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Appendix A: A general framework to understand the effect of variation on predator intake 

rate and connectivity. 

 

In this section we explain how to incorporate phenotypic variation into intake – or foraging – 

rates. We then show how phenotypic variation affects predator connectivity (i.e., the number of 

prey items, or diet breadth).  

Let us assume that a predator eats a single prey item and the existence of a normally 

distributed trait with probability density function , mean trait value and variance  

that controls their interaction. Previous work (1–4) has shown that the intake rate of the predator, 

assuming a type II functional response, can be written as:  

 

,   [S1] 

 

where R is the density of the prey and C is that of the predator. The function  models 

how the attack rate of the predator changes with the underlying controlling trait , which has 

empirically been observed to be maximal at an optimal trait value  and to decay away from 

that value (e.g. (5)). In theoretical studies (e.g. (1, 3)), the function is typically assumed to be 

Gaussian: 
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where  is a shape parameter that controls how fast the attack rate decays away from the optimal 

trait value and  is the maximal attack rate at . The function  models how 

the handling time of the predator changes with the underlying controlling trait, and has 

empirically been observed to be minimal at an optimal trait value , and to increase away form 

that value within a given predator species (e.g. (5)). Previous literature (e.g. (3, 4)) has typically 

modeled that relationship as:  

 

,      [S3] 

 

where , as with , controls how steeply the handling time increases away from its minimal 

value at . Notice that the optimal value of the trait that maximizes the attack rate and 

minimizes the handling time needs not be the same for both parameters (3).  

 Under these assumptions, previous studies have shown that the intake rate changes with 

variation in the underlying trait, which has multiple consequences for predator-prey dynamics (1, 

3, 4). Here, we extend this approach to a predator eating multiple prey types, as would be the case 

for a typical consumer within a food web. To do so, we note that the type II functional response 

has a simple extension from the single prey item case to multiple species of the form:  
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Equation [S4] specifies the intake rate of the predator with respect to its i-th prey, from a prey set 

composed of n species. Assuming that the attack rate and the handling time are, again, functions 

of a normally distributed trait we can average the intake rate across all possible trait values to get:  

.  [S5] 

For simplicity, we assume throughout the main text that  is roughly the same for both the 

attack rate and the handling time, following empirical results (5), but this does not need to be the 

case (3). Equation [1] is controlled by two important parameters, phenotypic variation ( ) and 

phenotypic mismatch ( ), or the difference between the optimal trait value and the 

mean trait value in the population. The phenotypic mismatch is then a proxy for maladaptation, or 

predator specialization on a given prey. Because of the many factors controlling maladaptation, a 

predator will presumably have differing levels of maladaptation among its many prey items (6, 

7). We thus assume a different  for each prey item, which allows us to assess how different 

levels of variation in the underlying trait will affect the intake of the predator for each prey item 

prey item (Fig. 1, main text). In the main text we only explored one possible combination of 

parameters ( and the trait optimum  being the same for both the attack rate and the 

handling time). Here, we show that the results in the main text also hold for different values of 

the parameters  and  (Fig S1). We also show that our results hold for a situation in which the 

optimum trait value is different for the attack rate and the handling time (Fig S2). 
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Fig S1: A-C, same as in Fig 1 of the main text, but for . D-F, same as in A-C but for 

. In both cases it can be seen that both the number and the strength of the connections is 

affected by an increase in variation. The effect in the number is stronger for lower values of the 

parameters (A-C) than for larger values (D-F), while the total intake seems to be overall larger 

when for larger values of the parameters (D-F). 
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Fig S2: To assess a potential effect of having different  for the attack rate and the handling 

time, we added different random value sampled from the closed interval [0, ] for each prey 

item and level of variation, then added that value to  only for the attack rate. We did that for 

three different values of  (A-C, ; D-F, ; G-I, ). It can be seen that 

at larger levels of , the intake rate of the predator has greater levels of randomness, as 

expected, but the overall effect of variation on the number and strength of interactions –that 

increasing variation leads to a larger number of weaker interactions– remains unchanged.  
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Appendix B: Total intake rate among all prey items. 

