
SUPPLEMENTARY INFORMATION 
 
S.1 Biospecimen collection, clinical data and pathology review 
 
S1.1. Biospecimen collection, quality control and processing.  
 
Specimens for The Cancer Genome Atlas (TCGA) oesophageal carcinoma (ESCA) project were shipped 
overnight from 35 tissue source sites (TSSs) using a cryoport that maintained an average temperature of less 
than -180°C.  TSSs contributing biospecimens included Analytical Biological Services, Inc. (Indianapolis, IN, 
USA); Asan Medical Center (Seoul, Korea); Asterand Biosciences, Inc. (Detroit, MI, USA); 
BioreclamationIVT (Chestertown, MD, USA); Barretos Cancer Hospital (Barretos, Brazil); Botkin Municipal 
Clinic (Moscow, Russia); Chonnam National University Medical School (Hwasun, Korea); Christiana Care 
Health Services, Inc. (Newark, DE, USA); Cureline, Inc. (South San Francisco, CA, USA); Duke University 
(Durham, NC, USA); Emory University (Atlanta, GA, USA); Erasmus Medical Center (Rotterdam, 
Netherlands); ILSbio, LLC. (Chestertown, MD, USA); Indiana University School of Medicine (Indianapolis, 
IN, USA); Institute of Oncology of Moldova (Chisinau, Moldova); International Genomics Consortium 
(Phoenix, AZ, USA); Invidumed (Hamburg, Germany); Israelitisches Krankenhaus Hamburg (Hamburg, 
Germany); Keimyung University School of Medicine (Daegu, Korea); MD Anderson (Houston, TX, USA); 
Memorial Sloan Kettering Cancer Center (New York, NY, USA); National Cancer Center (Goyang, Korea); 
Ontario Institute for Cancer Research (Ottawa, ON, Canada); Peter MacCallum Cancer Center (Melbourne, 
Victoria, Australia); Pusan National University Medical School, (Pusan, Korea); Ribeirão Preto Medical School 
(São Paulo, Brazil); St. Joseph's Hospital and Medical Center (Phoenix, AZ, USA); St. Petersburg Academic 
University (St. Petersburg, Russia); Tayside Tissue Bank (Dundee, Scotland); University Health Network 
(Toronto, ON, Canada); University of Kansas Medical Center (Kansas City, KS, USA); University of Michigan 
(Ann Arbor, MI, USA); University of North Carolina at Chapel Hill (Chapel Hill, NC, USA); University of 
Pittsburgh (Pittsburgh, PA, USA); and University of São Paulo (São Paulo, Brazil).  Analyses in this study were 
complemented with the use of cases from TCGA study of stomach cancer1, referred to as STAD. 
 
 

 
 
Figure S1.1.  Tumour samples shipped to the Biospecimen Core Resource (BCR) were distributed as shown.  
ESCA and STAD are specimen identifiers for the Oesophagus and Stomach projects.  As indicated above, 171 
ESCA samples and 388 STAD samples were combined into a pool of 559 samples for analysis in these studies. 
From that pool, specimens were then evaluated by the Expert Pathologists’ Committee (EPC).  See Figure S1.2.  
 



S1.2. Classification of Tumours.  
Tumours occurring in the vicinity of the gastroesophageal junction (all putative oesophageal adenocarcinomas 
and any gastric tumours in the vicinity of the proximal stomach) were classified by the following criteria, based 
on pathology reports and independent review:  

1. Oesophagus – Documented Barrett’s oesophagus or intestinal metaplasia with a normal stomach or 
tumour grossly of the tubular oesophagus, or pattern of metastatic disease that was oesophageal and not 
stomach. (Cases of clear tubular origin were grouped with these oesophageal cases for subsequent 
analyses.) 

2. Probable Oesophagus – none of the above, but with an epicenter in tubular oesophagus; no gastric 
intestinal metaplasia or normal stomach. 

3. Indeterminate– no gastric intestinal metaplasia, tumour epicenter not indicated or not clear; stomach 
and oesophagus either normal or not indicated, pattern of nodal metastatic disease unclear or mixed. 

4. Probable gastric – epicenter of tumour was in the proximal stomach; oesophagus was normal or not 
commented upon; there was chronic gastritis with or without intestinal metaplasia, or Helicobacter 
pylori was present; pattern of nodal metastatic disease was unclear (if present). 

5. Gastric –oesophagus is normal or not commented upon; epicenter of the tumour in the stomach; 
presence of chronic gastritis with or without IM; gastric pattern of nodal metastatic disease (if present). 

Independent of the original anatomical assignment by the TSS, the EPC determined that 36 gastroesophageal 
junction tumours could not be attributed to either a clear oesophageal or gastric origin.  See Figure S1.2 for 
distribution of tumours among anatomic sites.  

 
 
Figure S1.2.  Analysis of tumours of the GEJ.  
 
  



S2.  DNA Methylation 
 
S2.1. Methylation Assay platform 
The HM450 assay used in this study analyses the DNA methylation status of up to 482,421 CpG and 3,091 non-
CpG (CpH) sites throughout the genome. It covers 99% of RefSeq genes with multiple probes per gene and 
96% of CpG islands from the UCSC database, plus their flanking regions.  
 
