2	
3	A bacterial multi-domain NAD-independent D-lactate dehydrogenase
4	utilizes FAD and Fe-S clusters as cofactors and quinone as electron
5	acceptor for D-lactate oxidization
6	
7	Tianyi Jiang ^{a,c} , Xiaoting Guo ^a , Jinxin Yan ^a , Yingxin Zhang ^a , Yujiao Wang ^a , Manman
8	Zhang ^a , Binbin Sheng ^a , Cuiqing Ma ^a , Ping Xu ^{b,a} , and Chao Gao ^{a*}
9	
10	^a State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100,
11	People's Republic of China
12	^b State Key Laboratory of Microbial Metabolism and School of Life Sciences and
13	Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic
14	of China
15	^c School of Municipal and Environmental Engineering, Shandong Jianzhu University,
16	Jinan 250101, People's Republic of China
17	
18	Keywords: NAD-independent D-lactate dehydrogenase, flavoprotein, iron-sulfur
19	protein, electron transfer, lactate utilization, Pseudomonas putida
20	
21	*Address correspondence to Chao Gao, State Key Laboratory of Microbial
22	Technology, Shandong University, Jinan 250100, People's Republic of China. Ph:
23	(+86) 531 883 64003; Fax: (+86) 531 883 69463; E-mail: jieerbu@sdu.edu.cn
24	

Supporting information for

	Specific activity (U/mg)	Fold purification	Yield (%)
Crude cell extract	1.25	1	100
His-trap	34.39	27.61	75.92
DEAE Sepharose FF	42.48	34.11	68.21
Superdex 200	44.51	35.74	44.67

25 **Table S1.** Purification procedure of heterologous expressed Fe-S D-iLDH.

26 The activities were determined in 1 mL of 50 mM Tris-HCl (pH 7.4) with 1.0 mM

27 D-lactate as substrate and 0.2 mM MTT as electron acceptor.

Table S2. Strains and plasmids used in this work.

Strain or plasmid	Relevant characteristics ^a	Source or reference
Strains		
P. putida KT2440	Wild-type, capable of DL-lactate utilizing	ATCC^{b}
P. putida KT2440 ($\Delta lldE\Delta glcD$)	P. putida KT2440 mutant obtained by deletion of the <i>lldE</i> gene and <i>glcD</i> gene	(1)
P. putida KT2440 ($\Delta lldE\Delta glcD::lldE$)	<i>P. putida</i> KT2440 ($\Delta lldE\Delta glcD$) harboring the plasmid pBBR- <i>lldE</i>	(1)
P. putida KT2440	<i>P. putida</i> KT2440 ($\Delta lldE\Delta glcD$) harboring the plasmid pBBR- <i>lldEFAD2</i>	T 1 · · · 1
$(\Delta lldE\Delta glcD::lldEFAD2)$		This study
<i>E. coli</i> DH5α	$F^- \varphi 80 lac Z\Delta M15 \Delta (lac ZYA-arg F) U169 recA1 endA1 hsdR17(r_K, m_K) phoA supE44 thi-1 gyrA96 relA1 \lambda^- used for gone clone$	Invitrogen
E coli DH5g (nFASY-Blunt-IldFEeS3)	<i>F coli</i> DH5a harboring the plasmid <i>pEASY</i> -Blunt- <i>IIdEEeS3</i>	This study
E. coli D1150 (DE3) $E. coli C43 (DE3)$	E con Drisk harboring the plasma pErior -Drane-nuEr ess Mutant of F coli BL 21 (DE3) used for protein expression	(2)
E coli C43 (DE3) (nFTDuet- <i>lldF</i>)	F coli C43 (DF3) harboring the plasmid pETDuet- $IIdF$	(2) This study
E coli C43 (DE3) (pETDuct <i>nuE</i>)	<i>E. coli</i> C43 (DE3) harboring the plasmid pETDuct <i>nuL</i> <i>E. coli</i> C43 (DE3) harboring the plasmid pETDuct- $IIdEFADI$	This study
E coli C43 (DE3) (pETDuct matrin 1) E coli C43 (DE3) (pETDuct-lldEFAD2)	<i>E. coli</i> C43 (DE3) harboring the plasmid pETDuct <i>null</i> TDT	This study
$E_{\rm coli}$ C43 (DE3) (pETDuct null $HD2$)	<i>E. coli</i> C43 (DE3) harboring the plasmid pETDuct <i>tutel HD2</i>	This study
E coli C43 (DE3) (pETDuct matrice)	<i>E. coli</i> C43 (DE3) harboring the plasmid pETD act main fibe	This study
<i>E. coli</i> C43 (DE3) (pETDuct- <i>lldEFeS2</i>)	<i>E. coli</i> C43 (DE3) harboring the plasmid pETDuct- <i>lldEFeS2</i>	This study
$E_{\rm coli}$ C43 (DE3) (pETDuct-lldEFeS3)	<i>E. coli</i> C43 (DE3) harboring the plasmid pETDuet- <i>lldEFeS3</i>	This study
<i>E. coli</i> C43 (DE3) (pETDuet- <i>lldEFeS3M1</i>)	<i>E. coli</i> C43 (DE3) harboring the plasmid pETDuet- <i>lldEFeS3M1</i>	This study
<i>E. coli</i> C43 (DE3) (pETDuet- <i>lldEFeS3M2</i>)	<i>E. coli</i> C43 (DE3) harboring the plasmid pETDuet- <i>lldEFeS3M2</i>	This study
<i>E. coli</i> C43 (DE3) (pETDuet- <i>lldEFeS3M4</i>)	<i>E. coli</i> C43 (DE3) harboring the plasmid pETDuet- <i>lldEFeS3M4</i>	This study
<i>E. coli</i> C43 (DE3) (pETDuet- <i>lldEFeS3M6</i>)	<i>E. coli</i> C43 (DE3) harboring the plasmid pETDuet- <i>lldEFeS3M6</i>	This study
E. coli C43 (DE3) (pETDuet-lldEFeS3M7)	E. coli C43 (DE3) harboring the plasmid pETDuet- <i>lldEFeS3M7</i>	This study
Plasmids		-
pBBR1MCS-5	Plasmid for gene complementation, Gm ^R	Biovector Science