 

In this section we show how to find the total intake rate for a given predator and how that 

quantity changes with phenotypic variation, as shown in Fig 2 of the main text. Building upon 

equation [S5], the total intake rate for a given predator preying upon n species is:  

 

.   [S6] 

It is possible to obtain some intuition as to how [S6] behaves analytically. First, let us assume that 

the handling time is zero, so that we are effectively dealing with a type I functional response. In 
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for large enough x. Assuming that d 2  increases by one with each prey item, and thus assuming 

the existence of a prey item for which the mismatch is small or null and an increasing mismatch 

for all other species, we can write [S8] as, 
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Using [S8] and [S10] we obtain, 
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Assuming Ri=C=1, for simplicity (we are just interested in the effect of σ 2 , not on the effect of 

density), we can rearrange [S11] into, 

ftot (Ri,C, x,Xopt,σ
2 )< 2αmaxτ τ 2 +σ 2 1
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n

∑ ,    [S12] 

which, using the fact that 1
i2i=1

+∞

∑  converges to π 2 / 6 , yields: 

  ftot (Ri,C, x,Xopt,σ
2 )< 1

3
αmaxτ π

2 τ 2 +σ 2 .    [S13] 

Equation [S13] shows that, at most, the total intake rate grows as the square root of the 

phenotypic variation (Fig S3). In the main text we showed that increasing variation increased the 

total intake rate (Fig 2), but while doing so, we assumed that handling time was independent from 

phenotypic variation. Here we show that the results in the main text hold when the handling time 

changes with phenotypic variation as well (Fig S4-A). We also show that our results hold for 

larger sets of prey items (Fig S4-B), and for changes in phenotypic mismatch from one prey 

species to the next that are smaller, and hence, more conservative (Fig S4-C).   
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Fig S3: Dashed, plot of the predicted increase in total intake rate with phenotypic variation for a 

very large set of species as predicted analytically (dashed), and as found numerically (solid). 

Notice that while our numerical approximation suggests an increase of the total intake rate that 

goes as the square root of the phenotypic variation, our numerical results show a slightly lower 

increase, as expected, but an increase nonetheless. 
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Fig S4: A. Plot of an increase in the total intake rate assuming a change in both the attack rate and 

the handling time for 8 species and all parameters as in the main text and previous appendices. B. 

Same as in A but for a larger set of species (16 species). C. Intake rate as a function of an even 

number set of species, where the phenotypic mismatch (d 2 ) increases by one for each additional 

prey item rather than as the square of the prey item’s index, as assumed in the main text. It can be 

seen that results are qualitatively the same, only that the place where curves cross moves to the 

right. 
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Appendix C: Phenotypic variation and trophic level. 

 

In this section we show how to assess the effect of phenotypic variation on the trophic level of 

the focal predator. As explained in the main text, the trophic level of a species in a food web is 

given by:  

TLj =1+ pijTLi
i=1

N

∑ ,      [S14] 

where, TLi is the trophic level of prey i, and pij is the fraction of the diet of species j that species 

i constitutes (8). We notice that pij can be written as:  
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this is, the intake rate of species j when consuming species i divided by the sum of the intake 

rates from all species consumed. Then, as explained in the main text, TLj can be expressed as: 
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After averaging TLj over the probability density function of the trait we get: 
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89
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/

"01
	! ), ), ;< =)	, 

as explained in the main text. Using [S17], we can keep track of how the trophic level of a 

predator changes as predator-prey dynamics unfold for a given predator-prey model.    