The DNA methylation score for each assayed CpG or CpH site is represented as a beta (β) value (β = 
(M/(M+U)) in which M and U indicate the mean methylated and unmethylated signal intensities for each 
assayed CpG or CpH, respectively. β-values range from zero to one, with scores of "0" indicating no DNA 
methylation and scores of "1" indicating complete DNA methylation. A detection P value accompanies each 
data point and compares the signal intensity difference between the analytical probes and a set of negative 
control probes on the array. Any data point with a corresponding P value greater than 0.05 is deemed not to be 
statistically significantly different from background and is thus masked as “NA” in the Level 3 data packages as 
described below. Further details on the Illumina Infinium DNA methylation assay technology have been 
described previously2,3. 
 
S2.2.  Sample and data processing 
We assessed the amount of bisulfite-converted DNA and completeness of bisulfite conversion using a panel of 
MethyLight-based quality control (QC) reactions as previously described4. All the TCGA samples passed our 
QC tests and entered the Infinium DNA methylation assay pipeline. Bisulfite-converted DNAs were whole-
genome-amplified (WGA) and enzymatically fragmented prior to hybridisation to BeadChip arrays. BeadArrays 
were scanned using the Illumina iScan technology to produce IDAT files. Raw IDAT files for each sample were 
processed with the R/Bioconductor package methylumi. TCGA DNA methylation data packages were then 
generated using the EGC.tools R package, which was developed internally and is publicly available on GitHub 
(https://github.com/uscepigenomecenter/EGC.tools). 
 
S2.3.   TCGA Data Packages 
The data levels and the files contained in each data level package are described below and are present on the 
TCGA Data Portal website (http://tcga-data.nci.nih.gov/tcga/). As continuing updates of genomic databases and 
data archive revisions frequently become available, the data packages on TCGA Data Portal will be updated 
accordingly. 
 
Level 1 data contain raw IDAT files (two per sample) as produced by the iScan system and as mapped by the 
Sample and Data Relationship Format (SDRF). These IDAT files were directly processed by the 
R/Bioconductor package methylumi. We provided a disease-mapping file (ESCA.mappings.csv for oesophageal 
cancer and STAD.mapping.csv for gastric cancer) in the AUX directory to facilitate this process. Level 2 data 
contain background-corrected methylated (M) and unmethylated (U) summary intensities as extracted by the 
R/Bioconductor package methylumi. Detection P values were computed as the minimum of the two values (one 
per allele) for the empirical cumulative density function of the negative control probes in the appropriate colour 
channel. Background correction was performed via normal-exponential deconvolution. Multiple-batch archives 
had the intensities in each of the two channels multiplicatively scaled to match a reference sample (sample with 
R/G ratio of the normalisation control probes closest to 1.0). Level 3 data contain β-value calculations with 
annotations for HGNC gene symbol, chromosome, and genomic coordinates (UCSC hg19, Feb 2009) for each 
targeted CpG/CpH site on the array. Probes having a common SNP (dbSNP build 135, Minor Allele Frequency 
>1%) within 10 bp of the interrogated CpG site or having an overlap with a repetitive element (as detected by 



RepeatMasker and Tandem Repeat Finder based on UCSC hg19, Feb 2009) within 15 bp (from the interrogated 
CpG site) were masked as “NA” across all samples, and probes with a detection P value greater than 0.05 in a 
given sample were masked as “NA” on that array. Probes that were mapped to multiple sites in the human 
genome (UCSC hg19, Feb 2009) were annotated as “NA” for chromosome and 0 for the CpG/CpH coordinate. 
 
The following data archives were used for the analyses described in this manuscript.  
 
Oesophageal cancer: 
jhu-usc.edu_ESCA.HumanMethylation450.Level_3.1.8.0 
jhu-usc.edu_ESCA.HumanMethylation450.Level_3.2.8.0  
jhu-usc.edu_ESCA.HumanMethylation450.Level_3.3.8.0 
jhu-usc.edu_ESCA.HumanMethylation450.Level_3.4.8.0  
jhu-usc.edu_ESCA.HumanMethylation450.Level_3.5.8.0  
jhu-usc.edu_ESCA.HumanMethylation450.Level_3.6.8.0  
jhu-usc.edu_ESCA.HumanMethylation450.Level_3.7.8.0  
jhu-usc.edu_ESCA.HumanMethylation450.Level_3.8.8.0  
jhu-usc.edu_ESCA.HumanMethylation450.Level_3.9.8.0 
jhu-usc.edu_ESCA.HumanMethylation450.Level_3.10.8.0 
 
Gastric adenocarcinoma: 
jhu-usc.edu_STAD.HumanMethylation450.Level_3.1.10.0  
jhu-usc.edu_STAD.HumanMethylation450.Level_3.2.10.0  
jhu-usc.edu_STAD.HumanMethylation450.Level_3.3.10.0  
jhu-usc.edu_STAD.HumanMethylation450.Level_3.4.10.0  
jhu-usc.edu_STAD.HumanMethylation450.Level_3.5.10.0  
jhu-usc.edu_STAD.HumanMethylation450.Level_3.6.10.0  
jhu-usc.edu_STAD.HumanMethylation450.Level_3.7.10.0  
jhu-usc.edu_STAD.HumanMethylation450.Level_3.8.10.0  
jhu-usc.edu_STAD.HumanMethylation450.Level_3.9.10.0 
jhu-usc.edu_STAD.HumanMethylation450.Level_3.10.10.0 
jhu-usc.edu_STAD.HumanMethylation450.Level_3.11.10.0 
jhu-usc.edu_STAD.HumanMethylation450.Level_3.12.10.0 
jhu-usc.edu_STAD.HumanMethylation450.Level_3.13.10.0 
jhu-usc.edu_STAD.HumanMethylation450.Level_3.14.10.0 
jhu-usc.edu_STAD.HumanMethylation450.Level_3.15.10.0 
jhu-usc.edu_STAD.HumanMethylation450.Level_3.16.10.0 
 
