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Table S1. pKa Values for the Alkaline Transition in Previously Studied Variants of Ferricytochrome ca,1-23 

Species Variant pKa
alk Reference Protein ΔpKa

b Reference 

Horse WT (1) 9.35 -- -- Ref. 1 
 WT (2) 9.22  ± 0.06 (1) -0.13  ±0 .06 Ref. 2 
 H26N/H33N (3) 9.16 (1) -0.19 Ref. 3 
 E4G/H26N/H33N 9.15 (3) -0.01 Ref. 3 
 K8G/H26N/H33N 9.10 (3) -0.06 Ref. 3 
 K22G/H26N/H33N 9.23 (3) 0.07 Ref. 3 
 K25G/H26N/H33N 9.27 (3) 0.11 Ref. 3 
 H26N/H33N/K39G 9.18 (3) 0.02 Ref. 3 
 H26N/H33N/E62G 9.15 (3) -0.01 Ref. 3 
 H26N/H33N/E66G 8.46 (3) -0.7 Ref. 3 
 H26N/H33N/E66A 8.64 (3) -0.52 Ref. 3 
 H26N/H33N/E69G 8.61 (3) -0.55 Ref. 3 
 H26N/H33N/P76G 7.50 (3) -1.66 Ref. 3 
 H26N/H33N/K72G (4) 9.02 (3) -0.14 Ref. 3 
 H26N/H33N/K72G/K73G 9.00 (4) -0.02 Ref. 3 
Horsec Y67F 10.65 (1) 1.3 Ref. 4 

A83P 8.95 (1) -0.4 Ref. 4 
T78N/A83P 8.25 (1) -1.1 Ref. 4 

T78N 8.10 (1) -1.25 Ref. 4 
Yeast iso-1 WTd (5) 8.5 -- -- Ref. 5 
 C102T (6) 8.5 (5) 0 Ref. 5 
 N52I 9.4 (5) 0.9 Ref. 6 
 K72A/C102T (7) 8.5 (6) 0 Ref. 7 
 K73A/C102T 8.82  ±0 .02 (6) 0.32  ± 0.02 Ref. 8 
 K79A/C102T (8) 8.44  ± 0.01 (6) -0.06  ± 0.01 Ref. 8 
 N52G/K79A/C102S 7.46  ± 0.02 (8) -0.98  ± 0.02 Ref. 9 
 L85A/C102T (9) 7.7  ± 0.1 (6) -0.8  ± 0.1 Ref. 10 
 K72A/L85A/C102S 7.84  ± 0.06 (9) 0.14  ± 0.12 Ref. 10 
 F82G/C102T 8.4 (6) -0.1 Ref. 5 
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 F82S/C102T 7.7 (6) -0.8 Ref. 5 
 F82L/C102T 7.2 (6) -1.3 Ref. 5 
 F82I/C102T 7.2 (6) -1.3 Ref. 5 
 F82W/C102T 9.95  ± 0.08 (6) 1.45  ± 0.08 Ref. 11 
 M80E/C102T 11.55  ± 0.11  (6) 3.05  ± 0.11 Ref. 12 
 M80D/C102T 9.25  ± 0.08  (6) 0.75  ± 0.08 Ref. 12 
 P76A/C102T 7.83  ± 0.14 (6) -0.67  ± 0.14 Ref. 13 
 G77A/C102T (10) 8.00  ± 0.23 (6) -0.5  ± 0.23 Ref. 13 
 P76A/G77A/C102T 6.88  ± 0.15 (10) -1.12  ± 0.27 Ref. 13 
Yeast iso-2 WTd (11) 8.45 -- -- Ref. 14 
 P76Gd 6.7 (11) -1.75 Ref. 14 
Human WT 9.9 -- -- Ref. 15 
 WT 9.5 -- -- Ref. 1 
 WT 9.3  ± 0.4 -- -- Ref. 16 
 WT 9.54  ± 0.03 -- -- Ref. 17 
 WTf (12) 9.56  ± 0.4 -- --  
 Y46F 8.9 (12) -0.66  ± 0.4 Ref. 17 
 K8R (13) 9.63  ± 0.07 (12) 0.07  ± 0.41 Ref. 17 
 K8R/P44S(14) 9.51  ± 0.05 (13) -0.12  ± 0.09 Ref. 17 
 K8R/P44S/Y46F (15) 9.15  ± 0.02 (14) -0.36  ± 0.05 Ref. 17 
 K8R/P44S/Y46F/S47T (16) 9.05  ± 0.01 (15) -0.1 ± 0.02 Ref. 17 
 K8R/P44S/Y46F/S47T/A50E  9.32  ± 0.03 (16) 0.27  ± 0.03 Ref. 17 
 Y48E 7.0 (12) -2.56  ± 0.4 Ref. 18 
 Y48I 6.9 (12) -2.66  ± 0.4 Ref. 18 
 Y48F 10.3 (12) 0.74  ± 0.4 Ref. 19 
 G41S 7.8  ± 0.3 (12) -1.76  ± 0.5 Ref. 16 
 G41A 8.1  ± 0.5 (12) -1.46  ± 0.64 Ref. 16 
 G41T 6.7  ± 0.2 (12) -2.86  ± 0.45 Ref. 16 
Fruit Fly WT (17) 9.0 -- -- Ref. 20, 21 
 P30A 8.2 (17) -0.8 Ref. 21 
Rat WT 9.5 -- -- Ref. 22, 23 
 WT 9.6 -- -- Ref. 21 
 WT (18)f 9.55  ± 0.05 -- --  
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 P30A 8.5 (18) -1.05  ± 0.05 Ref. 21 
 P30V 5.9 (18) -3.65  ± 0.05 Ref. 21 
 Y67F 10.7 (18) 1.15  ± 0.05 Ref. 22, 23 
 N52I 9.5 (18) -0.05  ± 0.05 Ref. 6 
aThe list is not comprehensive, only variants related to reference proteins by a single point mutation are listed. bΔpKa = 
pKa