									Lab,Inc
pBBR- <i>lldE</i>	The <i>lldE</i> gene that encoding Fe-S D-iLDH was inserted into pBBR1MCS-5.					This study			
pBBR- <i>lldEFAD2</i>	The <i>lldEFAD2</i> gene that encoding Fe-S D-iLDH 1-530 was inserted into pBBR1MCS-5.					This study			
<i>pEASY</i> -Blunt Ap^{R} , Km^{R} , cloning vector					TransGen				
pEASY-Blunt-lldEFeS3	The <i>lldEFe</i>	2S3 gene that enco	oding Fe-S	D-iLDH 5	31-936 was in	serted into	pEASY-Blunt.		This study
pETDuet-1	Vector for	protein expressio	on, Ap ^R						Novagen
pETDuet- <i>lldE</i>	The <i>lldE</i> ge	ene that encoding	g Fe-S D-iLl	DH was ir	serted into pE	TDuet-1.			This study
pETDuet- <i>lldEFAD1</i>	The <i>lldEFAD1</i> gene that encoding Fe-S D-iLDH 1-519 was inserted into pETDuet-1.			This study					
pETDuet- <i>lldEFAD2</i>	The <i>lldEFAD2</i> gene that encoding Fe-S D-iLDH 1-530 was inserted into pETDuet-1.				This study				
pETDuet- <i>lldEFAD3</i>	The <i>lldEFAD3</i> gene that encoding Fe-S D-iLDH 1-538 was inserted into pETDuet-1.				This study				
pETDuet- <i>lldEFeS1</i>	The <i>lldEFeS1</i> gene that encoding Fe-S D-iLDH 511-936 was inserted into pETDuet-1.				This study				
pETDuet- <i>lldEFeS2</i>	The <i>lldEFeS2</i> gene that encoding Fe-S D-iLDH 520-936 was inserted into pETDuet-1.				This study				
pETDuet- <i>lldEFeS3</i>	The <i>lldEFeS3</i> gene that encoding Fe-S D-iLDH 531-936 was inserted into pETDuet-1. This				This study				
pETDuet- <i>lldEFeS3M1</i>	The <i>lldEFeS3M1</i> gene that encoding Fe-S D-iLDH 531-936 (C540S) was inserted into pETDuet-1. The			This study					
nETDuct IIdEE aS2M2	The <i>lldEFe</i>	eS3M2 gene that	t encoding	Fe-S D-il	LDH 531-936	(C540S/C5	594S) was in	serted into	This study
pETDuet- <i>tutEFeSSM2</i>	pETDuet-1								This study
pETDust IIdEE S3M4	The <i>lldEFe</i>	eS3M4 gene that	encoding	Fe-S D-iL	DH 531-936	(C540S/C5	94S/C751S/C	752S) was	This study
pETDuct- <i>luEPessm4</i>	inserted into pETDuet-1.				This study				
pETDust IIdEE S3M6	The <i>l</i>	ldEFeS3M6	gene	that	encoding	Fe-S	D-iLDH	531-936	This study
per Duct- <i>uuer</i> essmo	(C540S/C594S/C751S/C752S/C540S/C594S) was inserted into pETDuet-1.				This study				
nETDuct IIdEE aS2M7	The <i>l</i>	ldEFeS3M7	gene	that	encoding	Fe-S	D-iLDH	531-936	This study
per Duct-uaer essur	(C540S/C543S/C594S/C751S/C752S/C540S/C594S) was inserted into pETDuet-1.				This study				