 
S2.4.   Unsupervised clustering analysis of DNA methylation data 
We removed probes that had any “NA”-masked data points and probes that were designed for sequences on X 
and Y chromosomes.  
 
To capture cancer-specific DNA hypermethylation events, we first selected CpG sites that were not methylated 
in normal tissue controls (mean β-value <0.2). To minimise the influence of variable tumour purity levels on a 
clustering result, we dichotomised the data using a β-value of >0.25 as a threshold for positive DNA 
methylation. The dichotomisation not only ameliorated the effect of tumour sample purity on the clustering, but 



also removed a great portion of residual batch/platform effects that are mostly reflected in small variations near 
the two ends of the range of β-values. We also removed CpG sites that were methylated in leukocytes, a major 
source of contamination present in a tumour sample (mean β-value >0.2). We then performed consensus 
clustering with the dichotomised data on CpG sites that were methylated in at least 5% of the tumour samples. 
The optimal number of clusters was assessed based on 80% probe and tumour resampling over 1,000 iterations 
of hierarchical clustering for K=2,3,4,5,6 using the binary distance metric for clustering and Ward’s method for 
linkage as implemented in the R/Bioconductor ConsensusClusterPlus package.  
 
Heatmaps were generated based on the original β-values for a subset of hypermethylated CpG sites. The probes 
were displayed based on the order of unsupervised hierarchical clustering of the β-values using the Euclidean 
distance metric and Ward’s linkage method.  
 
S2.5.   DNA hypermethylation frequency in 164 oesophageal tumours 
We identified a set of 136,705 CpG sites that were unmethylated in adjacent oesophageal tissue samples (mean 
β-value <0.2) and leukocytes (mean β-value <0.2). We dichotomised the β-values in the tumours at 0.3. For 
each locus, tumours with a β-value of 0.3 or greater were designated as methylated, and tumours with a β-value 
of lower than 0.3 were designated as unmethylated. We then calculated the percentage of loci that were 
methylated among the loci investigated in each tumour.  
 
S2.6.   Identification of epigenetically silenced genes in GEA-CIN tumours 
We first removed DNA methylation probes overlapping with SNPs, repeats or designed for sequences on X or 
Y chromosomes or non-CpG sites. The remaining probes were mapped against UCSC Genes using the 
GenomicFeatures R/Bioconductor package. Probes that were located in a promoter region (defined as the 3 kb 
region spanning from 1,500 bp upstream to 1,500 bp downstream of the transcription start sites) were identified. 
Level 3 mRNA expression data were log2 transformed [log2 (RPKM+1)] and used to assess the gene 
expression levels associated with DNA methylation changes. DNA methylation and gene expression data were 
merged by Entrez Gene IDs.  
 
We removed the CpG sites that were methylated in normal tissues (mean β-value >0.2). We then dichotomised 
the DNA methylation data using a β-value of >0.3 as a threshold for positive DNA methylation, and further 
eliminated CpG sites methylated in fewer than 3% of the tumour samples. For each probe/gene pair, we applied 
the following algorithm: 1) Organise the tumours as either methylated (β ≥0.3) or unmethylated (β <0.3); 2) 
Compute the mean expression in the methylated and unmethylated groups; 3) Compute the standard deviation 
of the expression in the unmethylated group. We then selected probes for which the mean expression in the 
methylated group was lower than 1.64 standard deviations of the mean expression in the unmethylated group. 
We labeled each individual tumour sample as epigenetically silenced for a specific probe/gene pair selected 
from above if: a) it belonged to the methylated group and b) the expression of the corresponding gene was 
lower than the mean of the unmethylated group of samples. If there were multiple probes associated with the 
same gene, a sample identified as epigenetically silenced at more than half the probes for the corresponding 
gene was also labeled as epigenetically silenced at the gene level. The complete list of 66 genes identified as 
epigenetically silenced is cluster 1 of the GEA-CIN methylation groups and is provided in Supplementary data 
Table 6 
 
S2.7.   Statistics 
Statistical analysis and data visualisation were performed using the R/Bioconductor software packages 
(http://www.bioconductor.org).  



 
S3.  DNA Sequencing  
 
S3.1. Multi-center analysis of somatic mutations in exome sequencing 
 
Mutation calling of the whole exome sequencing data was completed in parallel at four genomic analysis 
centers:   
 
1) Broad Institute: The Broad Institute team used the MuTect algorithm to generate somatic mutation calls, 
which were subsequently filtered to remove any spurious calls due to shearing-induced generation of 8-
oxoguanine5. Indels were identified using the indel locator algorithm as previously described6. Details and tools 
are available at www.broadinstitute.org/cancer/cga.  
  
