVGTQSSGKSSVLESLVGRDLLPRGTGIVTRRPL 63
EhDrpA	28 IVVVGSQSAGKSSVLESIVGRDFLPRGSGMVTKRPL 63
EhDrp B	29 IVVVGSQSSGKSSVLEHVVGKDFLPRGSGIVTRRPL 64
EhDrpC	154 IVVVGMQSDGKSSFIEALVGFQFNVVESTIGTRRPL 189
EhDrpD	111 IIITGIQGSGKSELVEGIVGMPIEYINTSTATTVPI 146
	** ***** ****.

С

E. histolytica	1	MSSTQVVRDILQVAKG <mark>M</mark> LPPSQQSTQNIRSIEE <mark>M</mark> AR	36
E. nuttalli	1	MSSTQVVRDILQVAKG <mark>M</mark> LPPSQQSTQNIRSIEE <mark>M</mark> AR	36
E. dispar	1	MSSTQVVRDILQVAKG <mark>M</mark> LPPSQQSTQNIRSIEE <mark>M</mark> AR	36
E. invadens	1	MTSTQTMREILQAAKG <mark>M</mark> LPASQQSTQNMMNIEE <mark>M</mark> AR	36
E. moshkovskii	1	MTSTQVVRDILQVAKG <mark>M</mark> LPPSQQSTQNIRSIEE <mark>M</mark> AR	36
		*. *** *. ***. *** <mark>*</mark> **. ******* *** <mark>*</mark> **	

d; DrpD(K121A)-HA

-20-

EhDrpA EhDrpB	1 1	MKSLIPVINQLQDVFNTIGV-KGIDLPQIVVVGSQSAGKSSVLESIVGRDFLPRGSGMVT MQRLIPVINSLQDVFTAAGLPNTLPLPQIVVVGSQSSGKSSVLEHVVGKDFLPRGSGIVT * ****** ***** * ********************	59 60
EhDrpA EhDrpB	60 61	KRPLILQLVNLPSTETKEWGEFAHKPGIVYRDFEE <mark>IKKE</mark> IENETIRLTGTKKTISPVAIR RRPLIVQCVRSNVAEDYGQFEHTGDRKFTDFGEIRNEITRETER-TCPGRNVSSVPIR **** * * * * * * * * * * * * * * * * *	119 117
EhDrpA EhDrpB	120 118	LKIYSPYVVDLTLVDLPGLTKISVGSQEKDISNQLKQMVLKFIERPNAIILAVTSANVDL LRIYSSSVVDLTLVDLPGLVKVNINGQTAEMVKNLRDMVYEYASPSNALILAVTAGNIDI * *** *********** * * * * ** ****** * *	179 177
EhDrpA EhDrpB	180 178	ATSDALSIAREVDPDGDRTIGVLTKMDIMDKGTDAMDVLYGRVYPLKLGYIGVLNRSQHD ANSDALQVAKDVDPDGERTIGVLTKLDLEDKGTNSMDVLMGRVYPLKLGYIGVVNRSQQD * **** * ***** ******** * **** ****	239 237
EhDrpA EhDrpB	240 238	IDTNVPIKTALTKEKEWFSNHPIYSKIADRLGIPYLTKTLNEILMQHIMKTLPSLRITIT INNGVDVKTSLRHEKEFFENHPVYCSIAERMGTEYMVNRLNVLLLQHIQKCLPGLKQQIN * * ** * *** * *** * ** * * * * * * *	299 297
EhDrpA EhDrpB	300 298	EMLNKTKLEYNKFAIEFDQKDVAL-LEKVIEYCTSIQQTISGEKFDIEKHELIGGAKIFD QCYEKARSRYEDIKPD-DENLLSLSLQQIMKFSGSFAAALNGTDTNIHTHEISGGAKIFS * * * * * * * * * * * * * * * *	358 356
EhDrpA EhDrpB	359 357	VFENVYRPIIDQLDLIKEISDKDIKTAMKNTEGVNSALFLSQAAFEILVKQQIDKFTDSS VFENNFRPTIDSQDILSGIKDVDILTAIKNASGTRPCLYVPQSAFENLISKQVRNFEGTC **** ** ** * * * * * * * * * * * * * *	418 416
EhDrpA EhDrpB	419 417	QQCVDKIRKEMSNIFTYVASEVVVRYAKLRDAIIIASDNVLDKNLNKTHEMVKNLIDIEE HNCVDNVYREMKVIVGKIAKDNI <mark>EKYD</mark> RFREALIQASTEVMNDYMTQTHKMVQDLIDIEA *** ** * * * * * * * * * **	478 476
EhDrpA EhDrpB	479 477	SY INT IHPDFDATE IMLNAGINSATPSNEQKPP VVTQAPPKP IPQQPTTKPPKKQSPSKG DY INTSHPDFDTTKVLKEADEAMKTPQDGIDTIVTIDPNNTTNAQQYEAKKPVKS **** ***** * **** ***** * *	538 531
EhDrpA EhDrpB	539 532	GFWFWASKASDENEDEDNETQKQTTPSVPVQPEPKVEPIVISATDTKEQRNIKMMRELTR SFFAGQINKNQAKPQQQHVPKESITISIRVDHTNQREMREINLIRNLCKDYLLIVRK * * * * * * * * * *	598 588
EhDrpA EhDrpB	599 589	SYLNIVRKSIEDFVPKAIMHFLINQTCKDL-QKALVEELYKSDKINDLMSESPAITTKRE SIKDLVPKAVIHFLVFKTRDSLQKELIKKLYNEALLQDLL-AENPAIVNERKVVKQNLE * * * * * * * * * * * * * * * * * * *	657 646
EhDrpA EhDrpB	658 647	MLKKNLEALQKAYNILEGIVTIKVN ALKKALDIINQVRDQCF	682 663