^a Km^R, kanamycin resistant; Ap^R, ampicillin resistant; Gm^R, gentamicin resistant.

30 ^b ATCC, American Type Culture Collection.

Tanle S3. Oligonucleotides used in this study.

Primer	Sequence(5'-3') ^a	Use				
Complementation						
<i>lldE</i> -pBBR-F	T <u>GGATCC</u> ATGAGCCTGCCCGCCGCGTT (BamHI)	Amplification of fragment <i>lldE</i> for constructing pBBR- <i>lldEFAD2</i> (forward)				
<i>lldEFAD2-</i> pBBR-R	T <u>CTCGAG</u> TTACAGCGGCTTGAGGTTTT (XhoI)	Amplification of fragment <i>lldE</i> for constructing pBBR- <i>lldEFAD2</i> (reverse)				
Overexpression						
<i>lldE</i> -F	T <u>GAATTC</u> ATGAGCCTGCCCGCCGCGTT (HindIII)	Amplification of <i>lldE</i> , <i>lldEFAD1</i> , <i>lldEFAD2 or lldEFAD3</i> for constructingpETDuet- <i>lldE</i> ,pETDuet- <i>lldEFAD1</i> , pETDuet- <i>lldEFAD2</i> orpETDuet- <i>lldEFAD3</i> (forward)				
<i>lldE</i> -R	A <u>CTCGAG</u> TTAGAGGCTGCGTGGCCGGG (XhoI)	Amplification of <i>lldE</i> , <i>lldEFeS1</i> , <i>lldEFeS2</i> or <i>lldEFeS3</i> for <u>constructing</u> pETDuet- <i>lldE</i> ,pETDuet- <i>lldEFeS1</i> ,pETDuet- <i>lldEFeS3</i> (reverse)pETDuet- <i>lldEFeS2</i> or				
<i>lldEFAD1-</i> R	CG <u>CTCGAG</u> TTAGTCTTCGCTCAACACCACGT	Amplification of <i>lldEFAD1</i> for constructing pETDuet- <i>lldEFAD1</i> (reverse)				
	(XhoI)					
<i>lldEFAD2-</i> R	CG <u>CTCGAG</u> TTACAGCGGCTTGAGGTTTTTCA	Amplification of <i>lldEFAD2</i> for constructing pETDuet- <i>lldEFAD2</i> (reverse)				
	(Xhol)					
<i>lldEFAD3-</i> R	TT <u>CTCGAG</u> TTAGTCGACGATTTTGTCGGCGG	Amplification of <i>lldEFAD3</i> for constructing pETDuet- <i>lldEFAD3</i> (reverse)				
	(XhoI)					
<i>lldEFeS1-</i> F	A <u>GAATTC</u> GATGAACCCCGACGTGGTGTTGAGC	Amplification of <i>lldEFeS1</i> for constructing pETDuet- <i>lldEFeS1</i> (forward)				
lldFFaS2_F		Amplification of $IIdEE_aS2$ for constructing pETDuet- $IIdEE_aS2$ (forward)				
111LI C02 1	(EcoRI)	(infinite and in the second constructing periode that it ess (forward)				
<i>lldEFeS3-</i> F	A <u>GAATTC</u> GATGAACCCCGACGTGGTGTTGAGC	Amplification of <i>lldEFeS3</i> for constructing pETDuet- <i>lldEFeS3</i> (forward)				
	(EcoRI)					
Site-directed mutagenesis						
C540S-F	CAAGTCCATCGAGTGCGGCT	Amplification of <i>pEASY</i> -Blunt- <i>lldEFeS3</i> for introducing C540S variation in				

