Table S1: Chemical shift assignments from solid state NMR spectra of FUS-LC fibrils, Related to Fig. 3. Chemical shifts are in parts per million relative to NH_{3(l)} for ¹⁵N and relative to DSS for ¹³C. Uncertainties in chemical shifts are approximately ± 0.25 ppm for ¹⁵N and ± 0.15 ppm for ¹³C. Backbone ϕ and ψ torsion angle predictions based on these chemical shifts are from TALOS-N, with error limits representing uncertainties reported by TALOS-N. | residue | | | c | hemical s | hifts (ppn | | | | predicted torsion angles (°) | | | | | |---------|-----------------|------------------|------------------|------------------------------|------------|------------------------------|------------------|------------------|------------------------------|-------------------------|--|--|--| | | ¹⁵ N | ¹³ Cα | ¹³ CO | ¹³ C _β | 13Cγ | ¹³ C _δ | ¹³ Cε | ¹³ Cζ | ф | Ψ | | | | | S39 | 118.5 | 57.6 | 174.6 | 65.6 | | | | | | | | | | | G40 | 110.6 | 47.5 | | | | | | | | | | | | | S44 | 122.1 | 56.8 | 173.2 | 65.5 | | | | | -98 ± 14 | 129 ± 8 | | | | | T45 | 122.5 | 63.1 | 172.9 | 71.7 | 21.9 | | | | -114 ± 12 | 128 ± 6 | | | | | D46 | 127.4 | 50.7 | 176.3 | 42.9 | 180.9 | | | | -108 ± 13 | 124 ± 13 | | | | | T47 | 121.8 | 63.5 | 173.2 | 71.5 | 21.9 | | | | -115 ± 16*† | $129 \pm 12*^{\dagger}$ | | | | | S48 | 121.4 | 59.3 | 176.1 | 63.4 | | | | | -76 ± 19 | $138 \pm 14^{\dagger}$ | | | | | G49 | 114.4 | 44.5 | 173.4 | | | | | | 77 ± 10 | 19 ± 18 | | | | | Y50 | 104.7 | 61.7 | 173.5 | 37.7 | 128.2 | 131.4
133.5 | 118.8 | 157.0 | | | | | | | G51 | 108.3 | 42.9 | 172.1 | | | | | | | | | | | | Q52 | 110.3 | 56.4 | 176.0 | 27.1 | 35.2 | 181.1 | | | | | | | | | S53 | 116.4 | 58.0 | 173.0 | 66.5 | | | | | -120 ± 27 | 162 ± 10 | | | | | S54 | 113.9 | 56.1 | 175.0 | 65.9 | | | | | -142 ± 13 | 155 ± 10 | | | | | N63 | 126.9 | 52.4 | 173.7 | 39.9 | 176.4 | | | | -96 ± 12 | 124 ± 9 | | | | | T64 | 122.9 | 61.4 | 173.6 | 70.6 | 21.9 | | | | -105 ± 13 | 131 ± 13 | | | | | G65 | 117.2 | 45.5 | 171.1 | | | | | | -71 ± 8 | 161 ± 11 | | | | | Y66 | 122.9 | 57.9 | 177.5 | 41.5 | 130.1 | 132.0
134.1 | 118.8 | 156.9 | -62 ± 9 | $138 \pm 10^{\dagger}$ | | | | | G67 | 114.9 | 47.1 | 174.0 | | | | | | 80 ± 9* | $9 \pm 15*^{\dagger}$ | | | | | T68 | 115.0 | 61.4 | 172.0 | 70.1 | | | | | -105 ± 20 | 136 ± 9 | | | | | Q69 | 126.8 | 53.9 | 173.6 | 34.2 | 34.8 | 177.2 | | | -127 ± 13 | 146 ± 12 | | | | | S70 | 120.5 | 54.8 | 173.7 | 64.2 | | | | | -103 ± 12 | 140 ± 11 | | | | | T71 | | 60.7 | | 70.1 | 20.5 | | | | -67 ± 9 | 146 ± 11 | | | | | P72 | 132.9 | 62.3 | 176.6 | 32.3 | 28.5 | 47.2 | | | -65 ± 9 | 145 ± 10 | | | | | Q73 | 121.8 | 54.7 | 175.3 | 33.4 | 34.9 | | | | -118 ± 23 | 158 ± 14 | | | | | G74 | 110.2 | 46.2 | 173.9 | | | | | | | | | | | | Y75 | 126.6 | 59.9 | 177.6 | 39.7 | 129.1 | 131.2
133.5 | 117.6
118.6 | 157.0 | | | | | | | G76 | 103.3 | 45.7 | 175.8 | | | | | | | | | | | | S77 | 119.1 | 58.6 | 174.7 | 65.2 | | | | | | | | | | | T78 | 123.4 | 62.6 | 173.1 | 69.9 | 19.8 | | | | -107 ± 14 | 133 ± 9 | | | | | G79 | 116.4 | 43.6 | 172.1 | | | | | | | | | | | | G80 | 109.9 | 43.6 | 171.6 | | | | | | | | | | | | Y81 | 122.0 | 61.6 | 177.1 | 39.6 | 131.1 | 131.7
131.7 | 117.4