Makiuchi et al. Supplementary Fig. S11

b

Supplementary Table. S1: List of proteil	ns known to be involve	d in mitochor	idrial dynamics			
Function	Main components	Mammals	Yeast	Dictyostelium	Entamoeba	Algae
Outer membrane fission (1)	Dynamin-related protein1 (Drp1)	Drp1	Dnm1	Dynamin A? (Ref. 2 & 3)	Unknown (4 candidates)	Dnm1
DRP receptor protein on outer membarane (1)	Fission protein 1 (Fis1)	Fis1	Fis1	Unknown	Unknown (no homolog)	Fis1
(1) accordance active according (1)	Mitochondrial fission factor (Mff)	Mff	Unknown	Unknown	Unknown (no homolog)	Unknown
אמווווופוומוו טואר מעמטוטיטיו טענפו ווופוווטמומווכ (ד)	MiD49 / MiD51	MiD49 / MiD51	Unknown	Unknown	Unknown (no homolog)	Unknown
Yeast Dnm1 adaptor on outer membarane (1)	Mdv1 / Caf4 / Num1 / Mdm36	Unknown	Mdv / Caf4 / Num1 / Mdm36	Unknown	Unknown (no homolog)	Mda1 / - / - / -
Inner membrane fission (4)	FtsZ	Unknown	Unknown	FtsZ	Unknown (no homolog)	FtsZ
Outer membrane fusion (1)	Mitofusin1 / 2 (Mfn1 /Mfn 2)	Mfn1 / Mfn2	Fzo1	Unknown	Unknown (no homolog)	Fzo1
Mediator for the interaction between Fzo1 and Mgm1 (5)	Ugo1	Unknown	Ugo1	Unknown	Unknown (no homolog)	Ugo1
Inner membrane fusion (1)	Optic atrophy 1 (Opa1)	Opa1	Mgm1	Unknown	Unknown (no homolog)	Mgm1

ŝ
amic
dyna
-
dria
õ
Sch
nit
Ē
ed
Š
Ň
0e
5
ž
рõ
sk
ein
prot
of
ist
-
<u>δ</u>
ole.
Tal
VIE
sht
me
ple
dn

