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S1. Continuum Transport Model 

Figure 1a shows a schematic of a one-dimensional electrochemical cell for reduction of 
CO2 and H2O. The cell has a well-mixed anolyte and catholyte regions to which CO2 is constantly 
supplied at 1 atm pressure and 20 sccm flow rate. The Pt anode is used for oxidation of H2O to O2 
and the Ag(110) cathode is used for reduction of CO2 to CO. The distance between anode/cathode 
and the membrane is ~3.56 cm. The anolyte and catholyte are separated by an anion-exchange 
membrane such as Selemion AMV of 100 µm thickness. The species in the CO2 equilibrated 
electrolyte are dissolved CO2, bicarbonate anions (HCO3-), carbonate anions (CO32-), protons (H+), 
hydroxide anions (OH-), and metal cation (K+). The pH of the electrolyte is 6.8 and the 
concentration of metal cation is 0.1 M.  

 

S1.1 Polarization Losses 

Polarization loss due to the transport of species (by migration and diffusion) and 
concentration gradients can be represented as a sum of i) ohmic loss, ii) diffusion loss, and iii) 
Nernstian loss. The ohmic loss is due to the resistance of the electrolyte, and the diffusion loss 
originates from the ionic gradient in the boundary layer near each electrode due to the applied 
current density. The ohmic and diffusion losses can be combined into the solution loss such that 
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where li  is the electrolyte current density, κ  is the electrolyte conductivity, x  is the position, F  

is Faraday’s constant, iz  is the charge number, iD  is the diffusion coefficient, and ic  is the 
concentration of the ith species. The ionic gradients alter the concentrations of reacting species next 
to the electrode surfaces (e.g., protons, hydroxide anion, and dissolved CO2) away from those 
present in the bulk. This causes an increase in the equilibrium potential of the oxygen evolution 



reaction (OER) and the CO2 reduction reaction (CO2RR), which are referred to collectively as the 
Nernstian loss. The Nernstian loss is a sum of losses due to differences in pH at the two electrodes, 
and differences in concentration of CO2 at the cathode and in the bulk electrolyte is given by 
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where R  is the gas constant, T  is the temperature, n  is the moles of electron transferred per mole 
of CO2, and 

2COp  is the partial pressure of CO2. The losses given by Equation (1) and (2) are due 

to the transport of species in the electrolyte, which, in turn, depend on the applied current density, 
electrolyte composition, electrolyte hydrodynamics, CO2 feed concentration and rate, membrane 
composition, and catalyst selectivity. The kinetic overpotentials for the OER and CO2RR also 
contribute to the total losses in the electrochemical cell. 

 

S1.2 Acid-Base Equilibria 

The amount of CO2 dissolved in the electrolyte depends on the pressure and temperature of 
the electrolyte. The equilibrium of CO2 between gas and liquid phase, 

 ( ) ( )2 g 2 aqCO   CO→←  (3) 

is given by Henry’s constant ( )0K , such that 
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where 
2COc  is the concentration of dissolved CO2, and 

2COf  is the fugacity of CO2 in the gas phase. 

The dependence of the Henry’s constant on the temperature (T , in Kelvin) at ambient pressure is 
given as(1) 
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The dissolved CO2 can also be hydrated to form carbonic acid, but its concentration is only 
about 1/1000 of the concentration of dissolved CO2.(2) Therefore, we do not distinguish between 
the hydrated and dissolved CO2, and consider them as a single species. The dissolved CO2 
dissociates to produce bicarbonate and carbonate ions when pH is greater than 5. The 
corresponding pair of reactions is given as 
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The values of the forward rate constants of reactions (6) and (7) are 2 1
1 3.71 10 sk − −
+ = ×  and 

1
2 59.44 sk −
+ = , respectively.(3) The reverse rate constants can be obtained from pK1 and pK2 for 

reactions (6) and (7), respectively. We also include the bulk ionization of H2O, 
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The value of the forward rate constant of H2O ionization is 5 1 12.4 10 mol L swk − − −
+ = ×  and 

the equilibrium constant is 14 2 -21 10 mol LwK −= × .(4)  

 

S1.3 Transport of Species in the Electrolyte and Membrane 

The transport of species in the electrolyte and membrane must satisfy mass conservation, 
such that 
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where iN  is the molar flux, and iR  is the volumetric rate of formation of species i  (CO2, HCO3-, 