117.7 | 157.7 | -62 ± 6* | $141 \pm 8*^{\dagger}$ | | | | | G82 | 110.1 | 48.7 | 174.9 | | | | | | | | | | | | S83 | 109.7 | 57.5 | 172.5 | 66.0 | | | | | | | | | | | S84 | 116.5 | 55.9 | 175.0 | 67.6 | | | | | -125 ± 14 | $149 \pm 11^{\dagger}$ | | | | | Q85 | 128.4 | 54.7 | 172.3 | 33.4 | 34.1 | 180.3 | | | $-134 \pm 12^{\dagger}$ | $150 \pm 10^{\dagger}$ | | | | | S86 | 120.9 | 56.0 | 174.0 | 67.0 | | | | | -131 ± 8 | 152 ± 8 | | | | | S87 | 113.0 | 58.9 | 172.9 | 65.2 | | | | | -143 ± 29 | 155 ± 12 | | | | | Q88 | 120.2 | 56.4 | 176.4 | 31.9 | 34.1 | 179.0 | | | | | | | | | S89 | 117.1 | 56.6 | 173.4 | 66.0 | | | | | -128 ± 14 | 148 ± 12 | |-----|-------|------|-------|------|-------|----------------|-------|-------|---------------|--------------| | S90 | 118.2 | 54.6 | 173.1 | 64.4 | | | | | -116 ± 16 | 143 ± 18 | | Y91 | 123.7 | 55.2 | 175.8 | 39.2 | 129.1 | 132.6
133.4 | 117.1 | 157.8 | | | | G92 | 100.3 | 46.6 | 174.4 | | | | | | | | | Q93 | 116.2 | 58.3 | 175.6 | 28.7 | 36 | 177.5 | | | -66 ± 8* | 139 ± 12* | | Q94 | 117.5 | 54.8 | 175.6 | 34.2 | | 177.7 | | | -128 ± 13 | 147 ± 12 | | S95 | 121.7 | 56.2 | 173.8 | 65.2 | | | | | -101 ± 24 | 151 ± 15 | ^{*}Predictions classified as "generous" by TALOS-N. All other predictions are "strong". †Predictions not used as restraints in structure calculations, due to conflicts with ¹⁵N-BARE data. Table S2. Chemical shifts of unassigned signals in 3D solid state NMR spectra of FUS-LC fibrils, Related to Fig. 3. Possible assignments are listed when a signal was assigned to residues 1-112 in at least one of 50 mcassign2b runs with a connection to a neighboring residue. | 3D | | cl | nemical shifts (pp | | | | possible assignments | |----------|-----------------|-------------------|--------------------|------------------------------|-------------------|------------------|----------------------| | spectrum | ¹⁵ N | $^{13}C_{\alpha}$ | ¹³ CO | ¹³ C _β | $^{13}C_{\gamma}$ | residue type | possible assignments | | | 108.2 | 45.2 | | | | G | 111 | | | 111.5 | 58.7 | 171.7 | 69.1 | | S | - | | | 114.1 | 59.3 | 171.7 | 65.9 | | S | 26, 30 | | | 114.5 | 55.8 | 171.9 | 67.1 | | S | 26, 30, 61 | | | 117.2 | 56.2 | 171.6 | 65.0 | | S | 42, 57 | | NCACX | 120.5 | 54.7 | 173.6 | 28.5 | 35.0 | Q | 36, 62 | | | 121.0 | 56.4 | 176.4 | 31.4 | 34.2 | Q | 27, 31, 43 | | | 121.5 | 54.6 | 174.2 | 32.9 | 35.0 | Q | 27, 31 | | | 123.7 | 54.3 | 173.0 | 32.0 | 33.8 | Q | 31, 36, 103 | | | 124.3 | 57.0 | 173.8 | | | Q, S, Y, N, or D | - | | | 125.4 | 54.9 | 177.7 | 34.0 | | Q | - | | | 114.1 | 55.2 | 175.5 | | | Q, S, Y, N, or D | 41, 55 | | | 114.5 | 58.8 | 171.8 | 69.1 | | S | 110, 112 | | | 117.2 | 54.9 | 174.8 | | | Q, S, Y, N, or D | 55, 56 | | | 120.2 | 56.2 | 172.9 | | | Q, S, Y, N, or D | 27, 35, 61 | | | 121.0 | 55.7 | 172.0 | 67.0 | | S | 26, 30, 42, 61 | | NCOCX | 121.9 | 59.3 | 171.8 | 66.0 | | S | 26, 30 | | | 123.7 | 57.0 | 173.9 | | | Q, S, Y, N, or D | 8, 36, 102 | | | 125.2 | 59.9 | 171.4 | 65.5 | | Q, S, Y, N, or D | - | | | 126.8 | 54.3 | 173.1 | 32.5 | 33.7 | Q | - | | | 127.8 | 56.2 | 171.5 | 64.9 | | S | 112 | | | 107.6 | 48.9 | 177.2 | | | G | - | | | 111.5 | 58.6 | 175.5 | | | Q, S, Y, N, or D | 112 | | | 112.4 | 55.3 | 171.6 | | | Q, S, Y, N, or D | 41 | | | 114.5 | 59.2 | 176.0 | | | Q, S, Y, N, or D | 26, 30 | | | 114.6 | 55.7 | 172.3 | | | Q, S, Y, N, or D | 26, 30 | | | 117.8 | 55.9 | 174.9 | | | Q, S, Y, N, or D | 27, 35, 