		Fe-S oxidoreductase domain (forward)
C540S-R	TCGACGATTTTGTCGGCGGC	Amplification of <i>pEASY</i> -Blunt- <i>lldEFeS3</i> for introducing C540S variation in
		Fe-S oxidoreductase domain (reverse)
C540SC543S-F	GACAAGTCCATCGAGTCCGGC	Amplification of <i>pEASY</i> -Blunt- <i>lldEFeS3</i> for introducing C540S and C543S
		variation in Fe-S oxidoreductase domain (forward)
C540SC543S-R	GACGATTTTGTCGGCGGCAG	Amplification of <i>pEASY</i> -Blunt- <i>lldEFeS3</i> for introducing C540S and C543S
		variation in Fe-S oxidoreductase domain (reverse)
C594S-F	ACACCTCCGCCGCTACCGGCCT	Amplification of <i>pEASY</i> -Blunt- <i>lldEFeS3</i> for introducing C594S variation in
		Fe-S oxidoreductase domain (forward)
C594S-R	CGATGCCCTGGTACTGGTAGCTTTGC	Amplification of pEASY-Blunt-lldEFeS3 for introducing C594S variation in
		Fe-S oxidoreductase domain (reverse)
C751SC752S-F	CGACAGCCTGTCCTCCGGCCA	Amplification of <i>pEASY</i> -Blunt- <i>lldEFeS3</i> for introducing C751S and C752S
		variation in Fe-S oxidoreductase domain (forward)
C751SC752S-R	GCGTTGTCGGGGGAACACCACC	Amplification of <i>pEASY</i> -Blunt- <i>lldEFeS3</i> for introducing C751S and C752S
		variation in Fe-S oxidoreductase domain (reverse)
C869SC870S-F	GTATTCATTCCTCCGGGTTT	Amplification of <i>pEASY</i> -Blunt- <i>lldEFeS3</i> for introducing C869S and C870S
		variation in Fe-S oxidoreductase domain (forward)
C869SC870S-R	CTTCCGGGATCACCACCTGT	Amplification of <i>pEASY</i> -Blunt- <i>lldEFeS3</i> for introducing C869S and C870S
		variation in Fe-S oxidoreductase domain (reverse)

32 ^aRestriction sites are underlined, and the restriction enzymes are indicated in parentheses.

- 34 Figure S1. Characterization of Fe-S D-iLDH from P. putida KT2440. (A) Substrate specifity of the purified enzyme. (B) The effect of metal
- 35 ions on activity of the purified enzyme. Values are the mean \pm SD of three parallel replicates for each panel.

37 Figure S2. Scheme of expression procedure of FAD-containing dehydrogenase domain and 38 Fe-S oxidoreductase domain. For the expression of FAD-containing dehydrogenase domain, 39 three regions were cloned with different 3'-terminuses. The resulting genes *lldEFAD1*, lldEFAD2 and lldEFAD3 encode proteins Fe-S D-iLDH 1-519, Fe-S D-iLDH 1-530 and Fe-S 40 D-iLDH 1-538, respectively. Fe-S D-iLDH 1-519 keeps the integral N-terminus and the 41 predicted FAD-containing dehydrogenase domain without additional residues at the 42 C-terminus. The hinge area was added in Fe-S D-iLDH 1-530, and 8 amino acids of the 43 44 N-terminus sequence of Fe-S oxidoreductase domain were further added to construct Fe-S D-iLDH 1-538. Fe-S D-iLDH 1-530 and Fe-S D-iLDH 1-538 were soluble and have similar 45 specific activities, while Fe-S D-iLDH 1-519 was expressed as inclusion body. So the 46 47 following experiments were carried out using Fe-S D-iLDH 1-530 with less redundant sequence. Similarly, for the expression of Fe-S oxidoreductase domain, three regions were 48 cloned with different 5'-terminuses. The resulting genes *lldEFeS1*, *lldEFeS2* and *lldEFeS3* 49 encode proteins Fe-S D-iLDH 511-936, Fe-S D-iLDH 520-936 and Fe-S D-iLDH 531-936 50 51 with different N-terminus. All the three purified proteins had identical absorption spectrums,

- 52 so Fe-S D-iLDH 531-936 that has least redundant sequence was used in following
- 53 experiments.

