

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Comparison of cerebral protection between inhalation anesthesia and total intravenous anesthesia in cardiac surgery with cardiopulmonary bypass: A Systematic Review and Meta-Analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2016-014629
Article Type:	Research
Date Submitted by the Author:	19-Oct-2016
Complete List of Authors:	Chen, Feng Duan, You Wu, Xi Zuo, Yi Li, Hong; Xinqiao Hospital, Third Military Medical University, Anesthesiology
Primary Subject Heading :	Anaesthesia
Secondary Subject Heading:	Neurology
Keywords:	Anaesthesia in cardiology < ANAESTHETICS, Adult anaesthesia < ANAESTHETICS, Anaesthesia in neurology < ANAESTHETICS
	·

SCHOLARONE[™] Manuscripts

Comparison of cerebral protection between inhalation anesthesia and total intravenous anesthesia in cardiac surgery with cardiopulmonary bypass: A Systematic Review and Meta-Analysis

Feng Chen^a, Guangyou Duan^a, Zhuoxi Wu^a, Zhiyi Zuo^b, Hong Li^{*}

a Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing,400037, China

bDepartment of Anesthesiology, University of Virginia, Charlottesville, Virginia, USA

* Corresponding author at: Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China. Email: Lh78553@163.com

Abstract

Objective: Neurological dysfunction remains a devastating postoperative complication undergoing cardiac in patients surgery with cardiopulmonary bypass(CPB), and previous studies have shown that inhalation anesthesia and total intravenous anesthesia(TIVA) may produce different cerebral protection for these patients. Therefore, a systematic literature review and meta-analysis compared the neuroprotective effects between inhalation anesthesia and TIVA.

Design: Searching in PubMed, EMBASE, Science Direct/Elsevier, CNKI and the Cochrane Library up to August 2016, we selected the related randomized controlled trials for this meta-analysis.

Result(s): A total of 1485 studies were identified, without duplicate, the articles remained 1148. After screening titles and abstracts, about 445 studies were potentially eligible. Depend on exclusion criteria(full-text

reporting was abstract, review article, no control case, lack of outcome data, ect.), 13 studies were ultimately selected according to eligibility criteria. Our results illustrated that S100B levels at CPB and postoperative 24hour in inhalation anesthesia group were significantly lower than those in TIVA group[WMD (95% CI):-0.43 (-0.83, -0.03), -0.32 (-0.59, -0.05),respectively]. The CBF and MMSE scores of inhalation anesthesia group were significantly higher than that of TIVA group [WMD (95% CI) 5.11 (2.58, 7.63), 1.26 (0.04, 2.47), respectively. However no significant difference was found in cerebral metabolic rate of CMRO₂, SjvO₂%, C(a-v)O₂, O₂ER% and CPB time.

Conclusion(s): The current study demonstrates that anesthesia with volatile agents appears to provide better cerebral protection for patients undergoing cardiac surgery with CPB when compared to TIVA, suggesting that inhalation anesthesia may be more suitable for patients undergoing cardiac surgery.

Key words: anesthesia; cerebral protection; cardiac surgery; cardiopulmonary bypass

Strengths and limitations of this study

The literature searches of our article were including six databases.
 Literature retrieval was comprehensive.

2. The inclusion criteria and exclusion criteria we formulate was strict.

3. This is the first systematic review and meta-analysis to compare the

neuroprotective effects between inhalation anesthesia and TIVA in cardiac surgery with cardiopulmonary bypass.

4. Neurological dysfunction remains a devastating postoperative complication after cardiopulmonary bypass, making sure which anesthetics could reduce this complication may have important significant.

5. The inherent limitations of the studies included in this analysis are the different volatile agents(sevoflurane, isoflurane, desflurane) and different intravenous anesthetics (sodium thiopental, propofol, etc.). Because of the shortage number of reported clinical trials, limited outcome data could be considered for subgroup analysis.