102 | | CONCA | 121.4 | 54.6 | 172.0 | | | Q, S, Y, N, or D | 27, 31 | | CONCA | 122.4 | 56.6 | 174.0 | | | Q, S, Y, N, or D | 35, 37, 61, 103 | | | 123.3 | 58.4 | 174.5 | | | Q, S, Y, N, or D | - | | | 123.6 | 54.3 | 174.0 | | | Q, S, Y, N, or D | 9, 31, 37, 103 | | | 125.0 | 54.9 | 171.6 | | | Q, S, Y, N, or D | 36, 56, 103 | | | 126.8 | 55.1 | 171.6 | | | Q, S, Y, N, or D | - | | | 112.7 | 55.7 | 58.2 | 173.0 | | Q, S, Y, N, or D | - | Table S3. Summary of NMR measurement conditions, Related to Fig. $2.^1$ | Sample | Spectrum | NMR parameters | Total time | Processing | |----------------------|-------------|---|------------|---| | U-FUS-LC, 10
mg | 2D CC | B_0 = 17.5 T; $ν_{MAS}$ = 17.0 kHz; na = 240; $τ_{pd}$ = 2.5 s; t_{1max} = 8.6 ms; t_{1inc} = 24 μs; $τ_{dwell}$ = 15 μs; $τ_{acq}$ = 15.4 ms; $τ_{HC}$ =1.5 ms; $τ_{DARR}$ = 25 ms; $ν_{1H}$ = 85 kHz | 120 h | GB = 75 Hz in t_1 ;
GB = 75 Hz in t_2 | | U-FUS-LC, 10
mg | 2D NCA | $\begin{array}{l} B_0 = 21.1 \; T; \nu_{MAS} = 11 \; kHz; na = 64; \tau_{pd} = 2.0 \; s; t_{1max} = 12.7 \; ms; t_{1inc} \\ = 201.6 \; \mu s; \tau_{dwell} = 10 \; \mu s; \tau_{acq} = 20.5 \; ms; \tau_{HC} = 1 \; ms; \tau_{NC} = 4 \; ms; \\ \nu_{1H} = 85 \; kHz; \nu_{1C} = 42 \; kHz, \nu_{1N} = 31 \; kHz, and \nu_{0C} = 53 \; ppm \; during \\ \tau_{NC} \end{array}$ | 5 h | GB = 10 Hz in t_1 ;
GB = 50 Hz in t_2 | | U-FUS-LC, 10
mg | 2D HC INEPT | B_0 = 14.1 T; v_{MAS} = 12 kHz; n_a = 32; τ_{pd} = 2.0 s; t_{lmax} = 10 ms; t_{line} = 50 μs; τ_{dwell} = 15 μs; τ_{aeq} = 15.4 ms; v_{lH} = 13 kHz | 7 h | $GB = 10 \text{ Hz in } t_1$:
$GB = 50 \text{ Hz in } t_2$ | | U-FUS-LC, 10
mg | 2D HN INEPT | $\begin{array}{l} B_0 = 17.5 \text{ T; } v_{MAS} \!\!=\! 17.0 \text{ kHz; } na = 64; \tau_{pd} = 2.0 \text{ s; } t_{1max} = 14 \text{ ms; } t_{1inc} \\ = 200 \text{ \mu s; } \tau_{dwell} = 15 \text{ \mu s; } \tau_{acq} = 30.7 \text{ ms; } v_{1H} = 38 \text{ kHz} \end{array}$ | 5 h | $GB = 0$ Hz in t_1 :
$GB = 0$ Hz in t_2 | | U-FUS-LC, 10
mg | 3D NCACX | $\begin{array}{l} B_0 = 21.1 \; T; \; \nu_{MAS} = 13.8 \; kHz; \; na = 8; \; \tau_{pd} = 2.0 \; s; \; t_{1max} = 12 \; ms; \; t_{1inc} \\ = 222 \; \mu s; \; t_{2max} = 6.8 \; ms; \; t_{2inc} = 109 \; \mu s; \; \tau_{dwell} = 5 \; \mu s; \; \tau_{acq} = 10.2 \; ms; \\ \tau_{HN} = 1 \; ms; \; \tau_{NC} = 4 \; ms; \; \tau_{DARR} = 50 \; ms; \; \nu_{1H} = 85 \; kHz; \; \nu_{1C} = 22 \; kHz, \\ \nu_{1N} = 36 \; kHz, \; and \; \nu_{0C} = 53 \; ppm \; during \; \tau_{NC} \end{array}$ | 60 h | $GB = 15 \text{ Hz in } t_1;$
$GB = 25 \text{ Hz in } t_2;$
$GB = 25 \text{ Hz in } t_3$ | | U-FUS-LC, 10
mg | 3D NCOCX | $\begin{array}{l} B_0 = 21.1 \; T; \; \nu_{MAS} = 13.8 \; kHz; \; na = 16; \; \tau_{pd} = 2.0 \; s; \; t_{1max} = 12 \; ms; \; t_{1inc} \\ = 222 \; \mu s; \; t_{2max} = 9.1 \; ms; \; t_{2inc} = 222 \; \mu s; \; \tau_{dwell} = 5 \; \mu s; \; \tau_{acq} = 10.2 \; ms; \\ \tau_{HN} = 1 \; ms; \; \tau_{NC} = 4 \; ms; \; \tau_{DARR} = 50 \; ms; \; \nu_{1H} = 83 \; kHz; \; \nu_{1C} = 52 \; kHz, \\ \nu_{1N} = 39 \; kHz, \; and \; \nu_{0C} = 175 \; ppm \; during \; \tau_{NC} \end{array}$ | 79 h | $GB = 15 \text{ Hz in } t_1;$
$GB = 25 \text{ Hz in } t_2;$
$GB = 25 \text{ Hz in } t_3$ | | U-FUS-LC, 10
