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Supplement

1 Description of φ̄

In the following, we illustrate φ̄’s MATLAB implementation. The MATLAB
code is available in the Supplementary Materials.

1.1 MATLAB Algorithm

Seven functions are used:
runLoop
paramMODELtype
calcFitness
odeMODELtype
evalLim
updateParam
catch problems

runLoop is the main script. paramMODELtype and odeMODELtype define
parameters and associated ODEs which are problem specific. Parameters
associated to the model are initially stored in variable default, then later
modified parameters are stored in variable param and the list of removed
parameters is stored in variable removed

A flowchart of the algorithm is presented in Fig. S1. In the following five
steps we probe (1 - 3), rank, select, evaluate, accept (4), reduce and repeat
(5).

1. Assign the parameter vector (PV) that paramMODELtype returns to
default. This point in parameter space is going to be probed.
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2. The fitness landscape around the initial PV default is characterized
by the symmetric matrix fitnessmap, containing the fitness for modified pa-
rameters or couples of parameters. The fitness function, on the contrary, is
problem specific, and is computed by calcFitness. Row by row, fitnessmap
is filled by multiplying/dividing the parameters per entry by a reacaling fac-
tor (f = 10 from the main text). The performance of each of these entries
is measured by computing the fitness with the new parameter combination
relative to the initial fitness. A network with N parameters has 2N2 inde-
pendent entries.

3. Removing a parameter is done in evalLim. With an estimate of the
fitness landscape at hand found via the previous steps, the algorithm takes
the corresponding limit (to 0 or ∞) for the parameters that were rescaled
by f . We consider only changes of parameters giving identical or improved
fitness. There exist four groups of two parameter limits θi, θj. In Tab. 1,
the groups are presented in order of importance. When several couples of
parameters give favorable changes to the fitness, we evaluate the limit of all
couples that fall in group 1 one by one.

4. When we encounter a parameter limit in which the fitness is improved,
we eliminate corresponding parameters and return to step 1. If for none of
the couples in the parameter limits the fitness is improved, we move to the
members of group 2, the limits to infinity, and similarly when we find a pa-
rameter limit that improves the fitness, we reduce and move on. Otherwise
we move to the parameter limits of groups 3 and, finally to group 4 with the
same criteria. This natural order shows our preference for removing param-
eters one by one (set parameters values to zero), instead of simply rescaling
them (as products). Notice that we take a very conservative approach where
fitness can only be incrementally improved with this procedure.

The steps in evalLim are the following.

A Find the least nonnegative elements in fitnessmap

B Divide these in the groups defined above

C Pick a random element from the highest ranked nonempty group

D updateParam takes the PV default and a 2 × 2 block of removed as
arguments and returns an updated PV to param.
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Figure S 1: A flowchart of the algorithm.

E Compute a temporary fitness φnew with param.

F Decide as follows:
If φnew ≥ φinit.

Accept removal
Return param and removed

If φnew < φinit.
Reject removal
Set fitnessmap(picked element) to inf .
Repeat cycle at step A

The method we use to take asymptotic limits is described in the next
section.

5. The returned PV becomes the new initial point in an (N − 1)-
dimensional plane that is embedded inN -dimensional parameter space. Around
this new initial point, we will probe the fitness landscape in the next round.
In removed, the removed parameters and their limits are stored such that φ̄
ignores directions of reduced parameters in subsequent rounds.

This procedure is repeated until there are no free parameters left, or until
all directions will decrease the fitness.
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Table 1: Four groups of two-parameter limits
Group Operation Corresponding Limit taken

1 Division of two parameters by f (θi, θj)→ 0
2 Multiplication of two parameters by f (θi, θj)→∞
3 Division/multiplication by f θi → 0, θj →∞
4 Division/multiplication by f Rescaling keeping product θi · θj = constant

1.2 Taking asymptotic limits

There are two kinds of asymptotic limits: parameters are either taken to 0
or to ∞. The 0 case is trivial to deal with: when a parameter is chosen to
be 0, we simply put and maintain it to 0 in the subsequent steps of φ̄.

In evaluating a limit to infinity, one cannot simply numerically set this
parameter to infinity, like in the case of a zero-limit. Instead, we consider a
limit where this parameter is increased to such an extend that it dominates
other terms in a sum that affect the same variable; these other terms are then
removed from the equations. More precisely, consider the following equation:

ẏ2 = ay1 − (b+ c+ dy1)y2. (1)

In the limit of b → ∞ we replace this equation by the following differential
equation:

ẏ2 = ay1 − by2, (2)

where b→ b′ = fb, where f is our multiplicative factor defined in the previous
section. This implements the idea that the c and dy1 terms are negligible
compared to b.

It is important to define a vector of parameter coefficients to keep track of
these infinities. The vector of coefficients is attached to the parameter vector
and updated in updateParam similarly. When the limit of a parameter is
taken to infinity, its coefficient becomes zero, and the other terms in the sum
will disappear. Practically, Eq. 1 is rewritten as

ẏ2 = cday1 − (cccdb+ cbcdc+ cacbccdy1)y2. (3)

The coefficients ca,b,c,d are initially set to 1. After evaluating the limit of
b → ∞, we set cb = 0, and the simplification from Eq. 1 to Eq. 2 indeed
takes place.
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This can however create mass conservation problems in the rate equations.
Consider the following equations for ẏ4 and ẏ5 where y4 is turned into y5 with
rate r

ẏ4 = ay3 − (r + q)y4

ẏ5 = ry4 − dy5

(4)

In the limit where parameter q → ∞, parameter r will disappear from
the equation of ẏ4 potentially creating a divergence in the equations. A way
to circumvent this is to impose global mass conservation: situations where
y4 is turned into y5 correspond to signalling cascades where complexes are
transformed into one another, so that we can impose that the total quantity
of complex is conserved. This effectively adds a compensating term to the
cascade. We also explicitly control for divergences and discard parameter
sets for which variables diverge.