To assess how this change may occur, we can use a three-species predator-prey model 

with a basal resource, an intermediate consumer that preys upon the basal resource, and an 

omnivorous top predator that preys upon both the consumer and the basal resource. Such a model 

can take the form, 

[S15] 

          [S16] 

[S17] 
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− dTT  

 

where equations keeps track of the rate of change of the basal resource (R), the intermediate 

consumer (C) and the top omnivore consumer (T) over time, r is the per-capita or maximum 

growth rate of the resource, K is the carrying capacity of the resource, ε parameters stipulate the 

rate at which prey individuals are converted into predators and d parameters are the death rate of 

consumers, with all other parameters as before. For a given parameter combination, we can see 

how the trophic level of the top consumer, as defined in equation [S16], is now a dynamical 

quantity that changes over time as the ecological dynamics in [S18] unfold (Fig S5).  
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Fig S5: A. Population dynamics for the system in [S18] with parameters as before. B. Plot of the 

trophic level of the top predator and its change over time as ecological dynamics unfold. We can 

see that as the density of both prey items change over time, so does how much the top predator 

relies on either one of them, which leads to fluctuations in its trophic level.  

 

To assess how phenotypic variation determines the trophic level of the focal predator, we 

can, following previous literature (1, 3, 4) and rewriting the system in [S18] as a function of an 

underlying trait controlling the interaction between the top predator and its prey as: 
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where the attack rates and the handling times of the top predator are functions of the underlying 

trait as assumed in equations [S2] and [S3]. We can then use equation [S17] to keep track of how 

the trophic level of the focal predator changes with a change in the phenotypic variation,σ 2 . To 

produce Fig 3c, d of the main text, we ran the above model for increasing levels of σ 2 , then 

extracted the trophic level of the top predator using [S17] after the system reached equilibrium 

(after a 100 time steps), and plotted the extracted equilibrium trophic levels against σ 2  for a 

given combination of parameters (we assumed handling time was independent of variation, as 

making this further assumption does not qualitatively affect our results; see Appendices A and 

B). Parameter values were chosen to ensure the persistence of the three species:  

r = K =αC =αRT =αCT = τ =1 , εC = 0.5 ,εRT = 0.04 ,εCT = 0.64 , the maximal handling times for 

both predators were 0.04, both consumers’ death rates (d) were 0.1, and the phenotypic mismatch 

of the top predator with the basal resource was 0 and 4 with the intermediate consumer in Fig 3c, 

and the other way around in Fig 3d.   

 To assess how trophic level and predator connectivity (or diet breath) change together 

with phenotypic variation (Fig 3e, f), we made some simplifying assumptions. First, we noticed 

that the system in [S19] can be seen as a simplified version of a more complex scenario where 

instead of having one basal resource and one intermediate consumer, there are n basal resources 

and m intermediate consumers. The equations controlling the dynamics of such as system are:   
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with all parameters as before. The system in [S19] is very hard to solve numerically, let alone 

analytically, so we can reduce the complexity of the problem by assuming that all species have 

similar parameters (ecological equivalency), and 1) that the attack rate for all intermediate 

consumers with the basal resource is αRC = β /m , that of the top predator with all intermediate 

consumers is αCT =ν /m , and that of the top predator with all basal resources is αRT = γ /m , with 

parameters β ,ν ,γ  being constant. Assuming low handling times, the system in [S20] can be 

approximately described by [S19], if we note that C and R in [S19] will now be keeping track of 

the change in the sum of all basal resource densities on the one hand, and the sum of all 

intermediate consumer densities in the other hand. We note that when it comes down to the 

trophic level of the top predator, having more intermediate consumers or basal resources only 

makes the tropic level of the top predator become closer to 2 (in case of having more basal 

resources) or closer to 3 (in case of having more intermediate consumers), but should not 

qualitatively affect how variation for the top predator affects its trophic level. In the main text, we 

thus assume that all species are equivalent to understand how phenotypic variation jointly affects 
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trophic level and connectivity, which greatly simplifies solving [S20] numerically, as we can use 

the much simpler [S19] instead. 