mg | 3D CONCA | $\begin{array}{l} B_0 = 14.1 \; T; \; \nu_{MAS} = 12 \; kHz; \; na = 16; \; \tau_{pd} = 2.0 \; s; \; t_{1max} = 5.9 \; ms; \; t_{1inc} \\ = 196 \; \mu s; \; t_{2max} = 11.8 \; ms; \; t_{2inc} = 196 \; \mu s; \; \tau_{dwell} = 15 \; \mu s; \; \tau_{acq} = 7.7 \; ms; \\ \tau_{HC} = 1.5 \; ms; \; \tau_{CN} = 4 \; ms; \; \tau_{NC} = 4 \; ms; \; \nu_{1H} = 70 \; kHz; \; \nu_{1C} = 29 \; kHz, \\ \nu_{1N} = 17 \; kHz, \; and \; \nu_{0C} = 168 \; ppm \; during \; \tau_{CN}; \; \nu_{1C} = 29 \; kHz, \; \nu_{1N} = 17 \; kHz, \; and \; \nu_{0C} = 60 \; ppm \; during \; \tau_{NC} \end{array}$ | 68 h | $GB = 25 \text{ Hz in } t_1;$ $GB = 15 \text{ Hz in } t_2;$ $GB = 25 \text{ Hz in } t_3$ | | U-FUS-LC, 10
mg | 3D CANCX | $\begin{array}{l} B_0 = 14.1 \; T; \nu_{MAS} = 12 \; kHz; na = 256; \tau_{pd} = 2.0 \; s; t_{1max} = 4.0 \; ms; \\ t_{1inc} = 165.2 \; \mu s; t_{2max} = 6.6 \; ms; t_{2inc} = 165.2 \; \mu s; \tau_{dwell} = 15 \; \mu s; \tau_{acq} = \\ 7.7 \; ms; \tau_{HC} = 1.5 \; ms; \tau_{CN} = 4 \; ms; \tau_{NC} = 4 \; ms; \tau_{DARR} = 60 \; ms; \nu_{1H} = \\ 85 \; kHz; \nu_{1C} = 26 \; kHz, \nu_{1N} = 14 \; kHz, and \nu_{0C} = 56 \; ppm \; during \tau_{CN}; \\ \nu_{1C} = 16 \; kHz, \nu_{1N} = 4 \; kHz, and \nu_{0C} = 175 \; ppm \; during \tau_{NC} \end{array}$ | 578 h | $GB = 50 \text{ Hz in } t_1;$
$GB = 30 \text{ Hz in } t_2;$
$GB = 50 \text{ Hz in } t_3$ | | N112-FUS-LC, 6
mg | 1D HC CP | B_0 = 14.1 T; ν_{MAS} =13.6 kHz; na = 32; τ_{pd} = 3.0 s, τ_{dwell} = 15 μs; τ_{acq} = 7.7 ms, τ_{HC} =1.5 ms, ν_{1H} = 93 kHz | 0.03 h | GB = 80 Hz | | N112-FUS-LC, 6
mg | 1D HC INEPT | B_0 = 14.1 T; ν_{MAS} =13.6 kHz; na = 128; τ_{pd} = 2.0 s; τ_{dwell} = 15 μs; τ_{acq} = 30.7 ms; ν_{1H} = 16 kHz | 0.07 h | GB = 20 Hz | | N112-FUS-LC, 6 mg | 2D CC | $\begin{array}{l} B_0 = 14.1 \; T; v_{MAS} = 13.6 \; kHz; na = 32; \tau_{pd} = 3.0 \; s; t_{1max} = 5.5 \; ms; \\ t_{1inc} = 21.6 \; \mu s; \tau_{dwell} = 15 \; \mu s; \tau_{acq} = 7.7 \; ms; \tau_{HC} = 1.5 \; ms; \tau_{DARR} = 50 \\ ms; v_{1H} = 93 \; kHz \end{array}$ | 14 h | $GB = 75 \text{ Hz in } t_1$:
$GB = 75 \text{ Hz in } t_2$ | | N112-FUS-LC, 6
mg | 2D NCA | B_0 = 14.1 T; ν_{MAS} =13.6 kHz; na = 384; τ_{pd} = 2.2 s; t_{1max} = 12.4 ms; t_{1inc} = 129.6 μs; τ_{dwell} = 15 μs; τ_{acq} = 7.7 ms; τ_{HN} = 1.5 ms; τ_{NC} = 4 ms; ν_{1H} = 93 kHz; ν_{1C} = 34 kHz, ν_{1N} = 21 kHz, and ν_{0C} = 55 ppm during τ_{NC} | 45 h | $GB = 0$ Hz in t_1 :
$GB = 75$ Hz in t_2 | | N112-FUS-LC, 6
mg | 3D NCACX | $\begin{array}{l} B_0 = \overline{17.5 \text{ T; }} \nu_{MAS} = 17 \text{ kHz; } na = 32; \tau_{pd} = 1.5 \text{ s; } t_{1max} = 6.9 \text{ ms; } t_{1inc} \\ = 172.8 \text{ \mus; } t_{2max} = 5.2 \text{ ms; } t_{2inc} = 64.8 \text{ \mus; } \tau_{dwell} = 15 \text{ \mus; } \tau_{acq} = 7.7 \\ \text{ms; } \tau_{HC} = 1.5 \text{ ms; } \tau_{NC} = 5 \text{ ms; } ; \tau_{DARR} = 50 \text{ ms; } \nu_{1H} = 93 \text{ kHz; } \nu_{1C} = 43 \text{ kHz, } \nu_{1N} = 26 \text{ kHz, } \text{and } \nu_{0C} = 51 \text{ ppm during } \tau_{NC}; \end{array}$ | 170 h | $GB = 10 \text{ Hz in } t_1;$
$GB = 10 \text{ Hz in } t_2;$
$GB = 100 \text{ Hz in } t_3$ | | N112-FUS-LC, 6 mg | 3D CONCA | $\begin{array}{l} B_0 = 17.5 \; T; \nu_{MAS} = 17 \; kHz; na = 128; \tau_{pd} = 2.0 \; s; t_{1max} = 4.4 \; ms; t_{1inc} \\ = 259.2 \; \mu s; t_{2max} = 6.9 \; ms; t_{2inc} = 172.8 \; \mu s; \tau_{dwell} = 15 \; \mu s; \tau_{acq} = 7.7 \\ ms; \tau_{HC} = 1.5 \; ms; \tau_{CN} = 4 \; ms; \tau_{NC} = 5 \; ms; \nu_{1H} = 93 \; kHz; \nu_{1C} = 43 \\ kHz, \nu_{1N} = 26 \; kHz, and \nu_{0C} = 175 \; ppm \; during \tau_{CN}; \nu_{1C} = 43 \; kHz, \\ \nu_{1N} = 26 \; kHz, and \nu_{0C} = 51 \; ppm \; during \tau_{NC} \end{array}$ | 192 h | $GB = 10 \text{ Hz in } t_1;$