2) University of California and Santa Cruz:  The RADIA software7 for identification of somatic mutations is 
available at https://github.com/aradenbaugh/radia/. Inclusion of RNA-Seq data in RADIA increases the power 
to detect somatic mutations at low DNA allelic frequencies.   
 
3) British Columbia Cancer Genome Agency:  Mutation calling was performed using the Strelka tool.  Strelka8  
parameters were set to default, with the exception of "isSkipDepthFilters", which was set to 1 in order to omit 
depth filtration, given the higher coverage in exome datasets. Pairs of libraries (n=184) were analysed. When a 
blood sample was available, it served as the matched normal specimen; otherwise, the matched normal tissue 
was used. The variants were subsequently annotated using SnpEff9, and the COSMIC (v61)10 and dbSNP 
(v137)11 databases. 
 
4) Washington University in St. Louis:  We detected somatic SNVs using Samtools1 v0.1.16 (samtools pileup –
cv -A -B), SomaticSniper2 v1.0.4 (bam-somaticsniper -F vcf -G -L -q 1 -Q 15), Strelka3 v0.4.6.2 (with default 
parameters except for setting isSkipDepthFilters = 1), and VarScan4 v2.2.6 (--min-coverage 3 --min-var-freq 
0.08 --p-value 0.10 --somatic-p-value 0.05 --strand-filter 1).  We detected indels using the GATK5 1.0.5336 (-T 
IndelGenotyperV2 --somatic --window_size 300 -et NO_ET), retaining only those which were called as 
Somatic, Pindel6 v0.2.2 (-w 10; with a config file generated to pass both tumour and normal BAM files set to 
an insert size of 400), Strelka3 v0.4.6.2 (with default parameters except for setting isSkipDepthFilters = 1), and 
VarScan4 v2.2.6 (--min-coverage 3 --min-var-freq 0.08 --p-value 0.10 --somatic-p-value 0.05 --strand-filter 1). 
 
S3.2. Mutation Signature Analysis. 

We used the Bayesian non-negative matrix factorization algorithm (BayesNMF)12,13 to infer the number (K) of 
mutational signatures (characteristic mutational patterns) and their sample-specific contributions. The common 
classification of single nucleotide variants is based on six base substitutions within the tri-nucleotide sequence 
context including the bases immediately 5’ and 3’ to each mutated base. Six base substitutions (C>A, C>G, 
C>T, T>A, T>C, and T>G) with 16 possible combinations of neighboring bases results in 96 possible mutation 
types within trinucleotide regions. Thus the input data for the mutation signature discovery is given as 96 by M 
mutation matrix (M= # of sample). The mutation count matrix was taken as an input for the BayesNMF and 
factored into two matrices, W’ (96 by K) and H’ (K by M), approximating X by W’H’. To enumerate the 
number of mutations associated with each mutation signature, we performed a scaling transformation, X ~ 
W’H’ = WH, W = W’U-1 and H= UH’, where U is a K by K diagonal matrix with the element corresponding 
to the 1-norm of column vectors of W’, resulting in the final signature matrix W and the activity matrix H. 



 
All 20 BayesNMF runs for the SCC subgroup converged to the 3-signature solution (K=3), yielding APOBEC 
(corresponding to COSMIC signature 2 and COSMIC signature 13), Aging (COSMIC signature 1), and 
"Unknown". In contrast to two other signatures, the unknown signature was characterised by a dominant C>A 
mutation signature, and its mutation pattern showed a similarity with several COSMIC signatures, including 
COSMIC 4 (smoking), 24 (Aflatoxin B1), and 29 (tobacco-chewing habits). We used the cosine similarity to 
compare our three signatures with thirty reported COSMIC signatures 
(http://cancer.sanger.ac.uk/cosmic/signatures). 

Note that the kth column vector of W (wk) represents a normalised mutability of 96 tri-nucleotide mutation 
contexts in the kth signature, and the kth row vector of H (hk) dictates the estimation of mutations associated 
with the kth signature across samples. In downstream signature enrichment analysis, we compared both the 
number of mutations and the normalised fraction of mutations associated with each signature.  

S3.3  Additional Somatic Genomic Analyses. 

 

Figure S3.1:  Recurrent ERBB2-JUP gene fusion in six TCGA oesophageal adenocarcinoma cases. a, A 2-
Mb inversion event at 17q12-21.2 created a gene fusion juxtaposing ERBB2 exon 12 (erb-b2 receptor tyrosine 
kinase 2, NM_004448) to the 3’UTR (exon 15) of JUP (junction plakoglobin, transcript variant 2). Trans-
ABySS assembly and structural variant detection in RNA sequence reads revealed six cases harbouring the 
same fusion transcript. Chromosome 17 breakpoint coordinates are from the GRCh37/hg19 human genome 
assembly. b,  The fusion breakpoint in ERBB2 removes amino acids 505 to 1255 of ERBB2, including the 
growth factor domain (aa 511-643), transmembrane domain (aa 641-684) and the protein kinase domain (aa 
720-976).  