Note:

-28-

(1) Roy, M., Reddy, P. H., Iijima, M. & Sesaki, H. Mitochondrial division and fusion in metabolism. Curr. Opin. Cell Biol. 33, 111-118, doi:10.1016/j.ceb.2015.02.001 (2015) (This list is based on this review). (Ref. No. 13)

(2) Wienke, D. C., Knetsch, M. L., Neuhaus, E. M., Reedy, M. C. & Manstein, D. J. Disruption of a dynamin homologue affects endocytosis, organelle morphology, and cytokinesis in Dictyostellium discordeum. Mol. Biol. Cell 10, 225-243 (1999). (Ref. No. 14) (3) Schimmel, B. G., Berbusse, G. W. & Naylor, K. Mitochondrial fission and fusion in *Dictyostelium discoideum*: a search for proteins involved in membrane dynamics. BMC Res. Notes 5, 505, doi:10.1186/1756-0500-5-505 (2012). (Ref. No. 15) (4) Leger, M. M. et al. An ancestral bacterial division system is widespread in eukaryotic mitochondria. Proc. Natl. Acad. Sci. U. S. A. 112, 10239-10246, doi:10.1073/pnas.1421392112 (2015). (Ref. No. 16)

(5) Sesaki, H. & Jensen, R. E. Ugorlp links the Fzorb and Mgm1p GTPases for mitochondrial fusion. J. Biol. Chem. 279, 28298-28303, doi:10.1074/jbc.M401363200 (2004). (Ref. No. 17)