$GB = 10 \text{ Hz in } t_2;$
$GB = 100 \text{ Hz in } t_3$ | | C112-FUS-LC, 4
mg | 1D HC CP | B_0 = 14.1 T; $ν_{MAS}$ =13.6 kHz; na = 128; $τ_{pd}$ = 2.0 s; $τ_{dwell}$ = 15 μs; $τ_{acq}$ = 7.7 ms; $τ_{HC}$ = 15 ms, $ν_{1H}$ = 90 kHz | 0.07 h | GB = 80 Hz | | C112-FUS-LC, 4
mg | 1D HC INEPT | B ₀ = 14.1 T; ν _{MAS} =13.6 kHz; na =128; τ_{pd} = 2.0 s; τ_{dwell} = 15 μs; τ_{acq} = 30.7 ms; ν _{1H} = 16 kHz | 0.07 h | GB = 20 Hz | | C112-FUS-LC, 4 | 2D CC | $\begin{array}{l} B_0 = 14.1 \ T; \nu_{MAS} = 13.6 \ kHz; \ na = 192; \ \tau_{pd} = 2.2 \ s; \ t_{lmax} = 4 \ ms; \ t_{line} \\ = 22.4 \ \mu s; \ \tau_{dwell} = 15 \ \mu s; \ \tau_{acq} = 7.7 \ ms; \ \tau_{HC} = 1.5 \ ms; \ \tau_{DARR} = 50 \ ms; \\ \nu_{1H} = 78 \ kHz \end{array}$ | 42 h | $GB = 75 \text{ Hz in } t_1$:
$GB = 75 \text{ Hz in } t_2$ | | C112-FUS-LC, 4
mg | 2D NCA | $\begin{array}{l} B_0 = 14.1 \; T; \nu_{MAS} = 13.6 \; kHz; na = 2880; \tau_{pd} = 2.2 \; s; t_{1max} = 8.6 \; ms; \\ t_{1inc} = 134.4 \; \mu s; \tau_{dwell} = 15 \; \mu s; \tau_{acq} = 7.7 \; ms; \tau_{HN} = 1.5 \; ms; \tau_{NC} = 4 \\ ms; \nu_{1H} = 78 \; kHz; \nu_{1C} = 34 \; kHz, \nu_{1N} = 21 \; kHz, and \nu_{0C} = 55 \; ppm \\ during \tau_{NC} \end{array}$ | 225 h | $GB = 50 \text{ Hz in } t_1:$ $GB = 75 \text{ Hz in } t_2$ | | N60-FUS-LC, 4
mg | 1D HC CP | $B_0 = 14.1 \text{ T}; \nu_{MAS} = 13.6 \text{ kHz}; na = 1024; \tau_{pd} = 2.0 \text{ s}; \tau_{dwell} = 15 \text{ μs};$
$\tau_{acq} = 7.7 \text{ ms}; \tau_{HC} = 1.5 \text{ ms}; \nu_{1H} = 90 \text{ kHz}$ | 0.6 h | GB = 80 Hz | | N60-FUS-LC, 4
mg | 1D HC INEPT | B_0 = 14.1 T; $ν_{MAS}$ =13.6 kHz; na = 1024; $τ_{pd}$ = 1.5 s; $τ_{dwell}$ = 15 μs; $τ_{acq}$ = 30.7 ms; $ν_{1H}$ = 13 kHz | 0.4 h | GB = 20 Hz | |---|----------------------|---|-------------------------------------|--| | N60-FUS-LC, 4
mg | 2D CC | $\begin{array}{l} B_0 = 14.1 \; T; \nu_{MAS} = 13.6 \; kHz; \; na = 128; \tau_{pd} = 2.0 \; s; t_{1max} = 5.4 \; ms; \\ t_{1inc} = 21.2 \; \mu s; \tau_{dw} = 15 \; \mu s; \tau_{acq} = 7.7 \; ms; \tau_{HC} = 1.5 \; ms; \tau_{DARR} = 50 \\ ms; \nu_{1H} = 93 \; kHz \end{array}$ | 36 h | $GB = 0$ Hz in t_1 :
$GB = 75$ Hz in t_2 | | N60-FUS-LC, 4
mg | 2D NCA | $\begin{array}{l} B_0 = 17.5 \; T; \nu_{MAS} = 17.0 \; kHz; na = 512; \tau_{pd} = 2.0 \; s; t_{lmax} = 5.4 \; ms; \\ t_{linc} = 84 \; \mu s; \tau_{dwell} = 15 \; \mu s; \tau_{acq} = 7.7 \; ms; \tau_{HN} = 1.5 \; ms; \tau_{NC} = 4 \; ms; \\ \nu_{1H} = 83 \; kHz; \nu_{1C} = 24 \; kHz, \nu_{1N} = 7 \; kHz, and \nu_{0C} = 53 \; ppm \; during \\ \tau_{NC} \end{array}$ | 36 h | GB = 55 Hz in t_1 :
GB = 75 Hz in t_2 | | C60-FUS-LC, 3
mg | 1D HC CP | B_0 = 14.1 T; $ν_{MAS}$ = 13.6 kHz; $na = 1024$; $τ_{pd} = 2.0$ s; $τ_{dwell}$ = 15 μs; $τ_{acq}$ = 7.7 ms; $τ_{HC}$ = 1.5 ms; $ν_{1H}$ = 90 kHz | 0.6 h | GB = 80 Hz | | C60-FUS-LC, 3