Extended Data Figure 5 | Recurrent ERBB2-JUP gene fusion in six TCGA oesophageal 
adenocarcinoma cases. a, A 2-Mb inversion event at 17q12-21.2 creates a gene fusion juxtaposing 
ERBB2 exon 12 (erb-b2 receptor tyrosine kinase 2, NM_004448) to the 3’UTR (exon 15) of JUP 
(junction plakoglobin, transcript variant 2). Trans-ABySS assembly and structural variant detection in 
RNA sequence reads revealed six cases harbouring the same fusion transcript. Chromosome 17 
breakpoint coordinates are from the GRCh37/hg19 human genome assembly. b,  The fusion 
breakpoint in ERBB2 removes amino acids 505 to 1255 of ERBB2, including the growth factor 
domain (aa 511-643), transmembrane domain (aa 641-684) and the protein kinase domain (aa 
720-976).  
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Figure S3.2.  Mutations of Genes Encoding Chromatin Modifying Enzymes in Oeosophageal Cancer.   
Somatic events in the three classes of oesophageal squamous cell carcinoma and in oesophageal 
adenocarcinoma are shown.  Blue boxes indicate genomic deletion, black boxes are truncating mutations and 
green boxes denote missense mutations of distinct chromatin modifying factors.  Only missense mutations at 
recurrent hotspots or those previously reported in the COSMIC repository were included. 
 

 

 Figure S3.3. Regional differences in frequencies of NFE2L2 somatic mutations and metabolic germline 
variants with potential genotoxic effects in the ESCC cohort. The prevalence of NFE2L2 somatic mutations 
was higher in Vietnamese patients than in patients from outside East Asia. Similarly, non-synonymous SNPs in 
aldehyde dehydrogenase (ALDH2) and alcohol dehydrogenase (ADH1B) were more frequent in the Vietnamese 
population and affected every East Asian patient in our study. The genotypes for specific alleles in patients with 
or without key somatic alterations in oxidative response genes are shown. 
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Figure S3.4.  Putative Therapeutic Targets and Biomarkers in Oesophageal Cancer.  
Summary of clinically actionable somatic alterations in our cohort of oesophageal cancer patients.  Top panel 
shows occurrence of clinically actionable somatic alterations, divided by histology and region of 
origin.  Bottom panel provides additional details about each actionable alteration, including level of evidence, 
related drug, and specific cancer type(s) for which sensitivity to the drug is clinically proven or currently 
undergoing clinical trials.  Annotations were obtained from OncoKB, which is a publicly available database for 
precision medicine curated by researchers at Memorial Sloan-Kettering Cancer Center. 

 GENE ALTERATION   LEVEL* DRUG CANCER TYPE INDICATION 

 ERBB2 
Amplification SoC Trastuzumab Stomach adenocarcinoma 

Mutation (V777L,S310F) Inv Neratinib Breast cancer 

 BRCA2 Mutation (S206C) Inv Olaparib Ovarian cancer 

 TSC2 Mutation (E409*) Inv Everolimus Central nervous system cancer 

 CDK4/6 Amplification Inv Palbociclib Soft Tissue Sarcoma 

 MET Amplification Inv Crizotinib Non-small Cell Lung Cancer 

 KRAS Mutation (Q61H) Inv 
Binimetinib+alpelisib Ovarian cancer 

Selumetinib+Docetaxel Non-small Cell Lung Cancer 

 PIK3CA Mutation (E545K, G118D, H1047R/L,  
                   M1043I, K111N) Inv BYL-719 Breast cancer 

 PTCH1 Mutation (any truncating mutation) Inv Sonidegib Embryonal Tumour, Skin Cancer, Non-melanoma 

 FGFR1 Amplification Inv 
AZD4547 Non-small Cell Lung Cancer 

Dovitinib Breast Cancer 

 FGFR2 Amplification Inv Dovitinib Breast Cancer 

 IDH2 Mutation (R140Q) Inv AG-221 All liquid tumours 

 VEGFA Amplification Inv Ramucirumab Gastroesophageal junction adenocarcinoma 

63%     ESCC     EAC 48% 

Country/Region:            Australia      Brazil       Eastern Europe      Vietnam      West Europe/North America 

Genetic Alteration     ! Amplification              ! Deep deletion             ! Missense mutation           ! Truncating mutation   

* Level of evidence is either standard-of-care (SoC) or investigational (I). 
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S4. Reverse Phase Protein Arrays 
 