Introduction

Cardiopulmonary bypass (CPB) is necessary and commonly used to support the patient's circulation during cardiac surgery, but CPB can significantly increase the patients' morbidity of some postoperative complications and mortality.^[1]Among these postoperative complications neurological dysfunction remains a devastating complication, and also it is one of the major causes of mortality for patients undergoing cardiac surgery^[2, 3].Several factors including cerebral anoxia, embolism, excessive excitatory neurotransmitter release and systemic inflammatory response have been demonstrated to may contribute to postoperative

neurological dysfunction^[4].However, at present it is lack of definitive clinical evidence to provide cerebral protection for patients undergoing cardiac surgery with CPB^[5].

Early animal data supported that anesthetics can produce cerebral protection ^[6-8]. And many recent studies have found that anesthetic agents of general anesthesia may be neuroprotective and can produce cerebral protection for surgery patients^[9, 10]. However, at present the clinical studies showed that the effects of inhalation anesthesia or TIVA on neuroprotection in cardiac surgery with CPB remain controversial and much debated ^[11-13]. Therefore, it was unknown that which one is better in providing cerebral protection effect for patients undergoing cardiac surgery with CPB. As we know, inhalation anesthesia and TIVA are most commonly used strategy for general anesthesia, thus it is important to clarify this issue. In addition, because of the difficulty of patient inclusion and neurological dysfunction study for cardiac surgery with CPB, the sample size of these previous studies was generally small. Based on these reasons, it is necessary to systematically reviewed the available literature and performed a meta-analysis to compare the neuroprotective effects of inhalation anesthesia and TIVA.

Materials and Methods

The current systematic review and meta-analysis was carried out in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses reporting guidelines (PRISMA) for the intervention trials^[14].

Literature search

This meta-analysis was restricted to published studies that investigated the cerebral protection of anesthetics inpatients with CPB. Two independent reviewers (ZW and GD) searched PubMed, EMBASE, Science Direct/Elsevier, MEDLINE, CNKI and the Cochrane Library from inception to August 2016, without restrictions on language or study type. The search terms combined text words and MeSH terms. For example, the search terms for CPB were: 'Cardiopulmonary Bypass', 'Bypass Cardiopulmonary', 'Bypasses Cardiopulmonary', 'Cardiopulmonary Bypasses', 'Heart-Lung Bypass', 'Bypass Heart-Lung', 'Bypasses Heart-Lung', 'Heart Lung Bypass', 'Heart-Lung Bypasses'. TIVA were : 'propofol', 'disoprofol', 'etomidate' 'midazolam', 'sodium pentothal', 'thiopental', 'ketamine', while those for inhalation anesthesia were 'halothane', 'sevoflurane', 'isoflurane', 'desflurane', 'enflurane', 'methoxyflurane'. All related articles and abstracts were retrieved. In addition, references cited within relevant reviews were retrieved by hand and only full articles were searched in this case.

Eligibility criteria

Inclusion criteria: All patients undergoing cardiac surgery with CPB were randomly allocated to inhalation anesthesia group and TIVA group. Patients undergoing cardiac surgery with no restriction in dose and time of anesthetic administration. Outcomes includedS100B protein levels, mini-mental state examination(MMSE) scores, cerebral blood flow(CBF), cerebral metabolic rate of oxygen consumption(CMRO₂), jugular bulb oxygen saturation(SjvO₂%), arteriovenous oxygen content difference(C(a-v)O₂), cerebral oxygen extraction(O₂ER%) and cardiopulmonary bypass(CPB) time.

Exclusion criteria: Studies were excluded if they were case reports, review articles, duplicate publications, or lack of outcome data. Studies involving patients with cerebrovascular disease, central nervous system disorders, psychotropic drugs, a history of alcohol or substance abuse were also excluded.

Study selection and validity assessment

Two independent reviewers (ZW and GD) screened titles and abstracts of all papers from the literature search. All relevant studies that appeared to meet inclusion criteria were retrieved. Full texts were obtained to analyze if an ambiguous decision was made based on the title and abstract. Eligible studies must be randomized controlled trial. Disagreements were resolved by consensus or a third reviewer (FC). Two