1.3 Choice of the path in parameter space

As shown in Section 1.1, the matrix fitnessmap is analyzed in the func-
tion evalLim. This matrix is symmetrical since the upper triangular part
of the matrix corresponding to parameters (k1, k2) and the lower triangu-
lar part corresponding to parameters (k2, k1) give similar limits for groups
2 and 4 in Tab. 1. When given the choice between sending (k1, k2) → ∞
or (k2, k1) → ∞, FIBAR chooses randomly between the two, because the
parameter combinations have the same change in fitness and in both cases a
new parameter k1/k2 can be identified. However, because of FIBAR’s design,
choosing one will result in a different exploration of parameter space in the
remaining steps. By choosing the first parameter combination, φ̄ will effec-
tively freeze k1 but allows φ̄ to keep exploring the logarithmic neighborhood
of k2. If the second combination is chosen, then the value of k2 is frozen and
it is the neighborhood of k1 that will be probed. k2 and k1 may be present in
different equations in the model, resulting in two not necessarily converging
reductions.

A choice thus needs to be made in the final parameter reduced model.
This allows for introduction of some kind of stochasticity in the produced
networks in order to identify recurring patterns in the reduction. It can be a
challenge in terms of reproducibility. One way to solve this problem is to set
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a fixed rule in the function evalLim (using variable seed) which is called the
deterministic method in the main article. The method of choice (random or
deterministic) is left at the discretion of the user. We indeed see differences in
the way networks are reduced, but the final structure of the reduced networks
in all these cases can easily be mapped onto one another as described in the
main text.

2 Mathematical definitions of fitness

In this section, we give mathematical definitions of the fitness functions used
for both problems presented in the main text

2.1 Biochemical adaptation

For biochemical adaptation, we use a fitness very similar to the one proposed
in [1].

We take as an initial input I = 0.5, then integrate for 1000 units of time
and shift I to 2. After waiting another 1000 time steps, we measure ∆Oss and
∆Omax as indicated in Figure 2 in the main text, and we take as a fitness
∆Omax + ε

∆Oss
with ε = 0.01 for the NFBL model and ε = 0.001 for the

first variant of the reduction of the IFFL model and ε = 0.01 for the second
variant.

2.2 Absolute discrimination

For absolute discrimination, we use a mutual information score, very similar
to the one proposed in [2].

Imagine that some ligands with concentration L and binding time τ are
presented to a cell. For ligand concentrations chosen from a specified dis-
tribution, we can now compute the typical output distribution pτ (O) for a
given τ . We consider log-uniformly distributed Input concentrations, inte-
grate the system of equations, and generate a histogram of output values O
corresponding to the input L. We take this as our approximation of pτ (O).

Absolute discrimination works when the typical output values O across
the range of L are unique for different τ . Intuitively, this means that the
output distributions for two binding times should overlap as little as possible,
as illustrated in Fig. 2. We use these distributions for two values of τ

6



to define marginal probability distributions pτi(O) = p(O|τi). Lastly, we
consider equiprobable τis, and define p(τi, O) = p(O|τi)p(τi) = 1

2
pτi(O) and

compute the mutual information between O and τ as

I(O, τ) = H(O) +H(τ)−H(O, τ) (5)

whereH is the classical Shannon entropyH(O, τ) = −∑i,O p(τi, O) log p(τi, O).
Mutual information measures how much information we can recover from

one variable knowing the other. For instance, when I(O, τ) = 0, it means we
cannot recover information on the value of τ by observing O, which would
be the case when both distributions are equal pτ1(O) = pτ2(O). Conversely,
when the two distributions are fully separated, this means we can fully recover
τ by observing O. Thus, the the mutual information is at its maximum of
1 bit. For partially overlapping distributions, the mutual information varies
gradually between 0 to 1. The choice of mutual information allows us to
focus only on the respective positions of the distributions, and not on their
shape, average values, etc... This allows us to focus on the discriminatory
phenotype irrespective of other parameters. We very often obtain peaked
distribution in O corresponding to horizontal lines (as in the lower panel of
Fig. 2); the absolute level of these lines is arbitrary.

During the reduction, we typically sampled 50 log-uniformly distributed L
on the interval [1, 104] and binned the resulting outputs O in 40 log-uniformly
distributed bins in the range [10−2, 102]. The results are largely independent
from the number of bins or the range of the bins, as long as O remains in the
neighborhood of biologically feasible values, the working range of the initial
networks. Partly due to this loose constraint, the output of the reduced
networks was near the output of the initial networks.