Supplementary Table. S2: List of primers	S				
					Mention
Purpose	Template for PCR	Sequence	Direction	Underline	Bold
Cloning into the Bg/ II site of pEhEx/HA	pEhHygtetR O Cass	5' - ACACATTAACAGATCCATGTCTAGATTAGATAAAAG-3'	sense	for In-Fusion® system	for the removal of Bg/ II restriction site
		5 '- <u>ATGGATACATAGATCT</u> TGAATTTCTCTATCACTGATAG-3 '	antisense	for In-Fusion® system	Bg/ II restriction site
Cloning of EhDrpA gene into pEhEx/HA digested by Bg/ II	CDNA	5 '-CGGGATCCATGAAAAGTCTTATTCCAGTTATTAAC-3'	sense		BamH I restriction site
		5'-CGGGATCCATTAACTTTGATTGTAACAATTCCTTC-3'	antisense		BamH I restriction site
Cloning of EhDrpB gene intopEhEx/HA digested by Bg/ II	cDNA	5'-CGGGATCCATGCAAAGATTAATTCCTGTAATTAATAG-3'	sense		BamH I restriction site
		5'-CGGGATCCGAAGCATTGATCTTACTTGATTAA-3'	antisense		BamH I restriction site
Cloning of EhDrpC gene intopEhEx/HA digested by Bg/ II	cDNA	5 ' - CGGGATCCATGAACAACAACATGAAGAAATC-3 '	sense		BamH I restriction site
		5'-CGGGATCCATATTCTACTTCCATAGCGTTCTTA-3'	antisense		BamH I restriction site
Cloning of EhDrpD gene intopEhEx/HA digested by Bg/ II	cDNA	5 '-GTCGAGATCT ATGAGCTCAACACAAGTTGTTAG-3 '	sense		Bg/ II restriction site
		5 '-GTCGAGATCT AAACAATACTCTTTTTTTTCATTGGAC-3'	antisense		Bg/ II restriction site
Cloning of EhDrpA(K38A) gene into pEhTex/HA digested	pEhEx/EhDrpA-HA	5 ' - <u>GAGAAATTCAAGATC</u> CATGAAAAGTCTTATTC-3 '	sense	for In-Fusion® system	
by Bg/II and Xho I		5 ' - <u>AGATGATGCACCAG</u> CACTTTG-3 '	antisense	for In-Fusion® system	for the mutation form Lys to Ala
		5'- <u>GCTGGTGCATCATCT</u> GTATTAG-3'	sense	for In-Fusion® system	for the mutation form Lys to Ala
		5 ' - GAAGAGTTCAACTCGAGTTACC-3 '	antisense	for In-Fusion® system	
Cloning of EhDrpB(K39A) gene into pEhTex/HA digested	pEhEx/EhDrpB-HA	5 ' - <u>GAGAAATTCAAGATC</u> CATGCAAAGATTAATTC-3 '	sense	for In-Fusion® system	
by Bg/II and Xho I		5 ' - <u>TGAAGATGCTCCAGA</u> TGACTG-3 '	antisense	for In-Fusion® system	for the mutation form Lys to Ala
		5 ' - <u>TCTGGA GCA</u> TCTTCAGTATTAG-3 '	sense	for In-Fusion® system	for the mutation form Lys to Ala
		5 ' - GAAGATTCAACTCGAGTTACC-3 '	antisense	for In-Fusion® system	
Cloning of EhDrpC(K164A) gene into pEhTex/HA	pEhEx/EhDrpC-HA	5 ' - <u>GAGAAATTCAAGATC</u> CATGAACAACGAACATG-3 '	sense	for In-Fusion® system	
digested by Bg/II and Xho I		5 ' - ACTACTTGCCCCATCACTTTGC-3 '	antisense	for In-Fusion® system	for the mutation form Lys to Ala
		5 '- GATGGG GCAAGTAGT TTTATTG-3 '	sense	for In-Fusion® system	for the mutation form Lys to Ala
		5 ' - GAAGAGTTCAACTCGAGTTACC-3 '	antisense	for In-Fusion® system	
Cloning of EhDrpD(K121A) gene into pEhTex/HA	pEhEx/EhDrpD-HA	5 ' - <u>GAGAAATTCAAGATC</u> TATGAGCTCAACACAGAG-3 '	sense	for In-Fusion® system	
digested by Bg/ II and Xho I		5'- <u>TTCTGATGCACCAGA</u> GCCTTG-3'		for In-Fusion® system	for the mutation form Lys to Ala
		5 ' - <u>TCTGGT GCA</u> TCAGAA TTAGTTG-3 '		for In-Fusion® system	for the mutation form Lys to Ala
		5 ' - GAAGATTCAACTCGAGTTACC-3 '	antisense	for In-Fusion® system	
Making DrpAgs vector	pEhEx/EhDrpA-HA	5'-CCAGGCCTATGAAAAGTCTTATTCCAGTTA-3'	sense		Stu I restriction site
		5 '-GTCG CAGCTC GAATTGCAACTGGTGAAATTG-3'	antisense		Sac I restriction site
Making DrpBgs vector	pEhEx/EhDrpB-HA	5'-CCAGGCCTATGCAAAGATTAATTCCTGTAAT-3'	sense		Stu I restriction site
		5 '-GTCG GAGCTC TACCAGGACAAGTACGTTC-3'	antisense		Sac I restriction site
Making vector for the expression of His-EhDrpA-HA	pEhEx/EhDrpA-HA	5 ' - GGC GAGCTC GAAAACCTGTATTTTCAGGGAAAAGTCTTATTCCAG-3'	sense	TEV protease cleavage situ	Sac I restriction site
		5 '-GGGGTACCAACTCGAGTTACCC-3'	antisense		Kpn I restriction site
Making vector for the expression of His-EhDrpA-HA	pEhEx/EhDrpB-HA	5 GGC GAGCTC GAAAACCTGTATTTTCAGGGA CAAAGATTAATTCCTG-3	sense	TEV protease cleavage situation	 Sac I restriction site
		5 GGGGTACCAACTCGAGTTACCC- 3 -	antisense		Kpn I restriction site

primers
f
Ľ
List
S2:
able.
Η.
tary
Š
Ĕ
ē
đ
Q