Supplementary Figure 1. Blood glucose homeostasis, Pdx1 levels and Pdx1 target gene expression is unaffected in adult $Pdx1^{\Delta AIV/\Delta AIV}$ mice.

(A) Four month-old $Pdx 1^{\Delta A I V / \Delta A I V}$ mice had fasting blood glucose levels and (B) glucose clearance rates that were indistinguishable from $Pdx 1^{+/+}$ and $Pdx 1^{\Delta A I V / +}$ mice. n = 4-11. (C) Representative images illustrating the similar staining pattern for Pdx1, Nkx6.1, MafA and Glut2 in 5 week-old male $Pdx 1^{+/-}$ and $Pdx 1^{\Delta A I V / \Delta A I V}$ islets. Scale bars: 10µm.

Supplementary Figure 2. $Pdx1^{\Delta AIV}$ mice produce slightly fewer hormone⁺ cells during development.

(A) There was no statistical difference in body weight between 3-9 week-old $Pdx1^{+/-}$ and $Pdx1^{\Delta A/V/-}$ mice. (B) Representative image of Neurogenin 3 (Ngn3), glucagon and insulin staining in E15.5 $Pdx1^{+/-}$ and $Pdx1^{\Delta A/V/-}$ pancreata. Cell counting revealed a roughly 50% reduction in the number of $Pdx1^{\Delta A/V/-}$ Ngn3⁺ cells. Scale bars: 20µm (C) There was a slight, but significant reduction in the number of E18.5 $Pdx1^{\Delta A/V/-}$ insulin⁺ (β) and somatostatin⁺ (δ) cells, but not glucagon⁺ (α) cells. (D) $Pdx1^{\Delta A/V/-}$ Ki67⁺ insulin⁺ cell and (E) apoptosis levels were unchanged at E18.5. n = 3. *, *p* < 0.05. (F) Representative image of insulin and Pdx1 staining in E18.5 $Pdx1^{\Delta A/V/-}$ pancreata. Scale bars: 10µm.

Supplementary Figure 3. Blood glucose levels and β cell marker staining appears unchanged in P3 $Pdx1^{\Delta AIV/-}$ pancreata. (A) $Pdx1^{\Delta AIV/-}$ and $Pdx1^{+/-}$ fed blood glucose levels and (B) β cell marker staining at P3. Scale

Supplementary Figure 4. Five week-old female $Pdx1^{\Delta AIV/-}$ mice are normoglycemic and have Pdx1 control-like mRNA levels.

(A) *Ad lib* fed and fasting blood glucose levels in 5 week-old female $Pdx1^{+/-}$ and $Pdx1^{\Delta A/V/-}$ mice. n = 4-10. (B) The ability to reduce blood glucose levels was indistinguishable between 5 week-old female $Pdx1^{\Delta A/V/-}$ and $Pdx1^{+/-}$ mice. n = 5-9. (C) Comparison of the Area Under Curve (AUC) in the glucose tolerance tests performed on the 5 week-old females from (B) and males of Figure 2B. Only male $Pdx1^{\Delta A/V/-}$ mice were glucose intolerant. (D) Levels of Pdx1 and Pdx1 bound targets gene expression in 5 week-old male and female $Pdx1^{\Delta A/V/-}$ and $Pdx1^{+/-}$ islets. The male animals represent a different cohort than described in Figures 3 and 4. Only the male $Pdx1^{\Delta A/V/-}$ animals have deficits. n = 3. *, p < 0.05; **, p < 0.01.

Supplementary Figure 5. Five week-old female $Pdx1^{\Delta AIV/-}$ mice have normal Pdx1 and MafA levels. Representative images illustrating the difference in Pdx1 (A) and MafA (B) staining intensity within the β cells of 5 week-old male and female $Pdx1^{\Delta AIV/-}$ islets. Scale bars: 10µm.

 $\label{eq:constraint} @2017 \ American \ Diabetes \ Association. \ Published \ online \ at \ http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1516/-/DC1 \ and \$

Supplementary Figure 6. Islet insulin, MafA, Nkx6.1 and Glut2 staining levels are negatively impacted at weaning in male $Pdx1^{\Delta AIV/-}$ mice. A characteristic image of β cell insulin, MafA, Nkx6.1 and Glut2 levels within 3 and 5 week-old $Pdx1^{\Delta AIV/-}$, $Pdx1^{\Delta AIV/-}$, $Pdx1^{\Delta AIV/-}$, and $Pdx1^{+/-}$ islets. Scale bars: 10µm.

Supplementary Figure 7. Analysis of islet enriched transcription factor and cell cycle associated gene expression in male $Pdx1^{\Delta A/V/-}$ islets. (A) Expression of various islet-enriched transcription factors and (B) cell cycle regulators in 3 and 5 week-old male $Pdx1^{\Delta A/V/-}$ islets. Only the changes in *CyclinB1* (*Ccnb1*) and the Cdk inhibitor, *p19*, were significant. n = 3, *, *p* < 0.05.

B. 3 Weeks

5 Weeks