3 Reductions of biochemical adaptation

In order to reproduce Michaelis-Menten kinetics for the Negative Feedback
Loop and the Incoherent Feedforward Loop models from [3], we consider a
model of linear ODEs where the dynamics of a node are mediated by an
intermediary enzyme. In the models from [3], the production rates are of the
form

rateX =
1−X

K + 1−X (6)
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Figure S 2: Illustration of the mutual information score used for absolute
discrimination. Upon sampling L from a log-uniform distribution, we inte-
grate the equations, then compute histograms pτi(O) for τ1 and τ2. From
those joint distributions we compute the mutual information I(O, τ). If the
distribution overlap, it is not possible to distinguish well between the two
τi, which means I(O, τ) is low. If the distributions do not overlap, we can
unambigously determine τ given O, thus I(O, τ) = 1 bit.
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The problem with this is that this imposes X < 1, which is not enforced
by construction in [3]. To circumvent this difficulty, we slightly change their
model by introducing a production node PX and degradation node DX to
each node X. Both PX and DX are degraded by X. The quasi-static value
for the production (P eq

X ) and degradation (Deq
X ) nodes are:

P eq
X =

K

K +X
, Deq

X =
K

K +X
(7)

so that the full equation for X is given by

Ẋ = kpPX − kdDXX = kp
K

K +X
− kdX

K

K +X
(8)

with kd and kp rates, which are potentially modulated by other proteins.
Notice that we have included linear X dependency in the degradation. In
particular, addition of PX ensures that the production rate is a decreasing
function of X, as was hypothesized in [3].

4 Negative feedback loop

Initial equations for the negative feedback loop model are given by

Ȧ = k1I PA − k2ABDA

ṖA = k3(1− PA)− k4APA

ḊA = k5(1−DA)− k6ADA

Ḃ = k7APB − k8BDB

ṖB = k9(1− PB)− k10BPB

ḊB = k11(1−DB)− k12BDB.

Initial parameters are given in Tab. 2 and steps of the reduction of this
model are given in Tab. 3.
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Table 2: Negative feedback loop initial parameters
Parameter Value

k1 2
k2 1
k3 2
k4 1
k5 2
k6 2
k7 2
k8 1
k9 1
k10 2
k11 1
k12 2

5 Incoherent feedforward foop

For this model, we got two kinds of reductions and present two variants.
Initial equations for the incoherent feedforward loop model are

Ȧ = k1I PA − k2ADA

ṖA = k3(1− PA)− k4APA

ḊA = k5(1−DA)− k6ADA

Ḃ = k7APB − k8BDB

ṖB = k9(1− PB)− k10BPB

ḊB = k11(1−DB)− k12BDB

Ċ = k13APC − k14CBDC

ṖC = k15(1− PC)− k16CPC

ḊC = k17(1−DC)− k18CDC

Initial parameters for the first variant of this model are given in Tab. 4.
Steps and equations of the first variant of the reduction of this model are
given in Tab. 5. Initial parameters for the second variant of this model are
given in Tab. 6.
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Table 3: Negative feedback loop reduction
Step φinit Parameters Limit Description per group

1 1.6794 (k12, k8) → ∞ DB = k11/k12B
2 1.6951 (k11, k8) → (0,∞) Γ1 = k7k11/k12

3 1.6957 (k4, k9) → 0,∞ PA = 1 and PB = 1
4 54.4743 k10 → 0
5 54.4743 (k5, k6) → ∞
6 54.5648 k3 → ∞
7 54.6099 (k1, k2) → ∞

FINAL OUTPUT A|Beq = Γ1

k7
= k8k11

k7k12

Steps of the second variant of the reduction of this model are given in
Tab. 7. For this variant, we took ε = 0.01 in the fitness function and slightly
different initial parameters. Final equations for the second variant of the
IFFL reduction are given by:

Ȧ = k1I PA − k2A

ṖA = k3(1− PA)− k4APA

Ḃ = k7A− k8B

Ċ = k13A− k14BC

The main difference between the two variants is on the equations for B
and C. On the example of Fig. 3B in the paper, B and C regulate their
own production rate, and B titrates C, while on the system above, and B
regulates the degradation rate of C.

6 Adaptive Sorting

We perform parameter reduction on the Adaptative Sorting model without
any symmetry breaking process. Initial equations for the adaptive sorting
model are given by
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Table 4: Incoherent feedforward loop first variant initial parameters
Parameter Value

k1 2
k2 0.5
k3 3
k4 1
k5 2
k6 3
k7 2
k8 1
k9 3
k10 1
k11 2
k12 1
k13 2
k14 2
k15 3
k16 2
k17 1
k18 3
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Table 5: Incoherent feedforward loop first variant
Step φinit Parameters Limit Description per group

1 0.5958 (k14, k13) → ∞
2 0.5960 (k6, k5) → ∞
3 0.5961 (k15, k16) → ∞
4 0.5962 (k10, k9) → ∞
5 0.5971 (k13, k18) → (0,∞) DC = k17/k18C
6 0.6163 (k11, k8) → (0,∞) DB = k11/k12B
7 0.6169 (k18, k17) → ∞
8 0.6177 (k5, k2) → (0,∞) DA = k5/k6A
9 0.6699 (k17, k16) → (0,∞) PC = k15/k16C
10 0.7144 (k9, k7) → (0,∞) PB = k9/k10B
11 0.8544 (k4, k1) → ∞ PA = k3/k4A
12 0.8670 (k3, k1) → (0,∞)
13 0.8698 (k16, k7) → (0,∞)
14 1.6083 (k12, k8) → ∞
15 1.6094 (k8, k7) → ∞
16 2.2361 (k2, k1) → ∞

FINAL OUTPUT Ceq = k8k10k11k13k15k18
k7k9k12k14k16k17

K̇ = β(KT −K)− αKC0

Ċ0 = κ(L−
∑
i

Ci)(R−
∑
i

Ci) + bC1 − (φK + τ−1)C0

Ċ1 = φKC0 − (τ−1 + b)C1.

Initial parameters are given in Tab. 8. Steps of the reduction of this
model are given in Tab. 9.