CO32-, H+, and OH-). The rate of production of species i , iR , can be determined from reactions (6)
, (7), and (8). The molar flux of species in the dilute electrolyte can be written as a sum of fluxes 
due to diffusion and migration. 
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where iu  is the mobility of ion given by the Nernst-Einstein relationship, and lφ  is the electrolyte 
potential. The diffusion coefficients of species in the dilute electrolyte are given in Table S1. We 
neglect the variation of diffusion coefficients with the electrolyte concentration, as the variation is 
marginal for dilute electrolytes (<< 10 mol%).(5)  

The electrolyte current density li  can be obtained from the total ionic flux, 
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and the assumption of electro-neutrality, 
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The same set of Equations [(9) - (12)] were used to model the boundary layer region, the 
well-mixed region, and the membrane. Expressions for the rate of CO2 transfer to or from the 
electrolyte, and diffusion coefficients for transport of ions through the membrane are discussed in 
the next three subsections. 

Table S1: Diffusion coefficients of species in H2O at infinite dilution at 25 ̊C (6, 7) 

Species Diffusion Coefficient (10-9 m2 s-1) Mobility (10-7 m2 V-1 s-1)  

CO2 1.91 - 

HCO3- 1.185 0.462 

CO32- 0.923 0.359 

H+ 9.311 3.626 

OH- 5.273 2.054 

K+ 1.957 0.762 
 

Well-Mixed Electrolyte 

The well-mixed region of the electrolyte, as shown in Figure 1a, was assumed to have no 
diffusional resistance and therefore charged species are transported only by migration. The net rate 
formation of HCO3-, CO32-, H+, OH- were set to zero in the bulk because reactions 6, 7, and 8 were 
assumed to be at equilibrium. Therefore, only the rate of CO2 transfer from gas phase to liquid 
phase was non-zero. A constant feed of CO2 in the well-mixed region was included as an additional 
generation term on the right side of Equation (9), given as 

 ( )2 2 2CO , feed 0 CO COlR k a K f c= −  (13) 

where lk a  (s-1) is the volumetric mass-transfer coefficient on the liquid side of the gas-liquid 

interface, and 
2COc  (mol/m3) is a concentration of dissolved CO2 in the bulk electrolyte. The value 

of mass transfer coefficient for CO2 gas-liquid mass transfer in bicarbonate electrolyte is 
51.75 10−×  m s-1.(8) The measured value of the average radius of CO2 bubbles emerging from frit 

is 0.2 mm. Therefore, the value of the volumetric mass-transfer coefficient lk a  is 0.26 s-1. The 
boundary layer thickness of ~40 µm was chosen according to the limiting current density of 
CO2RR over Ag.(9)    

Membrane 

The anion exchange membrane (AEM) such as Selemion AMV was modeled as a solid 
electrolyte of 100 µm thickness with a fixed concentration of background positive charge of 1 



M.(10) The diffusion coefficients of anions and cations were reduced by a factor of 10 (ref. (11)) 
and by a factor of 100 (assumed), respectively, relative to those in the liquid electrolyte. 

 

S1.4 Charge-Transfer Reactions at Anode and Cathode 

The charge-transfer kinetics at the Pt anode was modeled using the Tafel kinetics, such as 
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where si  is the electrode current density, Ri  is the reaction current density, 0i  is the exchange-
current density, and α  is the transfer coefficient. The kinetic overpotential of a catalyst is given 

by 0
Nernstians l Eη φ φ φ= − − + ∆ , where 0E  is the equilibrium potential of the half-reaction at a 

standard condition and, sφ  is the electrode potential. 

The half-cell reaction at the Pt anode is the oxidation of H2O, which produces O2. 
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The kinetic parameters for OER over Pt were obtained from Birss and Damjanovic.(12) The 
exchange current density and transfer coefficient for OER are 94.684 10−×  mA cm-2 and 0.5, 
respectively.  

The other half-cell reactions over Ag cathode involves the reduction of CO2 and H2O to H2 
and CO. 
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The kinetics of CO2RR and HER over Ag(110) was described using the microkinetic model 
discussed in Section S2. 

 

S1.5 Electrode Current Density  

The current density at a metal electrode is given by Ohm’s law: 
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where sκ  is the conductivity of the electrode. To maintain electroneutrality, the divergence of 
current density in the solid and the liquid was set to zero: 
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The potential in the electrochemical cell was calculated relative to the zero potential of 
the electrolyte at the cathode-electrolyte interface.  