alk (variant) – pKa (reference protein). cSemisynthetic protein prepared by reaction of the synthetic peptide with the cyt 
c fragment after CNBr-treatment. dWith Cys at position 102. eCys102 modified by treatment with methyl 
methanethiosulfonate. fAverage value of multiple values reported for WT (listed above).  
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Figure S1. 1H NMR spectra of ferrous WT, T49V, and T49V Met-SO in a 50 mM sodium 
phosphate buffer at pH 7.4 and 25 °C. (A)(B)(C) schematic representation of the Met (or Met-
SO) ligand (lower case letters representing protons corresponding to labeled peaks in the 
spectra); (D)(E)(F) 1H and (G)(H)(I) 2D 1H NOESY NMR spectra for WT, T49V, and T49V 
Met-SO.   
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Figure S2. Spectra of ferric M80A at different pH values: (A)1H NMR spectra at 25 °C; (B) 
normalized intensities of the selected NMR peaks, plotted along the fraction of the hydroxide-
ligated form of M80A as a function of pH from UV-visible experiments; (C) EPR spectra at 10 
K; (D) UV-visible spectra at 22 ± 2 °C (top) and fit of the spectral changes (bottom).  
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Figure S3. Circular dichroism spectra in the Soret region of WT (black), T49V (cyan), 
Y67R/M80A (green), and M80A (red) at pH 7.4 and 22 ± 2 °C. Protein concentrations were 50 
μM and the path length l was 2 mm in these experiments. 