7 SHP-1 model

7.1 SHP-1 model first reduction

We first perform parameter reduction on the SHP-1 model with parameter
symmetry breaking. Initial equations for the SHP-1 model are given by
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Table 6: Incoherent feedforward loop second variant initial parameters
Parameter Value

k1 3
k2 0.5
k3 3
k4 1
k5 2
k6 3
k7 5
k8 1
k9 3.5
k10 1
k11 5
k12 1
k13 2
k14 1
k15 3
k16 2
k17 1
k18 3
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Table 7: Incoherent feedforward loop second variant
Step φinit Parameters Limit Description per group

1 0.8788 (k14, k13) → ∞
2 0.8789 (k5, k6) → ∞
3 0.8793 (k9, k10) → ∞
4 0.8802 (k3, k4) → ∞
5 0.8811 (k4, k1) → ∞
6 0.8814 (k16, k15) → ∞
7 0.8822 (k18, k15) → 0,∞ PC = DC = 1
8 1.0372 (k11, k12) → ∞
9 1.0375 k17 → ∞
10 1.0378 (k2, k1) → ∞
11 1.3659 (k6, k8) → 0,∞ DA = 1
12 1.3736 k12 → 0 DB = 1
13 1.4156 (k10, k1) → 0,∞ PB = 1

FINAL OUTPUT Ceq = k8k13
k7k14

Ṡ = αC1(ST − S)− βS
Ċ0 = κ(L−

∑
i

Ci)(R−
∑
i

Ci) + γ1SC1 − (φ1 + τ−1)C0

Ċ1 = φ1C0 + γ2SC2 − (γ1S + φ2 + τ−1)C1

Ċ2 = φ2C1 + γ3SC3 − (γ2S + φ3 + τ−1)C2

Ċ3 = φ3C2 + γ4SC4 − (γ3S + φ4 + τ−1)C3

Ċ4 = φ4C3 + γ5SC5 − (γ4S + φ5 + τ−1)C4

Ċ5 = φ5C4 − (γ5S + τ−1)C5

Initial parameters for this model are given in Tab. 10. Steps of the first
reduction of this model are given in Tab. 11. The final system is given by
the following equations when the reduction steps of Tab. 11 are applied.

As an example of how the simpler model is contained into the full system
of equations, but with some zero parameters, this reduction corresponds to
the simplified system
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Table 8: Adaptative sorting initial parameters
Parameter Value

φ 3× 10−4

KT 103

α 1
β 1
κ 10−4

R 104

b 5× 10−2

Table 9: Adaptive sorting
Step Iinit Parameters Limit Description per group

1 0.8131 (α, β) → ∞ C∗ = β/α
2 0.8131 (KT , φ) → (0,∞) A = φKT

3 0.8131 (κ,R) → (0,∞) κR→∞
4 0.8131 R → ∞
5 0.8645 (C∗, A) → (0,∞) λ = AC∗

6 1 α → ∞ To undo the effect C1 ∝ L for L ≤ 2
7 1 b → 0 Uncluttering τ

FINAL OUTPUT C1 = λτ = φKTβτ/α

Ṡ = αC1ST − βS (9)

Ċ0 = κ(L−
∑
i

Ci)R + γ1SC1 − φ1C0 (10)

Ċ1 = φ1C0 − (φ2 + γ1S)C1 (11)

Ċ2 = φ2C1 − φ3C2 (12)

Ċ3 = φ3C2 − φ4C3 (13)

Ċ4 = φ4C3 + γ5SC5 − (φ5 + τ−1)C4 (14)

Ċ5 = φ5C4 − γ5SC5 (15)

Eqs. 14 and 15 correspond to Eqs. 2 and 3 in the main text, with propor-
tionality of S to C1 given by Eq. 9 and proportionality of C3 to C1 by Eqs.
12 and 13.
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Table 10: SHP-1 model initial parameters
Parameter Value

φ 9× 10−2

γ 1
ST 7.2× 10−1

β 3× 102

α 1
β/α = C∗ 3× 102

κ 10−4

R 3× 104

Table 11: SHP-1 First reduction
Step Iinit Parameters Limit Description per group

1 0.7369 (κ,R) → (0,∞)
2 0.7369 γ1 → ∞
3 0.8468 (φ2, φ1) → (0,∞)
4 0.8583 R → ∞
5 0.8583 (γ4, γ5) → 0,∞ Kinetic sensing module
6 1.0000 γ2 → 0 Uncluttering τ
7 1.0000 γ3 → 0
8 1.0000 (φ3, ST ) → ∞ Rescaling
9 1.0000 (φ1, φ4) → ∞
10 1.0000 β → ∞ Adaptation module
11 1.0000 (φ4, ST ) → ∞
12 1.0000 (ST , α) → (0,∞)

FINAL OUTPUT C5 = φ2φ5β
γ5STα

τ

7.2 SHP-1 model second reduction

We then perform another reduction of the same model using a different bin-
ning for the computation of the mutual information. Initial parameters and
equations are identical as in the previous reduction presented in section 7.1.
Steps for this reduction are given in Tab. 12.