 So, to generate Fig 3e, f we assumed the top predator had access to at most 20 resources 

(either basal or intermediate), and then did as explained in Appendix A and counted the number 

of non-zero intake rates the predator could have among that potential set of prey for levels of 

phenotypic variation varying between 0 and 10, with a step of 0.2. We concomitantly ran [S19] in 

the same way described before (with parameter values as in all other appendices), and extracted 

the trophic level for the top predator for variation between 0 and 10 and the same step size. For 

Fig 3e, the predator had a smaller mismatch with the basal resource ( d 2 =0) and a larger 

mismatch with the intermediate consumer ( d 2 =2), while the opposite was true for Fig 3f. Our 

approach is thus assuming 1) all species are equal, 2) that regardless of how many connections 

the top predator can have, the strength of those connections is in one case larger with basal 

species than with intermediate ones (Fig 3e, because of smaller mismatch), and in one case larger 

with intermediate consumers than with basal resources (Fig 3f, again, because of the smaller 

mismatch with these species). Because of these assumptions, our theoretical predictions 

necessarily are qualitative, not quantitative, and we simply cannot make quantitative predictions 

for any given food web as of now.   

 Alternatively, we can use an approach similar to that used in Appendix A: we assume all 

species have different levels of mismatch, we assume that the system is at some sort of 

equilibrium where all prey species have similar densities roughly equal to 1, and then we simply 

use [S17] in the same way equation [S5] was used to find the number of connections. To do so, 

we specify the number of basal resources and consumers eaten by the top predator (10 and 10 to 

match what we did for the total connectivity, but different numbers are possible), we then specify 
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the levels of phenotypic mismatch as di
2 = φ + i−1  for basal resources, and dj

2 =ψ + i−1  for 

consumers (as per Appendix A). In this way we can still assess what happens when predators are 

generally better at eating basal resources vs eating intermediate resources based on their 

mismatch. Notice that in so doing, we give the predator a slight edge at eating species at one level 

or the other, but this does not mean that it is better of eating all species at one level rather than the 

other. For example: assume φ  = 0 and ψ  =2, the mismatch with the 1st and 2nd basal resources is 

smaller or equal to the 4th and 5th intermediate consumers, which is totally controlled by the 

numbers chosen. Our results hold in this case, with an increasing relation between trophic level 

and connectivity when the mismatch of the predator is smaller with basal resources (Fig S6 A), 

and the opposite being true when the mismatch of the top predator is smaller with intermediate 

consumers (Fig S6 B).  
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Fig S6: Trophic level against predator connectivity (A. d 2 = 0 with basal resources, d 2 = 2 with 

intermediate consumers, B. d 2 = 0 with intermediate consumers, d 2 = 2 with basal resources). 
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Appendix D: Interaction strengths. 

Here, we show how we standardized interaction strengths across food webs to produce Fig. 5 of 

the main text. Only a subset of all analyzed food webs were quantitative, meaning that there was 

information on interaction strengths, or proxies of interaction strengths, only for 18 out of 58 

food webs. These measures of interaction strengths were collected by the original researchers that 

compiled each food web, and this was done independently in each study (Table S1, Appendix E). 

As a consequence, the way interaction strengths were measured varies across all analyzed food 

webs but is consistent within food webs. 

To test our prediction from Fig. 3g, h, of the main text, we regressed the interaction 

strength of all predators against the trophic level of all their prey, within each food web, and for 

all quantitative food webs. Because of this, the different measures of interaction strength across 

only need to be consistent within each food web, not across food webs, so a standardization 

procedure was not needed to test our prediction. However, we chose to standardize all measures 

of interaction strengths across food webs to make it easier for readers to follow Fig. 5 of the main 

text, where all plots were presented with the y-axis in the same units, as opposed to a figure 

where each plot had a slightly different measure of interaction strength.  

Because measures of interaction strengths varied in the data used from direct 

quantifications of energy flow between species (e.g. in mg of C/m2) to the number of instances a 

given predator-prey interaction was observed, to the relative importance a given prey played in a 

predator diet (either in proportion or percentage, see Table S1 in Appendix E), we chose to 

standardize them all by rescaling them into a number between 0 and 1. To do so, we divided each 

measure of interaction strength for a given predator and prey, by the sum of all interaction 

strengths for that predator across all its prey items. The result is a number between 0 and 1, that 

can be interpreted as a measure of the impact each prey has on their predators, relative to the 
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impact of all the other prey of that predator. For food webs where interaction strengths were 

already given as relative proportion of a given prey in a predator’s diet, we simply used that as 

our proxy of interaction strength.  