mg | 1D HC INEPT | B_0 = 14.1 T; ν_{MAS} = 13.6 kHz; na = 1024; τ_{pd} = 1.5 s; τ_{dwell} = 15 μs; τ_{acq} = 30.7 ms; ν_{1H} = 13 kHz | 0.4 h | GB = 20 Hz | | C60-FUS-LC, 3 | 2D CC | $\begin{array}{l} B_0 = 14.1 \; T; \nu_{MAS} = 13.6 \; kHz; \; na = 192; \tau_{pd} = 2.0 \; s; t_{1max} = 5.4 \; ms; \\ t_{1inc} = 21.2 \; \mu s; \tau_{dwell} = 15 \; \mu s; \tau_{aeq} = 7.7 \; ms; \tau_{HC} = 1.5 \; ms; \tau_{DARR} = 50 \\ ms; \nu_{1H} = 90 \; kHz \end{array}$ | 55 h | $GB = 0$ Hz in t_1 :
$GB = 75$ Hz in t_2 | | C60-FUS-LC, 3 mg | 2D NCA | $\begin{array}{l} B_0 = 17.5 \; T; v_{MAS} = 17.0 \; kHz; \; na = 896; \; \tau_{pd} = 2.0 \; s; \; t_{1max} = 5.4 \; ms; \\ t_{1inc} = 84 \; \mu s; \; \tau_{dwell} = 15 \; \mu s; \; \tau_{acq} = 7.7 \; ms; \; t_{HN} = 1.5 \; ms; \; \tau_{NC} = 4 \; ms; \\ v_{1H} = 83 \; kHz; \; v_{1C} = 24 \; kHz, \; v_{1N} = 7 \; kHz, \; and \; v_{0C} = 53 \; ppm \; during \\ \tau_{NC} \end{array}$ | 64 h | GB = 55 Hz in t_1 :
GB = 75 Hz in t_2 | | 1- ¹³ C-Tyr-FUS-
LC, 5 mg | PITHIRDS-CT | $B_0 = 9.4$ T; $v_{MAS} = 20.0$ kHz; $na = 256$; $τ_{pd} = 4$ s; $v_{1H} = 100$ kHz during 38.4 ms constant-time recoupling period; $τ_{dwell} = 20$ μs; $τ_{acq} = 41.0$ ms; $v_{1H} = 70$ kHz with pulsed spin-locking of 13 C during $τ_{acq}$ | 2.6 h | GB = 20 Hz | | 1- ¹³ C-Thr-FUS-
LC, 5 mg | PITHIRDS-CT | $B_0 = 9.4$ T; $ν_{MAS} = 20.0$ kHz; $na = 1216$; $τ_{pd} = 4$ s; $ν_{1H} = 100$ kHz during 38.4 ms constant-time recoupling period; $τ_{dwell} = 20$ μs; $τ_{acq} = 41.0$ ms; $ν_{1H} = 70$ kHz with pulsed spin-locking of 13 C during $τ_{acq}$ | 12.5 h | GB = 20 Hz | | U-FUS-LC, 10
mg | ¹⁵ N-BARE | $\begin{array}{l} B_0 = 17.5 \; T; \nu_{MAS} = 17 \; kHz; na = 384; \tau_{pd} = 2.0 \; s; t_{lmax} = 8.9 \; ms; t_{linc} \\ = 120 \; \mu s; \tau_{dwell} = 15 \; \mu s; \tau_{acq} = 5.5 \; ms; \tau_{HN} = 1.5 \; ms; \tau_{NC6TEDOR} = 0.7 \\ ms; \nu_{1H} = 85 \; kHz \; during \; acquisition \; and \; t_1 \; evolution; \nu_{0C} = 56 \; ppm \\ during \; \tau_{NC}; \; \tau_{SD} = 30 \; ms; \; 28.2 \; ms \; constant-time \; recoupling \; period; \\ \nu_{NBARE} = 25.5 \; kHz; \; 6 \; periods \; of \; recoupling \; with \; 5.6 \; ms \; increment \\ between \; blocks; \; \nu_{1H} = 100 \; kHz \; during \; constant \; time \; recoupling \\ block \end{array}$ | 32 h per
recoupling
increment | GB = 125 Hz in
t_1 :
GB = 60 Hz in t_2 | | 2Glyc-FUS-
LC, 10 mg | ¹⁵ N-BARE | $\begin{array}{l} B_0 = 17.5 \text{ T; } \nu_{MAS} = 12 \text{ kHz; } na = 192; \tau_{pd} = 2.3 \text{ s; } t_{lmax} = 7.0 \text{ ms; } t_{linc} \\ = 100.8 \text{ µs; } \tau_{dwell} = 15 \text{ µs; } \tau_{acq} = 5.5 \text{ ms; } \tau_{HN} = 1.5 \text{ ms; } \tau_{NC} = 4 \text{ ms; } \\ \nu_{1H} = 85 \text{ kHz; } \nu_{1C} = 28 \text{ kHz, } \nu_{1N} = 16 \text{ kHz; } and \nu_{0C} = 53 \text{ ppm during} \\ \tau_{NC}; 28 \text{ ms constant-time recoupling period; } \nu_{NBARE} = 18 \text{ kHz; } 8 \\ \text{periods of recoupling with } 4 \text{ ms increment between blocks} \end{array}$ | 17 h per
recoupling
increment | $GB = 0$ Hz in t_1 :
$GB = 0$ Hz in t_2 | | 2-Glyc-FUS-LC,
10 mg | 3D NCACX | $\begin{array}{l} B_0 = 21.1 \; T; \nu_{MAS} = 13.95 \; kHz; na = 16; \tau_{pd} = 2.0 \; s; t_{1max} = 8.8 \; ms; \\ t_{1inc} = 180 \; \mu s; t_{2max} = 6.1 \; ms; t_{2inc} = 105 \; \mu s; \tau_{dwell} = 5 \; \mu s; \tau_{acq} = 12.0 \\ ms; \tau_{HN} = 0.8 \; ms; \tau_{NC} = 6 \; ms; \tau_{DARR} = 400 \; ms; \nu_{1H} = 83.3 \; kHz; \nu_{1C} = \\ 22 \; kHz, \nu_{1N} = 36 \; kHz, and \nu_{0C} = 56 \; ppm \; during \tau_{NC} \end{array}$ | 101 h | $GB = 15 \text{ Hz in } t_1;$