S4.1.   Methods 
Protein was extracted from human tumours using RPPA lysis buffer (1% Triton X-100, 50 nmol/L Hepes (pH 
7.4), 150 nmol/L NaCl, 1.5 nmol/L MgCl2, 1 mmol/L EGTA, 100 nmol/L NaF, 10 nmol/L NaPPi, 10% 
glycerol, 1 nmol/L phenylmethylsulfonyl fluoride, 1 nmol/L Na3VO4, and aprotinin 10 µg/mL), and RPPA was 
performed as described previously1,14-17. Lysis buffer was used to lyse frozen tumours by Precellys 
homogenisation. Tumour lysates were adjusted to 1 µg/µL concentration as assessed by bicinchoninic acid 
assay (BCA) and boiled with 1% SDS. Tumour lysates were manually diluted in fivefold serial dilutions with 
lysis buffer. An Aushon Biosystems 2470 arrayer (Burlington, MA) printed 1,056 samples on nitrocellulose-
coated slides (Grace Bio-Labs). Slides were probed with 187 validated primary antibodies followed by 
corresponding secondary antibodies (Goat anti-Rabbit IgG, Goat anti-Mouse IgG or Rabbit anti-Goat IgG). 
Signal was captured using a DakoCytomation-catalysed system and DAB colorimetric reaction. Slides were 
scanned in a CanoScan 9000F scanner. Spot intensities were analysed and quantified using Arrapro 
(http://www.mediacy.com/index.aspx?page=ArrayPro), to generate spot signal intensities (Level 1 data). The 
software SuperCurveGUI16,18, available at http://bioinformatics.mdanderson.org/Software/supercurve/) was 
used to estimate the EC50 values of the proteins in each dilution series (in log2 scale). Briefly, a fitted curve 
("supercurve") was plotted with the signal intensities on the Y-axis and the relative log2 concentration of each 
protein on the X-axis, using the non-parametric, monotone increasing B-spline model14. During the process, the 
raw spot intensity data were adjusted to correct spatial bias before model fitting. A quality control (QC) metric18 
was returned for each slide to help determine the quality of the slide: if the score was less than 0.8 on a 0-1 
scale, the slide was omitted. In most cases, the staining was repeated to obtain a high quality score. If more than 
one slide was stained with an antibody, the slide with the highest QC score was used for analysis (Level 2 data). 
Protein measurements were corrected for loading as described16,18,19 using median centering across antibodies 
(level 3 data). In total, 187 antibodies and 433 samples were used; 113 oesophageal cancer (ESCA) and 320 
stomach adenocarcinoma (STAD) samples. Final selection of antibodies was determined by the availability of 
high quality antibodies that consistently passed a strict validation process, as previously described20. These 
antibodies were assessed for specificity, quantification and sensitivity (dynamic range) in their application for 
protein extracts from cultured cells or tumour tissue. Antibodies were labeled as ‘validated’ or ‘use with 
caution’, based on degree of validation by criteria previously described20. 
 
Raw data (level 1), SuperCurve nonparameteric model-fitted data on a single array (level 2), and loading-
corrected data (level 3) were deposited at TCGA Data Coordinating Center (DCC). 
 
S4.2.   Data normalisation 
We performed median centering across all the antibodies for each sample to correct for sample loading 
differences. Those differences arise because protein concentrations are not uniformly distributed per unit 
volume. That condition may be due to several factors, such as differences in protein concentrations of large and 
small cells, differences in the amount of proteins per cell, or heterogeneity of the cells comprising the samples. 
By observing the expression levels across many different proteins in a sample, we can estimate differences in 
the total amount of protein in that sample vs. other samples. Subtracting the median protein expression level 
forces the median value to become zero, allowing us to compare protein expressions across samples. 
 
Surprisingly, processing similar sets of samples on different slides with the same antibody may result in datasets 
that have very different means and variances. Neely et al.21 processed clinically similar acute lymphoblastic 
leukemia samples in two batches and observed differences in their protein data distributions. There were 



additive and multiplicative effects in the data that could not be accounted for by biological or sample-loading 
differences. We observed similar effects when we compared the two batches of tumour protein expression data. 
A new algorithm, replicates-based normalisation (RBN), was therefore developed using replicate samples run 
across multiple batches, to adjust the data for batch effects. The underlying hypothesis is that any observed 
variation between replicates in different batches is primarily due to linear batch effects plus a component due to 
random noise. Given a sufficiently large number of replicates, the random noise is expected to cancel out 
(mean=zero, by definition). Remaining differences are treated as systematic batch effects. We can compute 
those effects for each antibody and subtract them out. Many samples were run in both batches. One batch was 
arbitrarily designated the “anchor” batch and was to remain unchanged. We then computed the means and 
standard deviations of the common samples in the anchor batch, as well as the other batch. The difference 
between the means of each antibody in the two batches and the ratio of the standard deviations provided an 
estimate of the systematic effects between the batches for that antibody (both location-wise and scale-wise). 
Each data point in the non-anchor batch was adjusted by subtracting the difference in means and multiplying by 
the inverse ratio of the standard deviations to cancel out those systematic differences. Our normalisation 
procedure significantly reduced technical effects, thereby allowing us to merge the datasets from different 
batches. 
 
S4.3.  Unsupervised hierarchical clustering analysis 
We used ConsensusClusterPlus package in R v2.13.2 to identify robust subtypes for distinct sample sets 
evaluated in this analysis based on protein expression22 . The consensus clusters were obtained from 1,000 
resampling iterations of the hierarchical clustering, by randomly selecting a fraction of the samples and of the 
protein features.  
 
Unsupervised hierarchical clustering analyses were carried out with two data sets. The first analysis with all 
oesophageal tumours (n = 113) revealed three robust RPPA clusters (Extended Data Figure 1). These three 
RPPA subtypes were significantly correlated with histological subtypes of oesophageal cancer (EAC and 
ESCC), p=1.1 x 10-7). RPPA cluster 1 (E1) was associated with EAC and expressed high levels of Claudin7 and 
TIGAR. Cluster 2 (E2) was associated with low expression of BRAF, MTOR, CDH1, and ATM, which play 
roles in cell proliferation and cell adhesion, suggesting that tumours in cluster 2 might have increased potential 
of invasion and metastasis (i.e., an EMT phenotype). Cluster 3 (E3) was characterised by high expression of 
fibronectin and PAI1. Analysis of all CIN subtype tumours (including both gastric and oesophageal 
adenocarcinoma) revealed three clusters that were different from the previous two analyses (Extended Data 
Figure 9). In particular, the C3 cluster was associated with higher expression of RICTOR, CAV1, and MYH11, 
likely reflecting activation of stromal cells in the tumour microenvironment.  
 