Figure S3. Enzymatic properties of Fe-S D-iLDH and FAD-containing dehydrogenase 55 domain. (A) Effects of pH on activities of Fe-S D-iLDH and FAD-containing dehydrogenase 56 domain. The highest activity obtained with each enzyme was defined as 100%, respectively. 57 (B) The stabilities of Fe-S D-iLDH and FAD-containing dehydrogenase domain as a function 58 of pH. The enzymes were incubated at different pH for 30 min and then assayed. The activity 59 of each enzyme without pH treatment (stored in 100 mM sodium phosphate buffer, pH 7.4) 60 61 was defined as 100%, respectively. (C) Effects of temperature on activities of Fe-S D-iLDH and FAD-containing dehydrogenase domain. The highest activity obtained with each enzyme 62 was defined as 100%, respectively. (D) The stability of Fe-S D-iLDH and FAD-containing 63 dehydrogenase domain as a function of temperature. The enzymes were incubated at different 64 temperature for 30 min and then assayed. The enzyme activity without treatment (store at 4°C) 65

- 66 was defined as 100%. The activities were determined in 1 mL of 50 mM Tris-HCl (pH 7.4)
- 67 with 1.0 mM D-lactate as substrate and 0.2 mM MTT as electron acceptor. For (A) and (B),
- 68 the buffers used were: 0.2 M Na₂HPO₄-0.1 M citric acid buffer for pH 3.0-8.0; 50 mM
- 69 Glycine-NaOH buffer for pH 8.0-12.0. Values are the mean \pm SD of three parallel replicates
- 70 for each panel.

71

72 Figure S4. Construction of Fe-S oxidoreductase domain variants. (A) Scheme of the predicted cystines involved in Fe-S clusters binding in the sequence of Fe-S D-iLDH. (B) 73 SDS-PAGE analysis of the purified C540S Fe-S oxidoreductase domain. (C) SDS-PAGE 74 75 analysis of the purified C540S/C594S Fe-S oxidoreductase domain. (D) SDS-PAGE analysis of the purified C540S/C594S/C751S/C752S Fe-S oxidoreductase domain. (E) SDS-PAGE 76 analysis of the purified C540S/C594S/C751S/C752S/C540S/C594S Fe-S oxidoreductase 77 78 domain. (F) SDS-PAGE analysis of the purified 79 C540S/C543S/C594S/C751S/C752S/C540S/C594S Fe-S oxidoreductase domain.

82 putida KT2440 and its derivatives in minimal medium supplemented with 6 g·L⁻¹ D-lactate as the sole carbon source. (B) D-Lactate

83 concentrations measured during the growths of *P. putida* KT2440 and its derivatives. Results are means \pm SD of three parallel replicates.

- 86 database. The names of domains in the Pfam database are given. Detailed descriptions of the domains can be found in the Pfam database (http://
- pfam.sanger.ac.uk/). The dotted boxes indicate the similar domain organization of Fe-S D-iLDH and the GlcD, GlcF subunits of glycolate
 dehydrogenase.

90 Figuer S7. Evolutionary relationships of GlcD proteins and predicted FAD-containing 91 dehydrogenase domains of Fe-S D-iLDHs. The phylogenetic tree was constructed using 92 neighbor-joining method with Mega 5 software. Bootstrap values (%) are for 500 replicates. 93 The scale at the bottom indicates sequence divergence. The accession numbers (from the 94 National Center for Biotechnology Information, NCBI) are given in parentheses. Asterisks 95 indicate the protein sequences analyzed are not full length of the sequences with the given 96 accession numbers, but only the predicted FAD-containing dehydrogenase domains of them.

98 **REFERENCES**

Zhang Y, Jiang T, Sheng B, Long Y, Gao C, Ma C, Xu P. 2016. Coexistence of two
 D-lactate-utilizing systems in *Pseudomonas putida* KT2440. Environ. Microbiol. Rep.
 8:699–707

- 102 2. Miroux B, Walker JE. 1996. Over-production of proteins in *Escherichia coli*: mutant
- 103 hosts that allow synthesis of some membrane proteins and globular proteins at high
- 104 levels. J. Mol. Biol. 260:289–298.