
S1 Appendix: Disease-free equilibrium and calculating R0

In the ODE model, when a vector population is free of parasites, the change in the number of vectors,

VS , is described simply by:
dVS(t)

dt
= φV − µV VS(t) (S1)

where φV and µV are the rates of vector birth and death respectively. By setting dVS(t)
dt equal to zero,

we obtain the disease-free vector equilibrium, i.e. V̂S = φV

µV
.

Similarly, in the absence of parasites, the change in the number of naïve susceptible, HS , susceptible

hosts is described as
dHS(t)

dt
= −rPHV VS(t)HS(t) + θH′(HT −HS(t)) (S2)

where r is the rate at which a host gets bitten by a vector (defined as b
HT

where b is the biting rate per

vector and HT is the constant total host population size), PHV is the probability of pre-sensitisation

per biting event, and θH′ is the rate of loss of the saliva pre-exposure effect. Note that HT −HS(t) is

the number of susceptible hosts that are pre-exposed to vector saliva. By setting dHS(t)
dt equal to zero,

we obtain the disease-free susceptible host equilibrium,

ĤS =
θH′HT

2

bPHV V̂S + θH′HT

, (S3)

and the equilibrium number of pre-sensitised susceptible hosts, Ĥ ′S , is simply HT − ĤS .

The risk of an epidemic outbreak is conventionally expressed as the basic reproductive number, R0,

which is the number of secondary infections produced when one infected individual is introduced to an

entirely susceptible population of hosts. Here we calculate R0 using the next generation method [1],

which is a general approach to calculate R0 for infection cycles involving multiple infected compart-

ments as the dominant eigenvalue of the next generation matrix (refer to Heffernan et al. [2] for an

accessible overview of this approach). Following the notation of Heffernan et al. [2], the infection

matrix, F and the transition matrix, V for our ODE model (eq. 1 main text) are described as follows:

F =



0 0 rTV HVS rTV H′VS

0 0 0 0

0 rTHVHS 0 0

0 rTH′VH
′
S 0 0


, (S4)
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V =



µV + σV 0 0 0

−σV µV 0 0

0 0 γH 0

0 0 0 γH′


. (S5)

The next generation matrix is then calculated as the product of the infection matrix and the inverse

of the transition matrix, FV −1 as follows:

FV −1 =



0 0 rTV HVS

γH

rTV H′VS

γH′

0 0 0 0

σV rTHVHS

µ2
V +µV σV

rTHVHS

µV
0 0

σV rTH′VH
′
S

µ2
V +µV σV

rTH′VH
′
S

µV
0 0


. (S6)

Then the dominant eigenvalue of the matrix FV −1 gives R0:

R0 =
r
√
VS
√
σV

√
HSTHV TV HγH′ +H ′STH′V TV H′γH′

√
γH
√
γH′

√
µV (µV + σV )

. (S7)

The effect of saliva-induced pre-sensitisation on the chance of a disease outbreak can be assessed by

taking the partial derivative of R0 with respect to the probability of successful pre-sensitisation upon

contact, i.e., PHV . While the full expression of ∂R0

∂PHV
is rather large and not shown here, we find the

following proportional relationship:

∂R0

∂PHV
∝ TH′V TV H′γH − THV TV HγH′ . (S8)

The sign of this expression determines the directional influence of saliva pre-sensitisation probability

on R0: when positive, pre-sensitisation increases the chance of an outbreak and when negative it

decreases the same chance. This term can be rearranged to give a condition for when pre-sensitisation

increases R0:

TH′V TV H′

THV TV H
>
γH′

γH
. (S9)

This expression simply tells us that pre-sensitisation facilitates disease outbreaks if the ratio of

the product of the transmission probabilities (i.e., vector to host and host to vector transmission) of

pre-sensitised hosts to naïve hosts is greater than the relative recovery rate of pre-sensitised hosts to
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naïve hosts. Such a scenario is foreseeable if pre-exposure to saliva leads to milder infections that are

rarely treated, and susceptibility and infectivity of pre-sensitised hosts remain sufficiently high.
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