 
 
  



S5.  Microbiome analysis 
 
S5.1.   Methods of microbial detection in RNA-Seq and whole exome data 
 
BioBloomTools (BBT, v1.2.4.b1) is a Bloom filter-based method for rapidly classifying RNA-seq or DNA-seq 
read sequences1. We generated 43 filters from ‘complete’ NCBI genome reference sequences of bacteria, 
viruses, fungi and protozoa, using 25-bp k-mers and a false positive rate of 0.02. We ran BBT in paired-end 
mode with a sliding window to screen FASTQ files from RNA-seq libraries (75-bp paired end reads and 38 
GAIIx samples with 50-bp paired end reads), and whole exome libraries (49-bp PE reads). In a single-pass scan 
for each library, BBT categorised each read pair as matching the human filter, matching a unique microbial 
filter, matching more than one filter (multi-match), or matching neither human nor microbe (no-match). For 
each filter, we then calculated a reads-per-million (RPM) abundance metric as follows: 
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Samples with at least one read-pair classified as Epstein Barr Virus (EBV, also called human herpes virus 4, 
HHV4) by BioBloom in RNA-Seq data were submitted to EBV gene-expression analysis. For this analysis, 
BWA-0.5.7 was used to align reads to a custom-created reference based on the NCBI EBV type 1 complete 
genome and gene annotations (NC_007605.1). Reads with an alignment spanning exon-exon junctions were 
then transformed into large gapped genomic alignments using JAGuaR.  Reads with a mapping quality of 10 or 
greater were included in the gene expression quantification analysis. Results were normalised to reads per 
kilobase of exon per million reads mapped to the EBV transcriptome.  
 
S5.2.  Microbial detection in miRNA-Seq data 
We quantified levels of microbial content in miRNA sequence data in 604 gastric and oesophageal tumour and 
normal samples using methods described previously23,24. 
 
S5.3.  Methods of microbial detection in RNA-Seq, whole genome and whole exome data 
 
The PathSeq algorithm25 was used to perform computational subtraction of human reads, followed by alignment 
of residual reads to human reference genomes and microbial reference genomes (which include bacterial, viral, 
archaeal, and fungal sequences - downloaded from NCBI in June, 2012). These alignments resulted in the 
identification of reads mapping to the EBV and HPV genome in whole genome sequencing (WGS) and whole 
exome sequencing (WES) data.  
  
In brief, human reads were subtracted by first mapping reads to a database of human genomes (downloaded 
from NCBI in November 2011) using BWA26 (Release 0.6.1, default settings), Megablast (Release 2.2.25, cut-
off E-value 10-7, word ss 16) and Blastn27 (Release 2.2.25, cut-off E-value 10-7, word size 7, nucleotide match 
reward 1, nucleotide mismatch score -3, gap open cost 5, gap extension cost 2). Only sequences with perfect or 
near perfect matches to the human genome were removed in the subtraction process.  In addition, low 
complexity and highly repetitive reads were removed using Repeat Masker (version open-3.3.0, libraries dated 
2011-04-19; http://www.repeatmasker.org).  
 



To identify EBV and HPV reads, the residual reads were aligned with Megablast to a database of microbial and 
human reference genomes. Raw read counts were calculated using the reads that were mapped to the viral 
genome with at least 90% identity and 90% query coverage.  
 
Using the raw read counts, the abundance metric or normalised read count of a given microbe in a sample was 
calculated as follows:  
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Relative abundance in a given sample was calculated as abundance metric of taxa divided by the total 
abundance metric at kingdom level of the sample. Samples were considered to be EBV positive if the 
abundance metric exceeded 1000 by WGS or 100 by WES.  HPV read count levels were compared between 
ESCC subtypes in Figure 3e.   
 
 
 
 
  



S6.  Survival Analysis 
 
We evaluated patient survival (overall survival) for the ESCC1 and ESCC2 groups of oesophageal squamous 
cell carcinoma by both plotting Kaplan-Meier survival curves and by calculating 95% confidence intervals for 
Cox proportional hazards ratio as shown below in Figure S6.1. There was no significant difference (p=0.93) 
between survivals in the squamous iCluster groups based on either approach. The covariates used for the Cox 
model were age (modeled with a spline), size (from T-stage), positive lymph nodes (from N-stage), grade, 
gender, and TP53 mutation.  Survival values were censored at 3 years.  Given the small numbers of tumours in 
ESCC3, we excluded these from survival analysis. 
 
 

 
 
Figure S6.1:  Survival analysis of oesophageal squamous cell carcinoma clusters.  At left are the Kaplan-
Meier survival curves for ESCC1 and ESCC2, showing no significant difference.  At right are survival 
estimates with Cox-proportional hazards for ESCC1 and ESCC2 with covariates.  In the right panel, the age 
comparison was High (61.21 years and older) compared to Low (younger than 51.56 years).   
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S7.  Integrative clustering  
 
S7.1.  
 