$GB = 25 \text{ Hz in } t_2;$
$GB = 25 \text{ Hz in } t_3$ | | 2-Glyc-FUS-LC,
10 mg | 2D CC | $\begin{array}{l} B_0 = 17.5 \; T; \nu_{MAS} = 11.7 \; kHz; na = 80; \tau_{pd} = 1.5 \; s; t_{1max} = 7.0 \; ms; \\ t_{1inc} = 22.4 \; \mu s; \tau_{dwell} = 15 \; \mu s; \tau_{acq} = 15.4 \; ms; \tau_{HC} = 1.2 \; ms; \tau_{DARR} = 300 \; ms; \nu_{1H} = 85 \; kHz \end{array}$ | 21 h | $GB = 50 \text{ Hz in } t_1$:
$GB = 50 \text{ Hz in } t_2$ | | 1,3-Glyc-FUS-
LC, 10 mg | 3D NCOCX | $\begin{array}{l} B_0 = 21.1 \; T; \nu_{MAS} = 13.8 \; kHz; na = 24; \tau_{pd} = 2.0 \; s; t_{1max} = 9.1 \; ms; \\ t_{1inc} = 190 \; \mu s; \; t_{2max} = 7.5 \; ms; t_{2inc} = 166 \; \mu s; \tau_{dwell} = 5 \; \mu s; \tau_{acq} = 12.0 \\ ms; \tau_{HN} = 0.6 \; ms; \tau_{NC} = 5 \; ms; \tau_{DARR} = 400 \; ms; \nu_{1H} = 83.3 \; kHz; \nu_{1C} = 35 \; kHz, \nu_{1N} = 48 \; kHz, and \nu_{0C} = 176 \; ppm \; during \tau_{NC} \end{array}$ | 115 h | $GB = 15 \text{ Hz in } t_1;$ $GB = 25 \text{ Hz in } t_2;$ $GB = 25 \text{ Hz in } t_3$ | | 1,3-Glyc-FUS-
LC, 10 mg | 2D CC | $\begin{array}{l} B_0 = 17.5 \; T; \nu_{MAS} = 12.0 \; kHz; \; na = 48; \tau_{pd} = 1.5 \; s; t_{1max} = 9.0 \; ms; \\ t_{1inc} = 22.4 \; \mu s; \tau_{dwell} = 15 \; \mu s; \tau_{acq} = 15.4 \; ms; \tau_{HC} = 1.2 \; ms; \tau_{DARR} = \\ 400 \; ms; \nu_{1H} = 85 \; kHz \end{array}$ | 16 h | $GB = 50 \text{ Hz in } t_1$:
$GB = 50 \text{ Hz in } t_2$ | $^{1}\text{B}_{0}$ = magnetic field; v_{MAS} = MAS frequency; $v_{1\text{H}}$ = ^{1}H radio-frequency field amplitude for decoupling; $v_{1\text{X}}$ = radio-frequency field amplitude for cross-polarization, X= N or C (^{15}N or ^{13}C); $v_{0\text{C}}$ = ^{13}C radio-frequency carrier frequency; na = number of scans per free-induction-decay; τ_{pd} = delay between scans; $t_{1\text{max}}$ = maximum t_{1} value; $t_{1\text{inc}}$ = t_{1} increment; $t_{2\text{max}}$ = maximum t_{2} value; $t_{2\text{inc}}$ = t_{2} increment; τ_{dwell} = digitization dwell time in free-induction-decay; τ_{acq} = free-induction-decay acquisition time; τ_{XY} = cross-polarization period, where X and Y are H, N, or C (^{1}H , ^{15}N , or ^{13}C); τ_{DARR} = DARR mixing time; GB = pure Gaussian line-broadening before Fourier transformation. Table S4. Summary of structural restraints in Xplor-NIH calculations, Related to Fig. 4. | Xplor-NIH potential term | Experimental basis | Restraints (per monomer) | Round
1 scale
factor | Round
2 scale
factor | Lowest model energy | Restraint range ¹ | Average violation ² | |---|--|--------------------------|----------------------------|----------------------------|---------------------|------------------------------|--------------------------------| | PosDiffPot
(noncrystallographic
symmetry) | single set of chemical shifts | - | 100 | 100 | 18.26 | - | - | | DistSymmPot
(translational
symmetry) | single set of
chemical shifts,
MPL data, cross-β
structure | - | 10000 | 10000 | 0.15 | - | - | | C-C RDC
(intermolecular
alignment with z-
axis) | cross-β structure | 11 | 100 | 100 | 7.86 | - | - | | C-O RDC (alignment of β- sheet carbonyl groups with z-axis) | cross-β structure | 23 | 0.0 | 0.01-
100 | 0.23 | - | - | | CDIH
(backbone
