

Figure S1

Specific decrease in monocytes in *Cebpb^{-/-}* mice.

(Å) Frequencies of HSCs, CMPs, and GMPs among lineage⁻ BM cells from WT or *Cebpb^{-/-}* mice (n=5). (B) Absolute numbers (/μl) of Ly6C⁺ and Ly6C⁻ monocytes in PB of WT or *Cebpb^{-/-}* mice (n=13). (C) Representative flow cytometric analysis of Ly6C⁺ and Ly6C⁻ monocytes in the spleen of WT or *Cebpb^{-/-}* mice. (D) Frequencies of total, Ly6C⁺ and Ly6C⁻ monocytes in the spleen of WT (n=10) or *Cebpb^{-/-}* (n=10) mice. (E) Absolute numbers of Ly6C⁺ and Ly6C⁻ monocytes in the spleen of WT (n=5) or *Cebpb^{-/-}* (n=5) mice. Data are presented as mean ± SD. *p<0.05, **p<0.01, ***p<0.001.

Figure S2

Competitive BM transplantation reveals the cell-intrinsic requirement of C/EBPβ for monopoiesis.

A total of 5×10^5 BM cells from WT or *Cebpb^{-/-}* mice (CD45.2⁺) together with 5×10^5 WT BM cells (CD45.1⁺) were transplanted into lethally irradiated (8 Gy) WT recipient mice (CD45.1⁺). Six weeks later, BM and PB samples were analyzed by flow cytometry. Expression of CD45.1 and CD45.2 on the indicated monocyte subsets is shown. Chimerism of *Cebpb^{-/-}* cells was significantly lower at the HSC level (unpublished observation). Therefore, the frequencies of CD45.2⁺ test cells in the indicated monocyte subsets (middle panel) were calibrated according to CD45.2⁺ chimerism among c-kit⁺ Sca-1⁺ lineage⁻ HSCs (right panel). Data are presented as mean \pm SD. *p<0.05, **p<0.01.

Figure S3

Specific targeting of monocytes in *Mx1*-Cre transgenic mice.

(A) *Mx1* mRNA was upregulated during differentiation into monocytes. Quantitative RT-PCR of *Mx1* expression in HSCs, CMPs, GMPs, MDPs, cMoPs, Ly6C⁺ monocytes, and Ly6C⁻ monocytes purified from BM of WT mice by cell sorting (n=3). (B) *Cebpb* mRNA expression in the indicated cell populations obtained from BM of *Cebpb*^{*j*/f} mice or mice produced by crossing *Cebpb*^{*j*/f} mice with *Mx1*-Cre transgenic mice (n=3). (C) Frequencies of Ly6C⁺ and Ly6C⁻ monocytes in BM and PB of *Cebpb*^{*j*/f} mice (n=6) or mice produced by crossing *Cebpb*^{*j*/f} mice (n=7). Data are presented as mean \pm SD. *p<0.05, **p<0.01.

Cebpb^{_/_} WT А В 40 30 57.7 48.2 30 20 20 MDP (%) 10 10 % BrdU⁺ cells 0 80 0 10° 101 102 10³ 10⁴ 10° 101 102 103 104 70 - WT 600 600 60 Cebpb-/-24.6 23.8 50 400 BM 400 40 Ly6C⁺ 200 200 30 0 0 20 10° 101 102 10° 101 102 103 104 10³ 10⁴ 10 15 80 0 0.9 6.2 60 MDP Ly6C⁺ Ly6C 10 ΒM 40 Ly6C-BM 5 10º 10¹ 10² 10³ 10⁴ BrdU — 0 10º 101 102 10³ 104 WT Cebpb^{/-} D С 250 %(S+G2/M) 300 60 200 35.2 3<u>9.2</u> BM 200 150 100 Ly6C⁺ - WT Cell Number 100 50 40 Cebpb-/-0 0 100K 200K 0 0 100K 200K 25 60 20 20 BM 1.0 4.5 40 15 Ly6C-10 20 5 0 Ly6C⁺ Ly6C-0 n 0 100K 200K 0 100K 200K ΒM Propidium iodide

Figure S4

The cell cycle status of monocytes in the absence of C/EBP β .