Integrative clustering with multiple kernel learning 
 
Integrative clustering was performed using multiple kernel learning with the mRNA, miRNA, copy-number and 
methylation datasets to evaluate the GEA-CIN group of tumours.  The kernelised variant of K-means, proposed 
by Girolami28 transforms the original input space to a kernel that essentially represents the similarity between 
the samples and applies the regular k-means algorithm to the k largest eigenvalues from the principal 
component analysis of the kernel. For this clustering analysis, we used an integrative approach29,30 which 
combines Multiple Kernel Learning (MKL) paradigm with this Kernel K-means approach, enabling the 
clustering of multiple different molecular datasets. MKL approaches have proved valuable in the integration of 
distinct molecular datatypes31-33. The MKL K-means approach typically exhibits good performance in datasets 
with more features than samples and also allows for the modelling of non-linear relationships amongst features 
both within and between datatypes. 
 
Data preprocessing: The dimensionality of the segmented copy-number data was reduced using CNRegions 
from iClusterPlus package. For the DNA methylation data, we combined B-values derived from the 450K and 
27K platforms using the MergeMethylationData function from the TCGA Assembler package34 and imputed 
missing values. mRNA and miRNA data were log-normalised. 
 
Algorithm parameterisation: We employed the Matlab implementation of Gönen et al.30 and the kernel 
adjustment and normalisation from SimpleMKL35. For each datatype, we used a 3 Gaussian kernel 
configuration with (0.95,1,1.05)*sqrt(number of features of each dataset). 
 
Model selection: In order to ensure the robustness of the clusters, we performed 100 external bootstraps using 
95% of the samples and an internal k-means 10-times bootstrap with random centroid initialisation. Using 
several information criteria (variation of information, Rand index, Silhouette width and Dunn index) to select 
the appropriate number of clusters k between 2 and 12, we found that the “elbow” with highest difference in 
variation and the Rand Index fell between 7 and 8, so we selected 7 clusters. We show the 7-clusters result 
(Extended Data Figure 9) and the mapping to other cluster assignments and clinical features.  
 
Integrative clustering using iCluster 
  
iCluster36 generated a single integrated cluster assignment by a joint multivariate regression of multiple data 
types with respect to a set of common latent variables that represent the underlying tumour subtypes. The 
optimal number of clusters was determined using the Bayesian Information Criterion (BIC). iCluster analysis 
was also performed on the squamous cell carcinoma samples alone (n=90) to discover distinct molecular 
subtypes of ESCC, using a similar procedure. 
 
Data were pre-processed as follows: Copy-number alteration data were derived from data segmented using the 
Circular Binary Segmentation (CBS) from the Affymetrix SNP6.0 platform, and further reduced to a set of 1155 
non-redundant regions as described in ref37. For the methylation data (Illumina Infinium 450k arrays), Median 
Absolute Deviation (MAD) was used to select the top 1000 most variable CpG sites after a beta-mixture 
quantile normalisation using the Bioconductor package wateRmelon. Methylation probes with >20% missing 



data and probes including SNPs or located on sex chromosomes were removed. For mRNA and miRNA 
sequence data, lowly expressed genes were excluded based on median-normalised counts, and variance filtering 
left 1223 mRNAs and 175 miRNAs remaining for clustering. mRNA and miRNA expression features were log2 
transformed, normalised and scaled before submitting to iCluster. For the ESCC iCluster analysis, a similar data 
processing procedure was used, resulting in 1352 copy-number regions, 1000 most variable CpG sites, 1152 
mRNA and 169 miRNA features based on MAD filtering. 
 
Integrative clustering using COCA 
 
Clustering of Cluster Assignments (COCA), or integrative clustering by platform-specific subtypes, was 
performed as described in Suppl S10.2 of Ref1.  The method identifies shared molecular patterns among tumour 
samples based on the clusters obtained from individual platforms as described above: gene expression, miRNA 
expression, copy number and DNA methylation.  The starting point is the construction of a binary matrix, in 
which columns represent samples, and rows correspond to each of the possible platform-specific cluster 
assignments. Each element of the matrix indicates whether a sample was a member of the platform-specific 
cluster corresponding to that row (1) or not (0).  Samples are included in the analysis only if they have cluster 
assignments for all four platforms.  To compare two samples, the method uses a distance that is based on 
counting the co-occurrence of their platform-specific cluster assignments, but also includes a weight to 
compensate for differences in the number of clusters available for each platform.   Platform-specific clusters 
(rows) are also compared, by applying Fisher’s exact test to the contingency table for sample membership, and 
transforming the resulting p-value to the negative of its logarithm.  COCA was performed for the GEA set (Extended 
Data Figure 8) and for GEA-CIN (Extended Data Figure 10).  
 
 



 
 
Supplemental Figure 7.1:  Comparison of Gastroesophageal-CIN Adenocarcinomas Following Exclusion 
of Cases with Indefinite origin.   Demonstrated in this figure is a comparison of features from mRNA 
expression (a), DNA methylation (b) and somatic copy-number (c) for CIN-GEA tumours following the 
removal of all cases with indeterminate location or those deemed probable oesophagus or probable gastric in 
origin.  Panels a and b demonstrate the manner of clustering of the gastric and oesophageal GEA-CIN tumours 
for gene expression and methylation, respectively.  Panel c demonstrates the similarity in SCNA profiles of 
these groups of tumours.   
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