Equations (1) - (18) were solved using COMSOL Multiphysics 4.3b to calculate pH and CO2 
concentration at the cathode as a function of partial current densities of H2 and CO obtained from 
the microkinetic model. 

 

S2. Microkinetic Model 

Figure 2 shows the mechanism of HER over Ag(110) given by Volmer and Heyrovsky 
steps. 
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The rate expressions for Volmer and Heyrovsky steps are given as 
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where sθ  is the fractional coverage of species s on the cathode, 
OH

x −  is the mole fraction of OH- 

in the electrolyte at the cathode interface, ik  is the forward rate constants, and iK  is the equilibrium 
constant of the ith elementary reaction. The forward rate constants were obtained using the 
Transition State Theory, 
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where V  is the applied potential, Bk  is the Boltzmann constant, T  is the temperature of the cell, 

h  is the Planck constant, c∗  is the total surface concentration of free sites on Ag(110), and ‡
iG∆  

is the free energy of activation of the ith reaction. The total concentration of active sites on Ag(110) 
was  67.04 10c −

∗ = ×  mol m-2. The values of ‡
iG∆  was obtained using KS-DFT described in section 

S3. The equilibrium constant of the elementary reaction is given as 
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where iG∆  is the free energy change of the ith elementary reaction, whose value is also determined 
from the KS-DFT calculation described in section S3. Figure S1 shows the free energies of 
activations ( )‡ ‡

1 2,G G∆ ∆  and reactions ( )1 2,G G∆ ∆ as a function of applied potential for Volmer 

and Heyrovsky steps.        

 

Figure S1: Dependence of free energies of activations ( )‡ ‡
1 2,G G∆ ∆  and reactions ( )1 2,G G∆ ∆ on 

the applied potential for Volmer (subscript 1) and Heyrovsky (subscript 2) reactions 

Figure 2 shows three different reaction mechanisms (RMs) for CO2RR over Ag(110), 
where RM-1, RM-2, and RM-3 involve H∗ , 2H O∗∗ , and free 2H O , respectively. The 
mathematical models for these three mechanisms are discussed in the subsequent sections. 

 

S2.1 Reaction Mechanism-1 

RM-1 involves a two-step mechanism for CO2RR over Ag(110),  
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The rate expressions for these reactions are given as follows, 
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The forward rate constants and the equilibrium constants were obtained from equations (23) and 
(24). Figure S2 shows the free energies of activations ( )‡ ‡

1 2,G G∆ ∆  and reactions ( )1 2,G G∆ ∆ as a 

function of applied potential for reactions (25) and (26). 

 

 

 

Figure S2: Dependence of free energies of activations ( )‡ ‡
1 2,G G∆ ∆  and reactions ( )1 2,G G∆ ∆ on 

the applied potential for reduction of 2CO∗  (subscript 1) and COOH∗∗  (subscript 2) according 
to RM-1 

Since the rates of adsorption and desorption are relatively faster than the rates of surface 
reactions, the adsorbed species such as 2CO∗ , CO∗ , 2H O∗∗ , and 2H∗ were considered in quasi-
equilibrium with their bulk concentrations, such that 
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where sa  is the activity of species s in the electrolyte at the cathode interface, and sK  is the 
equilibrium constant for adsorption/desorption of species s written as 
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where sG∆  is the free energy of adsorption of species s shown in Figure 3a.  

The activity of H2O in equation (31) is 1 because the electrolyte is dilute. The activity of 
CO2 at the cathode was determined using the Continuum Transport model discussed in section S1. 
Since the gases are sparingly soluble in the water, their activities are equal to their mole fraction 
and they are assumed to be in equilibrium with the gases in the bubbles evolving at the cathode 
interface, such that 
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where ,H sK  is Henry’s constant for gaseous species dissolved in the electrolyte at 25 oC. Their 

values are 
2,CO 33 mMHK = , ,CO 0.93 mMHK = , and 

2,H 0.78 mMHK = . The partial pressures of 

the product gases in equation (34) were determined from the flux balance at the cathode-electrolyte 
interface, 
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where COr  is the rate of production of CO per unit area of the cathode, 
2Hr  is the rate of production 

of H2 per unit area of the cathode, and Tp  is the total pressure of the electrochemical cell. The 

value of Tp  considered in all simulation was 1 atm.   