We notice that while experimentally, there is a long tradition of measuring interaction 

strengths as the difference in prey abundance before and after removal of a given predator (e.g. 

(9)), in which case interaction strengths can be either positive or negative, such measurements are 

rarely ever provided for entire food webs, as it would be immensely time consuming to do 

species removals, and probably unfeasible, for many of them. For entire food webs, 

measurements of interaction strengths typically are direct quantifications of energy flux or the 

positive effect of a given prey has on a predator, quantified as the number of times the predator-

prey interaction was observed in the field, or similar means (e.g. (10–13)). As a consequence, our 

food webs do not have any negative interaction strengths –or the negative impact of predators on 

preys– and our measures of interaction strengths therefore need to be interpreted as the effect 

prey have on predators through the transference of energy and mass that is a consequence of 

predation. However, our theoretical approach predicts an expected relationship between the 

interaction strength, quantified as the effect of the prey on the predator (i.e. through intake rates), 

and the trophic level of said prey. In other words, the data we have is actually very well suited to 

test the predictions in Fig 3. 

Last, because food webs are bottom-heavy (there are more species at lower trophic levels 

than at higher trophic levels) it is conceivable, in principle, that our ability to quantify interaction 

strengths, and their naturally occurring variation, would be worse at higher trophic levels than at 

lower trophic levels, just because there are fewer species at higher trophic levels. While this is a 

remote possibility, we nevertheless used a bootstrapping procedure that aims at minimizing the 

potential bias that food web structure would introduce in our analysis (i.e. the disproportionately 
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large effects of error in interaction strength quantification at higher trophic levels). To do this, we 

put together a table for each food web, with the observed standardized interaction strength 

between each predator-prey pair, and the trophic level of the prey, for all preys and predators. 

Then, we resampled each of such datasets 200 times with replacement, to regress, each time, the 

interaction strength of predators and their prey against the trophic level of each of their prey, for 

each food web separately. Each resampled dataset has a lower chance of having data from 

predator-prey interactions with prey from higher trophic levels, just because there are fewer of 

them, resulting in a lower chance of resampling these data. This, in turn, diminishes the impact of 

these rarer data points on the regression. 

 It can be seen that the results in Fig 5 of the main text are quite robust (Fig S7), and that 

most food webs actually show a negative relationship between interaction strength and the 

trophic level of prey, meaning that predators seem to relay less and less on prey from upper 

trophic levels. 

 

 

Fig S7: Grey dots represent a specific predator-prey pair within each food web, grey lines are 

bootstrap regressions (one per bootstrap replicate), and red lines represent a simple linear 
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regression, as in the main text. Each panel as in the main text: (a) Alvarado, (b) Angola, (c) Braço 

Morto, (d) Cádiz, (e) Chesapeake, (f) Corrente, (g) Huizache, (h) Itaipú (83-87), (i) Itaipú (88-

92), (j) Mondego, (k) Northern California, (l) Onca, (m) Paraná, (n) Reef, (o) Scotia Sea, (p) St. 

Marks, (q) St. Martin, (r) UK Grassland. 
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Appendix E: Food web data 
 
Fig. 4 food webs: from left to right and from top to bottom are: Skipwidth, St Marks, St Martin, Coachella Valley, Chesapeake, UK 
Grassland, Bridge Brook, Carpintería, Troy, Martins, Herlzler, Cooper, Venlaw, Berwick, North Col, Powder, Kye Burn, Sutton 
Autumn, Sutton Spring, Sutton Summer, Healy Creek, Dempsters Autumn, Dempsters Spring, Dempsters Summer, Stony Stream, 
Canton Creek, Black Road Stream, Broad Stream, Saguaro, Monterey Bay, Pawnee, Mojave parasitoids, Osa scavengers, Deep Creek, 
Aire, Paraná, Itaipú (83-87), Itaipú (88-92), Corrente, Angola, Braço Morto, Onca, Mondego, Vilas, Antarctica, Huizache, Alvarado, 
Quick Pond, Northern California, Las Cuevas, Cádiz ,Scotia Sea, Bear, Wet tropics, Porteirinho, Sarracenia, Benguela, Coral Reef. 
 
