S1 Appendix:
Observation models for Gaussian, Poisson and
multinomial

This is a supplementary material for observation models in the main manuscript,
providing priors, the expectation of log-likelihood and the updating equa-
tions.

Gaussian distribution

We denote univariate Gaussian density function as Gauss(-|u,0?) where p
and 0% are mean and variances. We assume conjugate priors for 4 and o2 in
each cluster block:

Sogk ~ Gal(-[70/2,7%05/2)
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where Ga(:|a, b) denotes Gamma distribution with shape and rate parameters
(a,b). In the present paper, we set o2 = 10* 75 =1, and Ay = 107* so that
the prior distributions are nearly non-informative. It can be shown that the
variational approximation for the posterior gym) (O(m)) is given by
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where the hyperparameters are updated by
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Finally, the expectation of the conditional log-likelihood Eg) [log (X (m |Ov v k)]
is given by
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Poisson distribution

We denote Poisson distribution as Poisson(-|\) where X is a rate parameter.
The conjugate prior for A is given by

Avgr ~ Gal|ao, Bo),

where we set oy and [y to one. It can be shown that the variational approx-
imation is given by
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where the hyperparameters are updated by
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The expectation of the conditional log-likelihood becomes
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Categorical /multinomial distribution

For a categorical feature z (x € {¢1,...,cu}), we denote categorical distri-
bution as Cat(-|p) where H is the number of categories, and p = (p1,...,pn)
are probabilities for each category with Zthl pr = 1. We assume the conju-
gate prior for (p1,...,pH),

(p1,...,pu) ~ Dirichlet(-|p,),

where Dirichlet(-|p,) denotes a Dirichlet distribution with prior sample size
po- We set p, to (1,...,1). It can be shown that
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where the hyperparameters are updated by
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where pg,4%n denotes the hth element of py, ... The expectation of the
log-likelihood is then given by
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Since the categorical distribution differs depending on the number of cate-
gories H, we need to define different types of categorical distribution. Al-
ternatively, for the purpose of simplicity, we can set H to the maximum
number of categories for different categorical features, and fit a single family
of categorical distribution to all these features.

More generally, in the case of multinomial distribution, the update equa-
tion and the expectation of the log-likelihood becomes
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where n; ;5 is the number of category ¢, in Xi(gl); the last term is the loga-
rithm of multinomial coefficients.