The fractional coverage of H∗  was obtained by substituting equations (21), (22), (27), and (28) 
into the mass balance equation given as follows, 

 1 2 3 4 0r r r r− − + − =  (37) 

Mass balance on species COOH∗∗  yields, 
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The fractional coverage of vacant sites ( )∗  was obtained from the site balance equation, 
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The set of equations (29), (30), (31), (32), (37), (38), and (39) was solved simultaneously to 
determine fractional coverages 

2COθ∗ , COθ∗ , 
2H Oθ∗∗ , 

2Hθ∗ , COOHθ∗∗ , Hθ∗ , and θ∗ . The calculated 

values of fractional coverages were substituted in the rates expression (26) to obtain rate of 
formation of CO, 

 CO 2r r=  (40) 

and the partial current density of CO was calculated as follows, 

 2CO COi F r=   (41) 

The rate of formation of H2 was obtained by substituting the fractional coverages in reaction (20)
, 

 
24 Hr r=  (42) 

and the partial current density of H2 was calculated as follows, 

 
2 2

2H Hi F r=   (43) 

 

S2.2 Reaction Mechanism-2 

RM-2 involves a two-step mechanism for CO2RR over Ag(110),  
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The rate expressions for these reactions are given as follows, 
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The forward rate constants and the equilibrium constants were obtained from equations (23) and 
(24). Figure S3 shows the free energies of activations ( )‡ ‡

1 2,G G∆ ∆  and reactions ( )1 2,G G∆ ∆ as a 

function of applied potential for reactions (44) and (45). 

The fractional coverages 
2COθ∗ , COθ∗ , 

2H Oθ∗∗ , and 
2Hθ∗  are given by equations (29), (30), 

(31), and (32), respectively. The fractional coverage of H∗  can was obtained by substituting 
equations (21), and (22) into the mass balance equation as follows,  
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Figure S3: Dependence of free energies of activations ( )‡ ‡
1 2,G G∆ ∆  and reactions ( )1 2,G G∆ ∆ on 

the applied potential for reduction of 2CO∗  (subscript 1) and COOH∗∗  (subscript 2) according 
to RM-2 

Mass balance on species COOH∗∗  gives the fractional coverage, 
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Fractional coverage of vacant sites was obtained from the site balance equation (39). 

Equations (29), (30), (31), (32), (49), (50), and (39) was solved simultaneously to obtain fractional 
coverages 

2COθ∗ , COθ∗ , 
2H Oθ∗∗ , 

2Hθ∗ , COOHθ∗∗ , Hθ∗ , and θ∗ .          

The fractional coverages were substituted in the rates expression (47) to obtain rate of 
formation of CO, 

 CO 2r r=  (51) 

and the partial current density of CO was calculated using equation (41) 



The rate of formation of H2 was obtained by substituting fractional coverages into reaction 
(20) 

 
24 Hr r=  (52) 

and the partial current density of H2 was calculated using equation (43). 

 

S2.3 Reaction Mechanism-3 

RM-2 involves a three-step mechanism for CO2RR over Ag(110),  
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The rate expressions for these reactions are given as follows, 
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The forward rate constants and the equilibrium constants were calculated using equations (23) and 
(24). Figure S4 shows the free energies of activations ( )‡ ‡ ‡

0 1 2, ,G G G∆ ∆ ∆  and reactions 

( )0 1 2, ,G G G∆ ∆ ∆ as a function of applied potential for reactions (53), (54) and (55). The fractional 
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2H Oθ∗∗ , 
2Hθ∗ , and Hθ∗  are given by equations (29), (30), (31), (32), and (49)

, respectively. 

Mass balance on species 2CO δ−∗  can give its fractional coverage as, 
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Mass balance on species COOH∗∗  yields, 
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Figure S4: Dependence of free energies of activations ( )‡ ‡ ‡
0 1 2, ,G G G∆ ∆ ∆  and reactions 

( )0 1 2, ,G G G∆ ∆ ∆ on the applied potential for reduction of 2CO∗  (subscript 0), 2CO δ−∗  (subscript 
1), and COOH∗∗  (subscript 2) according to RM-3 

 

The fractional coverage of vacant sites was obtained from the site balance, 
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The set of equations (29), (30), (31), (32), (49), (59), (60) and (61) was solved simultaneously to 
obtain fractional coverages 

2CO δθ −∗
, 

2COθ∗ , COθ∗ , 
2H Oθ∗∗ , 

2Hθ∗ , COOHθ∗∗ , Hθ∗ , and θ∗ . 