Table S1: All food webs used, with some summary descriptors (S=number of species, L=number of connections or links, C=directed 
connectance of the food web, calculated as L/S2, whether the food web is quantitative (Y/N), and the units of that measure (percent or 
proportion of total ingestion by a given predator, the frequency of predation events witnessed, energy flux)), the country of 
provenance, continent, ecosystem, type of food web and original reference. 
 

FW name Country Continent Ecosystem Type S L C Quantitative (Y/N) and 
Original Units Reference 

Benguela South Africa Africa Marine Aquatic 29 203 0.24 N Yodzis 1998 
Skipwidth UK Europe Pond Aquatic 37 380 0.28 N Warren 1989 
St Marks US North America Estuary Aquatic 48 221 0.10 Y, Percent of diet Christian & 

Luczkovich 1999 
St Martin France/St. 

Maarten 
Caribean/Antilles Island Terrestrial 44 218 0.11 Y, Frequency of predation 

events 
Goldwasser & 
Roughgarden 1993 

Coral Reef US/UK Caribean/Antilles Marine Aquatic 50 556 0.22 Y, Proportion of diet Opitz 1996 
Coachella 
Valley 

US North America Desert Terrestrial 30 290 0.32 N Polis 1991 

Chesapeake US North America Estuary Aquatic 33 72 0.07 Y, Energy flux (mg/m2 of 
carbon) 

Baird & Ulanowicz 
1989 

UK Grassland UK Europe Grassland Terrestrial 87 126 0.02 Y, Frequency of predation 
events 

Martinez et al 1999 

Bridge Brook US North America Lake Aquatic 75 543 0.10 N Havens 1992 
Carpintería US North America Marsh Wetland 128 2290 0.14 N Lafferty et al 2006 
Troy US North America Stream Aquatic 76 177 0.03 N Jarsma et al 1998 
Martins US North America Stream Aquatic 104 342 0.03 N Thompson & Townsend 2003 
Herlzler 
(Coweeta 17) 

US North America Stream Aquatic 71 148 0.03 N Thompson & Townsend 2003 
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Cooper 
(Coweeta 1) 

US North America Stream Aquatic 58 126 0.04 N Thompson & Townsend 2003 

Venlaw New Zealand Oceania Stream Aquatic 65 185 0.04 N Thompson & Townsend 2003 
Berwick New Zealand Oceania Stream Aquatic 77 240 0.04 N Thompson & Townsend 2003 
North Col New Zealand Oceania Stream Aquatic 78 241 0.04 N Thompson & Townsend 2003 
Powder New Zealand Oceania Stream Aquatic 78 268 0.04 N Thompson & Townsend 2003 
Kye Burn New Zealand Oceania Stream Aquatic 98 629 0.07 N Thompson & Townsend 2003 
Sutton 
Autumn 

New Zealand Oceania Stream Aquatic 80 335 0.05 N Thompson & Townsend 2003 

Sutton Spring New Zealand Oceania Stream Aquatic 74 391 0.07 N Thompson & Townsend 2003 
Sutton 
Summer 

New Zealand Oceania Stream Aquatic 86 423 0.06 N Thompson & Townsend 2003 

Healy Creek New Zealand Oceania Stream Aquatic 96 634 0.07 N Thompson & Townsend 2000 
Dempsters 
Autumn 

New Zealand Oceania Stream Aquatic 83 415 0.06 N Thompson & Townsend 2000 

Dempsters 
Spring 

New Zealand Oceania Stream Aquatic 93 538 0.06 N Thompson & Townsend 2000 

Dempsters 
Summer 

New Zealand Oceania Stream Aquatic 107 966 0.08 N Thompson & Townsend 2000 

Stony Stream New Zealand Oceania Stream Aquatic 112 832 0.07 N Townsend et al 1998 
Canton Creek New Zealand Oceania Stream Aquatic 108 708 0.06 N Townsend et al 1998 
Black Road 
Stream 