The final system is given by the following equations when the reduction
steps given in Tab. 12 are applied.
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Table 12: SHP-1 Second reduction
Step Iinit Parameters Limit Description per group

1 0.6328 (κ,R) → (0,∞)
2 0.6328 R → ∞
3 0.6375 (γ4, α) → (0,∞)
4 0.6464 (γ2, γ1) → 0,∞
5 0.7264 γ5 → ∞ Adaptive module
6 1.0000 γ3 → 0
7 1.0000 (φ1, β) → ∞
8 1.0000 φ4 → ∞ Kinetic sensing module
9 1.0000 (φ3, ST ) → ∞
10 1.0000 (ST , β) → ∞
11 1.0000 (φ5, β) → (0,∞)
12 1.0000 (β, φ2) → (0,∞)

FINAL OUTPUT C5 = φ2φ5β
γ5STα

τ

Ṡ = αC1ST − βS (16)

Ċ0 = κR(L−
∑
i

Ci) + γ1SC1 − φ1C0 (17)

Ċ1 = φ1C0 − (φ2 + γ1S)C1 (18)

Ċ2 = φ2C1 − φ3C2 (19)

Ċ3 = φ3C2 + γ4SC4 − φ4C3 (20)

Ċ4 = φ4C3 + γ5SC5 − (φ5 + γ4S + τ−1)C4 (21)

Ċ5 = φ5C4 − γ5SC5. (22)

7.3 SHP-1 model third reduction

We perform another reduction of the same model using slightly different
initial parameter values. All parameters are given in Tab. 10 with ST → 5ST .
Initial set of equations is identical as in Sections 7.1 and 7.2. Steps for this
reduction are given in Tab. 13.

The final system is given by the following equations when the reduction
steps given in Tab. 13 are applied.
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Table 13: SHP-1 Third reduction
Step Iinit Parameters Limit Description per group

1 0.4946 (β, α) → ∞
2 0.4946 (R, κ) → (0,∞)
3 0.4946 (γ1, γ5) → 0 Kinetic sensing module
4 1.0000 (κ, φ1) → ∞
5 1.0000 φ1 → ∞
6 1.0000 (φ2, φ4) → (0,∞)
7 1.0000 (φ5, γ3) → ∞ Adaptation module
8 1.0000 γ2 → 0
9 1.0000 ST → ∞
10 1.0000 γ4 → 0
11 1.0000 (φ4, φ3) → (0,∞) Rescaling
12 1.0000 (α, γ3) → (0,∞)

FINAL OUTPUT C5 = φ2φ3φ4β
γ3STα

τ 2

Ṡ = αC1ST − βS
Ċ0 = κ(L−

∑
i

Ci)(R−
∑
i

Ci)− φ1C0

Ċ1 = φ1C0 − (φ2 + τ−1)C1

Ċ2 = φ2C1 + γ3SC3 − (φ3 + τ−1)C2

Ċ3 = φ3C2 − (φ4 + γ3S)C3

Ċ4 = φ4C3 − φ5C4

Ċ5 = φ5C4 − τ−1C5.

7.4 SHP-1 model reduction without feedback

We perform a reduction of the SHP-1 model with the SHP-1 mediated feed-
back turned off. Parameter values are given in Tab. 10 with ST = 0. The
network topology is as in Fig. S 3A and the corresponding initial set of
equations is identical as in Sections 7.1 and 7.2. Fig. S 3B shows that the re-
duction does not converge when crucial network elements (SHP-1 feedback)
are missing.
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Figure S 3: “Negative control” for SHP-1 model: we attempt to reduce this
model with φ̄ in absence of SHP-1 (corresponding to pure kinetic proofread-
ing). The algorithm fails to optimize behavior and fitness, indicating that it
is not possible to do so for arbitrary networks.
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7.5 Analytical study

The full analytical study of this model is done in [4]. Assuming all φi = φ
and γi = γ are equal, we get at lowest order

C1 ' r−(1− r−)
κRL

κR + ν1

(23)

with

r± =
φ+ S + ν1 ±

√
(φ+ S + ν1)2 − 4φS

2S
(24)

.
We can use the previous expression to get a closed equation for S as a

function of r−(S) and C∗.

S = ST
C1

C1 + C∗
= ST

r−(1− r−)

r−(1− r−) + C∗(κR+ν1)
κRL

(25)

This is a 4th order polynomial equation in S in terms of the parameters
that can be conveniently solved numerically. Once this is done, we get the
following expression for CN , the final complex in the cascade as a function
of r± to the lowest order in rN− .

CN '
κRL

κR + ν1

(
1− r−

r+

)
rN− (26)

To see why this feedback hinders perfect adaptation, it is useful to con-
sider the limit of big L and big ST . In this limit, it is shown in [4] that the
parameter r− becomes inversely proportional to the feedback variable 1/S,
thus giving at lowest order a S−N contribution in Eq. 26, clearly coming
from the coupling of N identical proofreading steps. Those equations can be
approximately solved [4] so that

CN '
(

φβ

αγST

)N/2
(L)1−N/2. (27)

So we see that, unless N = 2, there is an unavoidable L dependency. The
L−N/2 dependency comes from the steady state value of the feedback variable
S ∝ L1/2 appearing when we fully close this system.
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8 Lipniacki model

In this section, we present two parameter reductions performed by φ̄. Initial
equations for the Lipniacki model are:

Ẋ2 = b1 pMHCfree TCRfree + (s2 + s3)X23 − (lb LCKfree + ly1X29 + τ−1)X2

Ẋ3 = lb LCKfreeX2 + ls1X4 + (s2 + s3)X24 − (ly2 +X37 + ly1X29 + τ−1)X3

Ẋ4 = X37X3 − (ly2 + ls1 + τ−1)X4

Ẋ5 = ly2X3 + ls1X6 − (tp+X37 + ly1X29 + τ−1)X5

Ẋ6 = ly2X4 +X37X5 − (tp+ ls1 + τ−1)X6

Ẋ7 = tpX5 + ls1X8 − (tp+X37 + ly1X29 + τ−1)X7

Ẋ8 = tpX6 +X37X7 − (tp+ ls1 + τ−1)X8

Ẋ9 = tpX7 + ls1X8 − (τ−1 +X37 + ly1X29 + τ−1)X9

Ẋ10 = tpX8 +X37X9 − (ls1 + τ−1)X10

Ẋ22 = ly1X29 TCRfree + τ−1(X23 +X24)− (s2 + s3)X22

Ẋ23 = ly1X29X2 − (s2 + s3 + τ−1)X23

Ẋ24 = ly1X29(X3 +X5 +X7 +X9)− (s2 + s3 + τ−1)X24

Ẋ29 = s1(X5 +X7 +X9)SHPfree + s3(X22 +X23 +X24) + s0 SHPfree

− ly1(X2 +X3 +X5 +X7 +X9 + TCRfree)X29 − s2X29

Ẋ31 = z1(X9 +X10)(m1 −X31) + z0m1 − (z0 + z2)X31

Ẋ33 = 2X31(e1 −X34) + 2m2X34 − (m2 + 3X31)X33

Ẋ34 = X31X33 − 2m2X34

Ẋ36 = 2X34(ls2 −X37) + 2e2X37 − (e2 + 2X34)X36

Ẋ37 = X34X36 − 2e2X37
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To ensure physical behavior throughout the reduction process, we manu-
ally implement the following mass conservation laws.

pMHCfree = pMHC −
(

10∑
i=2

Xi +X23 +X24

)

TCRfree = TCR−
(

10∑
i=2

Xi +X22 +X23 +X24

)

LCKfree = LCK −
(

10∑
i=3

Xi +X24

)
SHPfree = SHP − (X22 +X23 +X24 +X29)

ZAPfree = ZAP −X31

MEKfree = MEK − (X33 +X34)

ERKfree = ERK − (X36 +X37)

We also perform initial rescaling of equations X31 to X37 to save φ̄ steps:

X31 →
m1X31

ZAP

X33 →
e1X33

MEK

X34 →
e1X34

MEK

X36 →
ls2X36

ERK

X37 →
ls2X37

ERK

Initial parameters are given in Tab. 14.

8.1 Lipniacki model reduction: first variant

For this reduction, we used mutual information as a fitness function. We
discarded all values of the output below the measurable threshold 10−2, and
used 40 log-uniformly distributed bins on the interval [10−2, 102] for the com-
putation of the Output distribution. The Input concentrations were given
by 50 log-uniformly distributed values on the interval [1, 104].

23



Steps of the first biochemical reduction of this model (odeLIPbasic.m in
the MATLAB code) are given in Tab. 15. The results of the biochemical
reduction are given by

Ẋ2 = b1 pMHCfree TCR + s22X23 − lbX2

Ẋ3 = lbX2 + s23X24 − ly21X3

Ẋ4 = X37X3 − ly22X4

Ẋ5 = ly21X3 − (tp1 +X37 + ly14X29 + τ−1)X5

Ẋ6 = ly22X4 +X37X5 − (tp2 + τ−1)X6

Ẋ7 = tp1X5 − (tp3 +X37 + ly15X29 + τ−1)X7

Ẋ8 = tp2X6 +X37X7 − (tp4 + τ−1)X8

Ẋ9 = tp3X7 − (τ−1 +X37 + ly16X29)X9

Ẋ10 = tp4X8 +X37X9 − τ−1X10

Ẋ23 = ly12X29X2 − (s22 + τ−1)X23

Ẋ24 = (ly13X3 + ly14X5 + ly15X7 + ly16X9)X29 − (s23 + τ−1)X24

Ẋ29 = s11X5 + s12X7 + s13X9 − ly11TCRX29.

We then perform parameter symmetry breaking (odeLIPadvanced in the
MATLAB code). Steps of reduction are given in Tab. 16.

Parameter symmetry breaking results in the following system that can be
again extracted analytically and is a subset of the initial full system:

Ẋ2 = b1 pMHCfree TCR− lbX2

Ẋ3 = lbX2 − ly2X3

Ẋ5 = ly2X3 − ly13X29X5

Ẋ7 = tp1X5 − (tp2 + ly14X29 + τ−1)X7

Ẋ9 = tp2X7 − (ly15X29 + τ−1)X9

Ẋ23 = ly12X29X2 − τ−1X23

Ẋ24 = ly13X29X5 − τ−1X24

Ẋ29 = s1X5 − ly11TCRX29
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Only four more steps of reduction are needed to reach perfect adaptation,
namely (ly13, ly15)→ 0, (ly11, ly14)→∞, (tp1, ly14)→∞ and finally ly14 →
∞. We apply those steps of reduction by hand and reach the final following
system.

Ẋ2 = b1 pMHCfree TCR− lbX2 (28)

Ẋ3 = lbX2 − ly2X3 (29)

Ẋ5 = ly2X3 − tp1X5 (30)

Ẋ7 = tp1X5 − ly14X29X7 − tp2X7 (31)

Ẋ9 = tp2X7 − τ−1X9 (32)

Ẋ24 = ly14X7X29 − τ−1X24 (33)

Ẋ29 = s1X5 − ly11TCRX29 (34)

8.2 Lipniacki model reduction: second variant

Initial equations, parameters, mass conservation laws and equation transfor-
mations for this reduction are the same as for the previous Lipniacki reduc-
tion. For this reduction, we chose mutual information as the fitness with
40 bins log-uniformly distributed on the interval [10−2, 102], plus a lower bin
for concentrations below 10−2 and a higher bin for concentrations above 102.
We chose 50 log-uniformly distributed Input concentrations on the interval
[1, 104]. Because of the binning choice, the fitness, was optimized quicker,
while most reduction took place in the neutral fitness landscape of maximum
fitness of 1 bit. The details of this biochemical reduction are given in Tab.
17. After the first reduction, the system is reduced to
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Ẋ2 = b1 pMHCfree TCRfree + (s22 + s32)X23 − lb LCK X2