The fractional coverages were substituted in the rates expression (58) to obtain the rate of 
formation of CO, 

 CO 2r r=  (62) 

and the partial current density of CO was calculated using equation (41) 

The rate of formation of H2 was obtained by substituting fractional coverages into reaction 
(20) 

 
24 Hr r=  (63) 



and the partial current density of H2 was calculated using equation (43). 

 

S3. Kohn-Sham Density Functional Theory 

All electronic structure calculations were performed using density functional theory (DFT) 
and were formed using a locally modified version of Vienna ab initio simulation program 
(VASP).(13-16)  The Minnesota Local (M06-L) functional(17) and revised Perdew-Burke-
Ernzerhof (RPBE) functional(18) were used in this study.  The projector augmented-wave 
method(19, 20) were used in all DFT calculations.  For RPBE calculations, the plane-wave cut-off 
was set to 300 eV and the and for M06-L calculations the plane-wave cut-off was set to 900 eV.  
Fermi-smearing width was set to 0.1 eV.   A k-point sampling of (4,4,1) was used.  The VASPsol 
program was used to describe the solvent with additional modifications to include electrolyte.(21-
23)  The dielectric constant of water was set to a relative permittivity of 78.4.  The Debye length 
for the electrolyte was set to 3.0 Å, which corresponds to an electrolyte concentration of 1.0 M.  
Energy minimizations and transition state searches were stopped once the forces on each atom 
were less than 0.01 eV/Å. The transition state searches were performed using the Dimer method 
in the VTST package.(24) The convergence criterion for the electronic wavefunction was set to 
10-6 eV.  

Lattice constants of 4.08 Å were used for silver.  The Ag(110) surface is represented by 
3x4 atom configuration in the 110 surface configuration with 3 layers, for a total of 36 silver atoms.  
There are 21 Å of solvent/electrolyte between each surface plane.   

The geometry was prepared in the following manner.  Using the 3x4x3 silver atom model, 
the reactant (CO2, COOHad, H2O, and Had) was prepared with 48 water molecules. Figure S5 shows 
the geometry of adsorbed CO2 (*CO2 ) and adsorbed CO2 anion ( )2*COδ − . Using RPBE, 5ps of 

explicit water dynamics were performed.  At the end of the molecular dynamics, geometry 
minimizations and transition state searches were performed using the M06-L functional.   

Free energies of adsorbates were calculated by adding the zero-point energy (ZPE), 
entropies, and heat capacities to the electronic energy.(25) The frequencies were calculated by 
treating all of the degrees of freedom for the adsorbate as vibrational and that there were no 
significant changes in the vibrations of the Ag(110) surface.  All vibrations were treated using the 
harmonic oscillator approximation.  Several geometries had low-vibrational modes and these 
modes were reset to have a value of 50 cm-1.  

 



 

Figure S5: (A) The distorted adsorbed CO2 (*CO2) which has a bond angle of 178o and bond 
lengths of 1.17 Å (hydrogen-bonded oxygen) and 1.16 Å.  (B) The adsorbed CO2 anion ( )2*COδ −   
species which has a bond angle of 140o and bond lengths of 1.24 Å (left oxygen) and 1.22 Å (right 
oxygen).   

 

S4. Multiscale Simulation 

Figure S6 shows the algorithm for the multiscale simulation which couples continuum 
transport model, microkinetic model, and KS-DFT. The input for the simulation is the applied 
potential vs RHE to the cathode. The concentration of CO2 ( )2COc  and pH are initialized using 

their respective bulk values. After initialization, the KS-DFT simulation was performed in VASP 
to obtain free energies of activation, reaction, and adsorption, which were used to calculate rate 
constants and equilibrium constants for each elementary reaction and adsorbates. The rate 
parameters were supplied to the microkinetic model to calculate partial current densities of 
products. The continuum model uses the partial current densities from the microkinetic model to 



calculate the concentration of CO2 and pH at the cathode-electrolyte interface. The simulation 
sequence was iterated until the convergence in the concentration of CO2 and pH was achieved.     

  

Figure S6: Multiscale simulation algorithm for simultaneous solution of KS-DFT, microkinetic 
model, and continuum transport model to predict partial current densities of CO2RR over Ag(110)  
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