New Zealand Oceania Stream Aquatic 85 373 0.05 N Townsend et al 1998 

Broad Stream New Zealand Oceania Stream Aquatic 94 565 0.06 N Townsend et al 1998 
Saguaro US North America Desert Giant 

Cactus Forest 
Terrestrial 48 138 0.06 N Howes 1954 

Monterey Bay US North America Marine 
Intertidal 

Aquatic 37 79 0.06 N Glynn 1965 

Pawnee US North America Prairie Terrestrial 133 416 0.02 N Harris & Paur 1972 
Mojave 
parasitoids 

US North America Desert, 
Chaparral 

Terrestrial 37 74 0.05 N Hawkins & Goeden 1984 

Osa 
scavengers 

Costa Rica Central America Scavenger 
Food web on 
toad carrion 
in tropical 
wet lowland 

Terrestrial 50 131 0.05 N Cornaby 1974 
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Deep Creek US North America Cool desert 
stream 

Aquatic 32 140 0.14 N Koslucher & Minshall 1973 

Aire UK Europe Stream Aquatic 60 185 0.05 N Percival & Witehead 1929 
Parana Brazil South America River Aquatic 40 185 0.12 Y, Proportion of diet Angelini & Agostinho 2005 
Itaipu (83-87) Brazil South America Freshwater 

reservoir 
Aquatic 32 139 0.14 Y, Proportion of diet Angelini et al 2006 

Itaipu (88-92) Brazil South America Freshwater 
reservoir 

Aquatic 33 141 0.13 Y, Proportion of diet Angelini et al 2006 

Corrente Brazil South America River Aquatic 13 34 0.20 Y, Proportion of diet Angelini et al 2010 
Angola Angola Africa Marine Aquatic 28 127 0.16 Y, Proportion of diet Angelini & Vaz-Velho 2011 
Braco Morto Brazil South America River Aquatic 39 248 0.16 Y, Proportion of diet Angelini et al 2013 
Onca Brazil South America River Aquatic 40 241 0.15 Y, Proportion of diet Angelini et al 2013 
Mondego Portugal Europe River 

Lagoon, 
Estuarine 

Aquatic 26 103 0.15 Y, Proportion of diet Baeta et al 2011 

Vilas US North America Pond Aquatic 77 958 0.16 N Schneider 1997 
Antarctica Chile/Argenti

na/UK 
claimed 
region 

Antarctica Marine Aquatic 28 218 0.28 N Cornejo-Donoso & Antezana 2008 

Huizache Mexico North America Lagoon, 
Estuarine 

Aquatic 26 189 0.28 Y, Proportion of diet Zetina-Rejon et al 2003 

Alvarado Mexico North America Lagoon, 
Estuarine 

Aquatic 30 229 0.25 Y, Proportion of diet Cruz-Escalona et al 2007 

Quick Pond US North America Pond Aquatic 113 1092 0.09 N Preston et al 2012 
Northern 
California 

US North America Marine Aquatic 80 1448 0.23 Y, Proportion of diet Ruzicka 2012 

Las Cuevas Belize Central America Deciduous 
Seasonal 
Forest 

Terrestrial 165 114 0.00 N Lewis et al 2002 

Cadiz Spain Europe Marine Aquatic 44 413 0.21 Y, Proportion of diet Torres et al 2013 
Scotia Sea Chile/Argenti

na/UK 
claimed 
region 

Antarctica Marine Aquatic 56 178 0.06 Y, Percent of diet Hopkins et al 1993 

Bear Norway Europe/Arctic Island Terrestrial 31 43 0.04 N Hodkinson & Coulson 2004 
Wet tropics Australia Oceania River Aquatic 62 211 0.05 N Rayner et al 2010 
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Porteirinho Brazil South America Stream Aquatic 119 310 0.02 N Motta & Uieda 2005 
Sarracenia US/Canada North America Pitcher Plant Aquatic 91 1834 0.22 N Baiser et al 2012 
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