Ẋ3 = lb LCK X2 + ls11X4 + (s23 + s33)X24 − (ly21 +X37 + ly11X29 + τ−1)X3

Ẋ4 = X37X3 − (ly22 + ls11 + τ−1)X4

Ẋ5 = ly21X3 + ls12X6 − (tp1 +X37 + ly12X29 + τ−1)X5

Ẋ6 = ly22X4 +X37X5 − (tp2 + ls12 + τ−1)X6

Ẋ7 = tp1X5 + ls13X8 − (tp3 +X37 + ly13X29 + τ−1)X7

Ẋ8 = tp2X6 +X37X7 − (tp4 + ls13 + τ−1)X8

Ẋ9 = tp3X7 + ls14X8 − (X37 + ly14X29 + τ−1)X9

Ẋ10 = tp4X8 +X37X9 − (ls14 + τ−1)X10

Ẋ22 = ly15X29 TCRfree + τ−1(X23 +X24)− (s21 + s31)X22

Ẋ23 = ly16X29X2 − (s22 + s32 + τ−1)X23

Ẋ24 = X29(ly11X3 + ly12X5 + ly13X7 + ly14X9)− (s23 + s33 + τ−1)X24

Ẋ29 = (s11X5 + s12X7 + s13X9)SHP + (s31X22 + s32X23 + s33X24)

− (ly16X2 + ly11X3 + ly12X5 + ly13X7 + ly14X9 + ly15TCRfree)X29 − s24X29

X37 = 0.05

We then perform parameter symmetry breaking on this system. Steps
of the biochemical reduction of this model are given in Tab. 18. We can
remove equations for X4, X6, X23 and X24 as they are dead ends in the
network. X37 = 0.5 is held constant. The final expression of the output given
in Tab. 18 is extracted from remaining equations at steady-state; expanding
the equations for the relevant cascade we get
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Ẋ2 = b1 pMHCfree TCRfree − lb LCK X2 (35)

Ẋ3 = lb LCK X2 − ly21X3 (36)

Ẋ5 = ly21X3 − (tp1 + ly12X29)X5 (37)

Ẋ7 = tp1X5 −X37X7 (38)

Ẋ8 = X37X7 − tp4X8 (39)

Ẋ10 = tp4X8 − τ−1X10 (40)

Ẋ22 = ly15 TCRfreeX29 − s21X22 (41)

Ẋ29 = s11 SHP X5 − ly15TCRfreeX29 (42)

X37 = 0.5 (43)

The output here is X10. Variables X22, X29 and X5 respectively correspond
to variables Rp, S and C5 in the main text. The structure of Eqs. 35 to 42 is
clearly very similar to the equations of the previous reduction 28 to 34, with a
linear cascade for the second reduction X2 → X3 → X5 → X7 → X8 → X10

and X2 → X3 → X5 → X7 → X9 for the first reduction, modulated by a
parallel loop via X29 and X5. As described in the main text, the structural
difference comes from the mechanism of this loop, the first reduction giving
an effective feedforward adaptive system, while the second reduction is an
integral feedback mechanism.

9 Antagonism

The models we reduce have all captured the phenomenon of ligand antago-
nism, where the response of agonist ligands in the presence of high amounts
of well chosen subthreshold ligands (i.e. with binding time lower than criti-
cal binding time τc triggering response) is antagonized. With our fitness, we
have quantified and selected for absolute discrimination in the networks, and
through the reduction, ligand antagonism has remained, but the hierarchy of
antagonism has changed. In the simplest systems, antagonism is maximum
for minimum τ , while for more complex models there maximum antagonism
is reached closer to threshold τc (see discussion in [5]). It turns out we can
recover this property by adding two terms to the final reduced equations.

An overview of antagonism is presented in Fig. S4. We draw the response
line as a binary activation by choosing a threshold of the final output for ac-
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tivation (we know from our previous works [2, 4] that adding stochasticity to
have a more probabilistic view does not fundamentally change this picture).
The earliest response (in terms of ligand concentration) always comes from
the agonist alone. Note how T cells in Fig. S4 A presented to OVA ago-
nists + strong G4 antagonists are activated at higher agonist concentration
than the weak E1 antagonists, and G4 have a binding time close to threshold
than E1. This hierarchy is typical for experimentally observed antagonism:
antagonism strength is large just below τc, the critical binding time above
which a response is elicited.

Similarly, in the full models for SHP-1 and Lipniacki (Fig. S4 B - C), we
have the same hierarchy. However, for the same binding times in reduced
SHP-1 (Fig. S4 E) and reduced Lipniacki (Fig. S4 F), we have an inverted
hierarchy, where ligands further below are more antagonizing, so closer to
the naive models discussed in [5].

