Table S1. Bacterial strains and plasmids used in this study

Strain or plasmid	Genotype and/or relevant characteristics	Reference or source
P. aeruginosa		
PAO1 (ATCC15692)	Prototroph	American type culture collection
fur	fur conditional mutant of PAO1, deleted of the fur coding sequence and carrying an arabinose-dependent copy of fur	27
lptH	<i>lptH</i> conditional mutant of PAO1, deleted of the <i>lptH</i> coding sequence and carrying an arabinose-dependent copy of <i>lptH</i>	32
PAO1 ΔtonB1	PAO1 deleted of the <i>tonB1</i> coding sequence	36
PAO1 Δ <i>pvdA</i>	PAO1 deleted of the <i>pvdA</i> coding sequence	60
PAO1 ΔpchD	PAO1 deleted of the <i>pchD</i> coding sequence	56
PAO1 ΔpvdAΔpchD	PAO1 deleted of the <i>pvdA</i> and <i>pchD</i> coding sequences	66
fur $\Delta pvdA$	fur conditional mutant deleted of the pvdA coding sequence	This work
fur ΔpchD	fur conditional mutant deleted of the pchD coding sequence	This work
fur ΔpvdAΔpchD	fur deleted of the pvdA and pchD coding sequences	This work
fur 2I	fur conditional mutant with a transposon insertion in the pchE gene	This work
fur 1A	fur conditional mutant with a transposon insertion in the pchH gene	This work
fur 2F	fur conditional mutant with a transposon insertion in the pchR gene	This work
fur 1B	fur conditional mutant with a transposon insertion in the P_{BAD} promoter region	This work
fur 2C	fur conditional mutant with a transposon insertion in the P_{BAD} promoter region	This work
fur 2E	fur conditional mutant with a transposon insertion in the araC gene	This work
P. syringae pv. tabaci	•	
ATCC15692	Prototroph	American type culture collection
BL33	ATCC15692 fur deletion mutant	24
E. coli		
S17.1 λpir	thi pro hsdRhsdM ⁺ recA RP4-2-Tc::Mu-Km::Tn7 λpir, Gm ^R	67
Plasmid		
pLM1	Tn5 delivery vector, Gm ^R	61
pDM4 $\Delta pchD$	pDM4 derivative for <i>pchD</i> in-frame deletion, Cm ^R	56
pEX18Tc∆ <i>pvdA</i>	pEX18Tc derivative for <i>pvdA</i> deletion, Gm ^R , Tc ^R	60
pMRP9-1	pUCP18-derivative which constitutively expresses the GFP protein, Cb ^R	68
pME6032	IPTG inducible expression vector, Tc ^R	59
pME <i>katA</i>	pME6032-derivative carrying an IPTG-inducible copy of <i>katA</i> (PA4236)	This work
pMEsodB	pME6032-derivative carrying an IPTG-inducible copy of <i>sodB</i> (PA4366)	This work
pME <i>bfrB</i>	pME6032-derivative carrying an IPTG-inducible copy of <i>bfrB</i> (PA3531)	This work
pMP220::PpvdS	Promoter of <i>pvdS</i> directionally cloned into pMP220, Tc ^R	69

pMP220::PpchR	Promoter of <i>pchR</i> directionally cloned into pMP220, Tc ^R	70
pLAFR3	Empty cosmid, Tc ^R	71
pME3300	pLAFR3 carrying the genes for pyochelin biosynthesis from PAO1	47

References non included in the main text:

- 66. Visca P, Bonchi C, Minandri F, Frangipani E, Imperi F. 2013. The dual personality of iron chelators: growth inhibitors or promoters? Antimicrob Agents Chemother 57:2432-2433.
- 67. Simon R, Priefer U, Pühler A. 1983. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Bio/Technology 1:784-790.
- 68. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. 280:295-298.
- 69. Ambrosi C, Leoni L, Visca P. 2002. Different responses of pyoverdine genes to autoinduction in *Pseudomonas aeruginosa* and the group *Pseudomonas fluorescens-Pseudomonas putida*. Appl Environ Microbiol 68:4122-4126.
- 70. Frangipani E, Visaggio D, Heeb S, Kaever V, Cámara M, Visca P, Imperi F. 2014. The Gac/Rsm and cyclic-di-GMP signalling networks coordinately regulate iron uptake in *Pseudomonas aeruginosa*. Environ Microbiol 16:676-688.
- 71. Staskawicz B, Dahlbeck D, Keen N, Napoli C. 1987. Molecular characterization of cloned avirulence genes from race 0 and race 1 of *Pseudomonas syringae* pv. *glycinea*. J Bacteriol 169:5789-5794.