
S1 Appendix:

Observation models for Gaussian, Poisson and

multinomial

This is a supplementary material for observation models in the main manuscript,
providing priors, the expectation of log-likelihood and the updating equa-
tions.

Gaussian distribution

We denote univariate Gaussian density function as Gauss(·|µ, σ2) where µ
and σ2 are mean and variances. We assume conjugate priors for µ and σ2 in
each cluster block:

sv,g,k ∼ Ga(·|γ0/2, γ0σ2
0/2)

µv,g,k ∼ Gauss(·|µ0, (λ0sv,g,k)−1),

where Ga(·|a, b) denotes Gamma distribution with shape and rate parameters
(a, b). In the present paper, we set σ2

0 = 104, γ0 = 1, and λ0 = 10−4 so that
the prior distributions are nearly non-informative. It can be shown that the
variational approximation for the posterior qθ(m)(θ(m)) is given by

V∏
v=1

G∏
g=1

K∏
k=1

Gauss(µv,g,k|µ0,v,g,k, (λ0,v,g,ks0,v,g,k)−1)

×Ga(s0,v,g,k|γ0,v,g,k/2, γ0,v,g,kσ2
0,v,g,k/2),
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where the hyperparameters are updated by

λ0,v,g,k = λ0 +
d(m)∑
j=1

n∑
i=1

τ
(m)
j,v,gηi,v,k

µ0,v,g,k =
1

λ0,v,g,k

{
λ0µ0 +

d(m)∑
j=1

n∑
i=1

τ
(m)
j,v,gηi,v,kX

(m)
i,j

}

γ0,v,g,k = γ0 +
d(m)∑
j=1

n∑
i=1

τ
(m)
j,v,gηi,v,k

σ2
0,v,g,k =

1

γ0,v,g,k

{
γ0σ

2
0 + λ0µ

2
0

+
d(m)∑
j=1

n∑
i=1

τ
(m)
j,v,gηi,v,k(X

(m)
i,j )2 − λ0,v,g,kµ2

0,v,g,k

}
.

Finally, the expectation of the conditional log-likelihood Eq(θ)

[
log p(X

(m)
i,j |θ

(m)
v,g,k)

]
is given by

−1

2

{(X
(m)
i,j − µ0,v,g,k)2

σ2
0,v,g,k

+
1

λ0,v,g,k
+ log σ2

0,v,g,k

+ log(γ0,v,g,k/2)− ψ(γ0,v,g,k/2) + log(2π)
}
.

Poisson distribution

We denote Poisson distribution as Poisson(·|λ) where λ is a rate parameter.
The conjugate prior for λ is given by

λv,g,k ∼ Ga(·|α0, β0),

where we set α0 and β0 to one. It can be shown that the variational approx-
imation is given by

qθ(m)(θ(m)) =
V∏

v=1

G∏
g=1

K∏
k=1

Ga(λv,g,k|α0,v,g,k, β0,v,g,k),
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where the hyperparameters are updated by

α0,v,g,k = α0 +
d(m)∑
j=1

n∑
i=1

τ
(m)
j,v,gηi,v,kX

(m)
i,j

β0,v,g,k = β0 +
d(m)∑
j=1

n∑
i=1

τ
(m)
j,v,gηi,v,k.

The expectation of the conditional log-likelihood becomes

X
(m)
i,j {ψ(α0,v,g,k)− ψ(β0,v,g,k)}

− α0,v,g,k

β0,v,g,k
−

X
(m)
i,j∑
t=1

log t.

Categorical/multinomial distribution

For a categorical feature x (x ∈ {c1, . . . , cH}), we denote categorical distri-
bution as Cat(·|p) where H is the number of categories, and p = (p1, . . . , pH)
are probabilities for each category with

∑H
h=1 ph = 1. We assume the conju-

gate prior for (p1, . . . , pH),

(p1, . . . , pH) ∼ Dirichlet(·|ρ0),

where Dirichlet(·|ρ0) denotes a Dirichlet distribution with prior sample size
ρ0. We set ρ0 to (1, . . . , 1). It can be shown that

qθ(m)(θ(m)) =
V∏

v=1

G∏
g=1

K∏
k=1

Dirichlet(pv,g,k|ρ0,v,g,k),

where the hyperparameters are updated by

ρ0,v,g,k,h = ρ0,h +
d(m)∑
j=1

n∑
i=1

τ
(m)
j,v,gηi,v,kI(X

(m)
i,j = ch),

where ρ0,v,g,k,h denotes the hth element of ρ0,v,g,k. The expectation of the
log-likelihood is then given by

H∑
h=1

I(X(m)
i,j = ch){ψ(ρ0,h,v,g,k)− ψ(

H∑
h′=1

ρ0,h′,v,g,k)}.
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Since the categorical distribution differs depending on the number of cate-
gories H, we need to define different types of categorical distribution. Al-
ternatively, for the purpose of simplicity, we can set H to the maximum
number of categories for different categorical features, and fit a single family
of categorical distribution to all these features.

More generally, in the case of multinomial distribution, the update equa-
tion and the expectation of the log-likelihood becomes

ρ0,v,g,k,h = ρ0,h +
d(m)∑
j=1

n∑
i=1

τ (m)ηi,v,kni,j,h

H∑
h=1

ni,j,h{ψ(ρ0,h,v,g,k)− ψ(
H∑

h′=1

ρ0,h′,v,g,k)}

+ log

( ∑H
h=1 ni,j,h

ni,j,1, . . . , ni,j,H

)
,

where ni,j,h is the number of category ch in X
(m)
i,j ; the last term is the loga-

rithm of multinomial coefficients.
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