(A) Flow cytometric analysis of BrdU incorporation in MDPs, Ly6C⁺ monocytes, and Ly6C⁻ monocytes obtained from BM of WT or *Cebpb^{-/-}* mice. (B) Frequencies of BrdU⁺ cells in each population from WT or *Cebpb^{-/-}* mice (n=3). (C and D) Ly6C⁺ or Ly6C⁻ monocytes were purified from WT (n=3) and *Cebpb^{-/-}* (n=3) mice, fixed with ethanol, and subjected to cell cycle analysis using propidium iodide staining. The proportions of cycling cells (in S/G2/M phases) are shown. Data are presented as mean \pm SD. ***p<0.001.

Figure S5

BrdU pulsing experiments reveal accelerated turnover of Cebpb^{-/-} monocytes.

Dynamics of monocyte subsets in WT and *Cebpb^{-/-}* mice are shown. (A–D) Flow cytometric analysis of BrdU⁺ among monocyte subsets from WT or *Cebpb^{-/-}* mice after BrdU pulsing. Numbers indicate the percentage of cells in the adjacent boxed area. Negative controls were WT mice not injected with BrdU.

Figure S6

Death of Ly6C⁻ monocytes is accelerated in *Cebpb^{-/-}* mice.

Mouse PB cells were stained using the MitoPTJC-1 Assay Kit (ImmunoChemistry Technologies, MN, USA) according to the manufacturer's protocols after staining for cell surface markers. Mitochondrial red fluorescence and cytoplasmic green fluorescence were analyzed using a FACSCantoll instrument. APC-conjugated anti-CD11b (M1/70), PE-Cy7-conjugated anti-F4/80 (BM8), and V450-conjugated anti-Ly6C antibodies were used. CD11b⁺ F4/80⁺ FSC^{low-int} SSC^{low} cells were defined as monocytes in this experiment. (A) Mitochondrial membrane potential of Ly6C⁻ monocytes from WT and *Cebpb^{-/-}* mice. Numbers indicate the percentage of cells with normal (dotted lines) and depolarized (filled lines) mitochondria. (B) Frequencies of Ly6C⁻ monocytes with depolarized (apoptotic) mitochondria from WT and *Cebpb^{-/-}* mice (n=6). Data are presented as mean ± SD.

Figure S7 The serum Csf1 level is identical in WT and $Cebpb^{--}$ mice.

The Csf1 level in serum samples obtained from WT (n=6) and *Cebpb^{-/-}* (n=7) mice was measured using an ELISA. Data are presented as mean \pm SD.

Figure S8

mRNA expression of molecules known to be required for the development of Ly6C⁻ monocytes. (A and B) mRNA expression of *Nr4a1*, *Cx3cr1*, and *S1pr5* in the indicated cell populations (n=3). Data are presented as the mean \pm SD. ***p<0.001.

Figure S9

Egress of Ly6C⁻ monocytes from BM is not impaired in *Cebpb^{-/-}* mice.

To label cells in BM sinusoids, mice were intravenously injected with a PE-conjugated anti-CD45 antibody and sacrificed 2 min later. BM was then analyzed by flow cytometry. The percentages of CD45⁺ cells within the indicated monocyte subsets are shown. Data are presented as mean \pm SD.

Supplementary Table 1: Primers used for quantitative real-time PCR

Primer sequences (in 5'-3' direction) and TaqMan probes (Universal Probe Library, Roche Diagnostics) used for quantitative real-time PCR.

Gene	Forward primer	Reverse primer	Universa
name			l probe
			No.
Cebpb	ATCGACTTCAGCCCCTACCT	TAGTCGTCGGCGAAGAGG	55
Nr4a1	AGCTTGGGTGTTGATGTTCC	AATGCGATTCTGCAGCTCTT	1
S1pr5	GGAGTGCCGGTTACAGGAG	GAAGGACAATAACCTCACTCACC	70
Ccr2	ACCTGTAAATGCCATGCAAGT	TGTCTTCCATTTCCTTTGATTTG	27
Cx3cr1	AAGTTCCCTTCCCATCTGCT	CAAAATTCTCTAGATCCAGTTCAGG	10
Mx1	TTCAAGGATCACTCATACTTCAGC	GGGAGGTGAGCTCCTCAGT	53
Gpadh	TGTCCGTCGTGGATCTGAC	CCTGCTTCACCACCTTCTTG	80