conformation) | TALOS-N predictions | 51 | 5000 | 5000 | 1.67 | δ± (2ε+15°) | 0.37 ± 0.33° | | TorsionInterpolPot
(backbone
conformation) | ¹⁵ N-BARE data | 33 | 0.001-
5.0 | 0.2-2.0 | 307.86 | 1 | ı | | NOE
(intermolecular
distance and
alignment) | ¹³ C PITHIRDS-CT data | 11 | 100 | 100 | 98.07 | 4.75 ± 0.05 Å | 0.115 ± 0.050 Å | | NOE
(long-range
contacts) | inter-residue
crosspeaks with
unique assignments | 37 | 1-100 | 100 | 38.37 | 5.0 ± 3.0
Å | 0.18 ± 0.13 Å | | NOE
(long-range
contacts) | inter-residue
crosspeaks with
partially ambiguous
assignments | 16 | 0.01-
100 | 100 | 15.33 | 5.0 ± 3.0
Å | 0.22 ± 0.10 Å | | NOE
(long-range
contacts) | inter-residue
crosspeaks with
fully ambiguous
assignments | 36 | 0.0001-
100 | 100 | 9.41 | 5.0 ± 3.0
Å | 0.13 ±
0.08 Å | | NOE
(backbone
conformation) | ¹⁵ N-BARE data | 68 | 10-
1000 | 1000 | 1.00 | site-
dependent | 0.018 ± 0.016 Å | | RepelPot | standard atomic
radii | - | 0.004-
4.0 | 0.004-
4.0 | 101.59 | - | - | | TorsionDB | low-energy
sidechain
conformations | - | 0.0 | 0.002-
0.4 | 3828.97 | - | - | | BOND | standard bond
lengths | - | default | default | 22.33 | default | 0.002 ±
0.002 Å | | ANGL | standard bond
angles | - | 0.4-1.0 | 0.4-1.0 | 347.36 | default | 0.19 ±
0.30 Å | | IMPR | standard bond
geometry | - | 0.4-1.0 | 0.4-1.0 | 62.60 | default | 0.13 ± 0.21° | $^{1}For~CDIH$ potentials, δ and ϵ are the average prediction and uncertainty from TALOS-N, respectively. ²Average violations are the deviations outside the specified ranges, averaged only over distances or angles that exceed the specified ranges for the 20 structures in PDB 5W3N. Uncertainties are standard deviations. Table S5. Summaries of statistics, Related to Figs. 4 and 6. | FUS-LC structure calculations | | | | | | | | |------------------------------------|-----------------------|------------------------------|-------|---|--|--|--| | Short rang | 220 | | | | | | | | (1 < i-j) | 330 | | | | | | | | Long range inter | -residue dist | ances $(i-j \ge 3)$ | | 89 | | | | | backbone torsion a | | | | | | | | | backbone conformation | | ` | data) | 33 | | | | | | robity Clash | | | 1 | | | | | MolProbity | Ramachand | lran outliers ² | | 9.7 | | | | | MolProbity si | dechain conf | Former outliers ² | | 14.5 | | | | | MolProbity s | tandard geor | netry outliers ¹ | | 0 | | | | | All h | eavy atom R | RMSD | | 1 / Å | | | | | (residu | es 44-54 and | 1 63-95) | | 51
33
1
9.7
14.5
0
1.4 Å
1.1 Å | | | | | C _α RMSD | | | | | | | | | (residu | es 44-54 and | 1 63-95) | | 1,1 /1 | | | | | | | | | | | | | | Effect | s of DNA-P | K phosphorylation | | | | | | | Hydrogel binding (thres | hold ≈ 0.3) | Liquid-like dı | - | _ | | | | | | * | (thresho | | | | | | | site | location ³ | site | | | | | | | T19 | NC | T19 | | | | | | | S30 | NC
C | S42
S54 | | | | | | | S42 | | | | | | | | | S54 | | | | | | | | | S61 | | | | | | | | | T68 | C | | | | | | | | S84 C | | | | | | | | | S87 | С | | | | | | | | success rate | 5/6 | | | | | | | | probability if random ⁴ | .0053 | | | | | | | ¹Reported as the number of clashes or outliers per 1000 atoms in the 20 structures in PDB 5W3N. ²Reported as the percentile score with respect to all structures. $^{{}^{3}}C$ = core-forming segment; NC = non-core-forming segments. ⁴Hypergeometric statistics, based on 214 total residues, with 57 C residues and 157 NC residues.