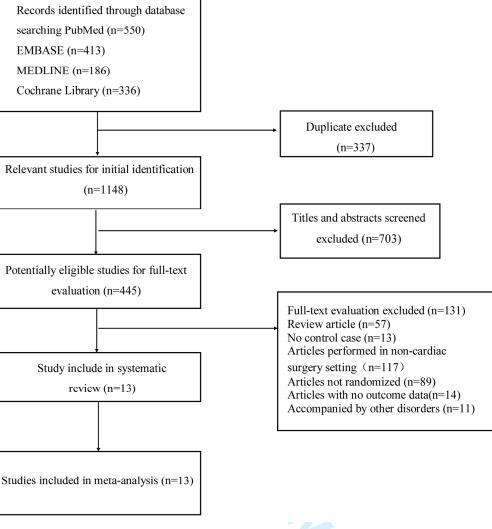
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

reviewers (FC and ZZ) completed the quality assessment according to the primary criteria for randomized controlled trial studies

Data extraction and statistical analysis

Data, including authors, year of publication, number and mean age of participants, setting, anestheticsand outcomes were extracted from the studies by three reviewers (ZW, GD and ZZ). Disagreements were resolved by consensus. Quantitative meta-analysis was performed by two reviewers (FC and HL) with Review Manager (RevMan) software (version 5.2, The Nordic Cochrane Centre, The Cochrane Collaboration, 2012, Copenhagen).


The weight mean differences (WMD) of outcomes in the randomized controlled trial studies and its 95% confidence intervals (95% CI) were presented. Heterogeneity was assessed by the P-value and the I-square statistic (I²) in the pooled analyses, which represents the percentage of total variation across studies^[15]. If the P-value was less than 0.1 or the I²-value was greater than 50%, the summary estimate was analyzed in a random-effects model. Otherwise, a fixed-effects model was applied. In addition, publication bias was detected by Egger's test in the meta-analysis. If the P-value was less than 0.05, publication bias existed.


Results

Characteristics of the included studies

A total of 1485studies were identified, without duplicate, the articles

remained 1148.After screening titles and abstracts, about 445 studies were potentially eligible. Depend on exclusion criteria(full-text reporting was abstract, review article, no control case, lack of outcome data, ect.), 13studies were ultimately selected according to eligibility criteria(**Figure 1**).After a group discussion, all reviewers agreed to include all of the 13papers. Although all of these randomized controlled trials (RCTs) were regarded to have low risk of bias, 9 studies had no details on the method about random sequence generation and allocation^[16-24]. And only one study provided the details about the blinding of the data collection.^[25]

Figure 1. Flow diagram of selection of eligible studies

'Inhalation anesthesia' was defined as a group receiving a volatile agent of isoflurane, sevoflurane or desflurane. And 'Total Intravenous Anaesthesia' was defined as TIVA group that not receiving volatile agents but only intravenous anesthetics. These studies involved a total of 549 patients, including 272 patients with inhalation anesthesia and 277patients with TIVA(Table 1). Patients' age range in the inhalation anesthesia and TIVA groups were 44 to 75 years and 43 to 74 years, respectively. The mean age of patients was unavailable for three

studies^[16-18].All of the articles reported exclusion/inclusion criteria^[16-28]. Of these, seven studies were isoflurane *vs*. TIVA^[16, 18-20, 22, 23, 26],four studies were sevoflurane *vs*. TIVA^[17, 21, 24, 25], two studies were desflurane *vs*. TIVA^[27, 28].