It turns out that the position of the adaptive module m in the kinetic
proofreading cascade of N complexes, defined as the complex on which the
variable S implements the negative ”tug-of-war” term described in the main
text, determines the antagonism strength, like in Fig. 4 of ref. [5]. We can
rescue the correct hierarchy of antagonism by adding kinetic terms τ−1 to
the equations. We illustrate this on the second variant of SHP-1 reduction.
The antagonism hierarchy is initially absent from the reduced model (Fig.
S4 G). When we add τ−1 terms to Eqs. 17 and 18, it is retrieved, Fig. 4,
because m = 4 is large enough. When m is too low (m = 2, Figs. S4 E - F),
antagonism behavior peaks for τ � τc and we can not recover the hierarchy
observed experimentally.
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binary activation depending on threshold crossing. (A) Experimental data,
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Table 14: Lipniacki model initial parameters
Parameter Value Details
TCR 3× 104

LCK 105

SHP 3× 105

ZAP 105

MEK 105 Can’t be modified by φ̄
ERK 3× 105

b1 3× 10−1/TCR Agonist peptide binding
lb 3× 10−1/LCK LCK(s) binding
ly1 5/SHP pSHP complex binding
ly2 3× 10−1 Theorine phosphorylation at complex
ls1 10−1 Spontaneous serine dephosphorylation
ls2 5× 10−1 ppERK catalyzed serine phosphorylation
tp 5× 10−2 TCR phosphorylation
s0 10−5 Spontaneous SHP phosphorylation
s1 3× 102/SHP SHP phosphorylation
s2 6× 10−4 SHP dephosphorylation
s3 5× 10−2 SHP dissociation
z0 2× 10−6 Spontaneous ZAP phosporylation
z1 5/ZAP ZAP phosphorylation
z2 2× 10−2 ZAP dephosphorylation
m1 5× ZAP/MEK MEK phosphorylation
m2 2× 10−2 MEK dephosphorylation
e1 5×MEK/ERK ERK phosphorylation
e2 2× 10−2 ERK dephosphorylation
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Table 15: Lipniacki basic first variant
Step Iinit Parameters Limit Description per group

1 0.45 (m1,m2) → ∞
2 0.47 b1 → ∞
3 0.47 (lb, LCK) → (0,∞) lb′ = lb LCK
4 0.47 ls1, z1 → 0,∞ Turning off the positive feedback
5 0.50 e1, e2 → 0
6 0.50 z0, z2 → 0
7 0.50 m1 → 0
8 0.50 s3 → 0
9 0.50 (ls2, LCK) → (0,∞)
10 0.50 ly2 → ∞
11 0.50 (TCR, SHP ) → ∞
12 0.5017 s0 → 0
13 0.5017 (s2, ly1) → (0,∞) Products
14 0.5017 (SHP, s1) → (0,∞) s′1 = s1SHP
15 0.5017 (LCK, ly1) → (0,∞)
16 0.5216 s1 → ∞
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Table 16: Lipniacki advanced first variant
Step Iinit Parameters Limit Description per group

1 0.5837 (s22, s23) → 0
2 0.5837 (b1, ly22) → ∞ ly22 →∞ makes no change
3 0.5837 (s21, ly22) → ∞
4 0.5837 ly22 → ∞
5 0.5837 (TCR, ly11) → (0,∞) ly′11 = ly11TCR
6 0.5837 s12 → 0
7 0.6097 s13 → 0
8 0.6147 (tp2, tp3) → (0,∞)
9 0.6231 (ly13, lb) → 0,∞
10 0.6245 (tp4, ls2) → (0,∞) Products
11 0.6246 (tp3, ly16) → (0,∞)
12 0.6354 (ly16, ly15) → (0,∞)
13 0.6563 (ly15, ly13) → (0,∞)
14 0.6699 ly21 → ∞
15 0.6749 ls2, ly12 → 0,∞
16 0.7405 (ly14, s11) → ∞
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Table 17: Lipniacki basic second variant
Step Iinit Parameters Limit Description per group

1 0.7583 (m2,m1) → ∞ Shutting down positive feedback
2 0.8337 (z2,m1) → ∞
3 0.8337 LCK → ∞
4 0.8777 lb → ∞
5 0.8777 (ls1, ly2) → (0,∞)
6 0.8777 (z0, s0) → 0
7 0.8777 (m1, s1) → ∞
8 0.8777 (ly2, z1) → (0,∞)
9 0.8915 e2 → 0
10 0.8915 z1 → 0
11 0.8915 e1 → ∞
12 0.8915 (s1, SHP ) → (0,∞) Rescaling
13 0.8954 (b1, SHP ) → ∞
14 0.9029 (s3, s2) → (0,∞)
15 0.9278 (ls2, tp) → (0,∞)
16 0.9351 (tp, TCR) → (0,∞)
17 0.9725 (s2, ly1) → (0,∞)
18 1 (SHP, ly1) → (0,∞)
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Table 18: Lipniacki advanced second variant
Step Iinit Parameters Limit Description per group

1 1 (m21, ly22) → 0 Cleaning unnecessary parameters
2 1 (m1, s24) → 0
3 1 (ly11, ls13) → 0
4 1 (s12, s31) → 0
5 1 (ly13, ls11) → 0
6 1 (e1, ls14) → 0
7 1 (tp2, s33) → 0
8 1 (m22, ls12) → 0
9 1 (z2, s22) → 0
10 1 (s32, s13) → 0
11 1 ly16 → 0
12 1 (s23, ly14) → 0
13 1 ls2 → ∞
14 1 (s11, tp4) → ∞ Strengthening remaining reactions
15 1 (ly21, ly15) → ∞
16 1 (b1, s21) → ∞
17 1 tp3 → 0 Turning off one output
18 1 (lb, ly15) → ∞ Strengthening remaining reactions
19 1 (SHP, s21) → ∞
20 1 (LCK, ly12) → ∞
21 1 (ly12, tp4) → ∞
22 1 (ly15, tp4) → ∞
23 1 tp4 → ∞
24 1 (TCR, tp1) → (0,∞)

FINAL OUTPUT X10 = tp1s21TCR
s11ly17

τ
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