 

 

Figure S4. Upfield region of the 1H NMR spectra of ferrous yeast iso-1-cyt c 
K73A/K79G/M80K, horse heart cyt c variants Y67R/M80A and M80A at 25 ºC in a 50 mM 
sodium phosphate buffer at pD  7.4 containing 10% D2O v/v.  
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Figure S5. 1H NMR spectra of ferric WT, T49V, Y67R/M80A and M80A variants in a 50 mM 
sodium acetate (d6) at pD 4.5 and 25 ºC. The signal associated with the high-spin heme iron 
species is labeled by *. 
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Figure S6. (A) pH dependence of the charge-transfer region of the absorption spectra of ferric 
T49V at 22 ± 2 °C (pH 3.3 to 12.0), (B) plots of the V-vectors (V1 (blue), V2 (black), and V3 
(red)) from SVD analysis of these spectra , and (C) pH dependence of the extinction coefficient 
at 695 nm of ferric WT and T49V. 
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Figure S7. (Top) pH dependence of the charge transfer region of Y67R/M80A absorption 
spectra at 22 ± 2 °C: spectra at high (pH=8.05, blue), low (pH=3.94, red) pH, and several 
intermediate (gray) pH values are shown. (Bottom) Absorbance values at 620 nm versus pH 
(green) and corresponding fit. Points below pH 4.5 and above 7.5 were omitted from the analysis 
due to large changes in the spectral baselines suggesting protein denaturation at increasingly 
acidic and basic conditions.  
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Figure S8. 1H NMR spectra at 25 °C (top) and EPR spectra at 10 K (bottom) of ferric WT, 
T49V, and Y67R/M80A in 50 mM sodium borate buffer at pD (or pH) 10.5. EPR samples 
contained 20% glycerol v/v. 
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Figure S9. (A) EPR spectra of yeast iso-1- K73A/K79G/M80K cyt c at pH 7.4; horse heart 
T49V cyt c at pH 9.4, pH 7.4, pH 6.0, and pH 4.5; and horse heart WT cyt c at pH 7.4. Each 
sample contained around 300 μM protein in 50 mM borate buffer, pH 9.4; sodium phosphate 
buffer, pH 7.4; MES buffer, pH 6.0; or sodium acetate buffer, pH 4.5, with 30% v/v glycerol 
(except for K73A/K79G/M80K). Spectra were obtained at 10 K. Signals attributed to Lys-bound 
and Met-bound species are labeled in red and blue, respectively. (B) pH dependence of the 
downfield region of the 1H NMR spectra of ferric T49V at 25 °C. Buffers were 50 mM sodium 
acetate at pD 4.5-6.0; 50 mM sodium phosphate at pD 6.5-7.4; 50 mM Tris buffer at pD 8.2; and 
50 mM sodium borate at pD 9.2.   
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Figure S10. (A) EPR spectra of yeast iso-1 K73A/K79G/M80K cyt c pH 7.4; horse heart 
Y67R/M80A cyt c at pH 10.5, pH 7.4, pH 6.5, pH 5.5, and pH 4.5; horse heart M80A cyt c pH 
4.5. Each sample contained 200-300 μM protein in 50 mM borate buffer, pH 10.5; sodium 
phosphate buffer, pH 7.4-6.5; MES buffer, pH 5.5; sodium acetate buffer, pH 4.5, with 20% v/v 
glycerol (except for K73A/K79G/M80K). Spectra were obtained at 10 K. Signals attributed to 
Lys-bound and high-spin H2O species are labeled in blue and red, respectively. (B) pH 
dependence of the downfield region of the 1H NMR spectra of ferric Y67R/M80A at 25 °C. 
Buffers were 50 mM sodium acetate, pD 4.5-5.75; 50 mM sodium phosphate, pD 7.4; 50 mM 
sodium borate, pD 10.5.  
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Figure S11. Spectra of H2O-ligated M80A at pH 2.0 with 1 M salt and at pH 4.5, Met-ligated 
native WT at pH 7.4 and Lys-ligated WT at pH 10.5 at 22 ± 2 °C are compared with the three 
components obtained by input-independent SVD analysis of the T49V spectra. 
 

 

Figure S12. Representative kinetic traces (shown are results for Y67R/M80A) from (A) pH 
jumps from pH 7.4 to 4.6 and from pH 5.4 to 7.9 and (B) measurements of imidazole binding 
kinetics at pH 7.4. Mixing experiments were performed at 22 ± 2 °C.   
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