	Mean			Volatile		
Study	age(inhalation/TIVA)	Setting	Case	agents	Comparator	Outcomes
Min Jiang .2007	36-62	CPB-Cardiac surgery	15/15	Isoflurane	Propofol	SjvO2%, CBP time
Huaping Yuan .2015	40-65	CPB-Cardiac valve replacement	15/15	Sevoflurane	Propofol	S100B,MMSE
Lei Li 2010	60-70	CPB-CABG	15/15	Isoflurane	Propofol	S100B,MMSE
Mark F. 1997	56±12/61±14	CPB-Cardiac valve replacement	16/15	Isoflurane	Thiopental	CBF,CMRO2,D(a-v)O2,O2ER%,SjvO2%,CBP time
Thomas E1987	55.5±9.9/63.1±6.5	CPB-CABG	16/21	Isoflurane	Thiopental	CBF,CMRO2,CPP,CBP time
Gigdem Y.2014	57.37±9.8/57.33±7.2	CPB-Cardiac surgery	10/10	Sevoflurane	Midazolam	SRO2,SPO2,HTC,CBP time
Meral kanbak .2004	56±7.6/54.5±5.9	CPB-CABG	20/20	Isoflurane	Propofol	S100B,MMSE,CBP time
Elif Dogan.2013	64.57±10.84/66.45±13.04	CPB-CABG	60/61	Desflurane	Propofol	S100B,CBP time
Sarvesh pal .2011	60.10±7.9/59.54±8.83	CPB-CABG	15/15	Sevoflurane	Midazolam	S100B,CBP time
Tingting Chen .2007	52±5/48±7	CPB-Cardiac valve replacement	20/20	Isoflurane	Propofol	S100B,D(a-v)O2,O2ER%,SjvO2%,CBP time
Jianrong Guo .2009	44±8/43±7	CPB-Cardiac valve replacement	30/30	Isoflurane	Propofol	S100B,D(a-v)O2,O2ER%,SjvO2%,CBP time
Shudong Ma .2015	49.5±2.6/49.1±2.4	CPB-Cardiac valve replacement	15/15	Sevoflurane	Propofol	S100B,MMSE
Jiying Zhong .2010	75±5/74±4	CPB-CABG	25/25	Desflurane	Ketamine	S100B,MMSE

Table 1. Study characteristics of include studies

Meta-analysis

Data of S100B levels, MMSE scores, CMRO₂, D(a-j)O₂, O₂ER%, and SjvO₂% were analyzed in a random-effects model and CBF was analyzed in a fixed-effects model.S100B levels at CPB and postoperative 24hour in inhalation anesthesia group were significantly lower than those in TIVA group[WMD (95% CI):-0.43 (-0.83, -0.03), -0.32 (-0.59, -0.05), respectively, Figure 2]. The CBF and MMSE scores of inhalation anesthesia group were significantly higher than that of TIVA group [WMD (95% CI) 5.11 (2.58, 7.63), 1.26 (0.04, 2.47), respectively (Figure3 and 4).

		on anesth			enous anest			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
1.8.1 S100B(Pre-CPB)									
Huangping Yuan 2015	0.42	0.05	25	0.44	0.08	25	6.8%	-0.02 [-0.06, 0.02]	1
Jianrong Guo 2009	0.45	0.17	15	0.46	0.21	15	6.0%	-0.01 [-0.15, 0.13]	+
Jiying Zhong 2010	0.18	0.12	15	0.17	0.18	15	6.3%	0.01 [-0.10, 0.12]	+
Lei Li 2010	0.33	0.06	15	0.32	0.07	15	6.7%	0.01 [-0.04, 0.06]	t
Sarvesh Pal 2011	0.05	0.1	60	0.04	0.09	61	6.8%	0.01 [-0.02, 0.04]	t
Shudong Ma 2015	0.045	0.013	30	0.041	0.015	30	6.8%	0.00 [-0.00, 0.01]	t
Subtotal (95% CI)			160			161	39.5%	0.00 [-0.00, 0.01]	
Heterogeneity: Tau ² = 0.0	10; Chi ² = 1	.84, df = 5	(P = 0.87); I ² = 0%					
Test for overall effect: Z =	1.03 (P =	0.30)							
1.8.2 S100B(CPB)									
Huangping Yuan 2015	2.66	0.38	25	3.81	0.62	25	4.3%	-1.15 [-1.44, -0.86]	
Jianrong Guo 2009	3.23	0.78	15	2.78	0.64	15	2.3%	0.45 [-0.06, 0.96]	
Jiying Zhong 2010	0.43	0.21	15	1.4	0.4	15	5.0%	-0.97 [-1.20, -0.74]	
Lei Li 2010	0.99	0.22	15	0.82	0.21	15	5.8%	0.17 [0.02, 0.32]	
Sarvesh Pal 2011	0.9	1.68	60	1.86	2	61	1.6%	-0.96 [-1.62, -0.30]	
Shudong Ma 2015	0.972	0.111	30	1.141	0.126	30	6.7%	-0.17 [-0.23, -0.11]	+
Subtotal (95% CI)			160			161	25.7%	-0.43 [-0.83, -0.03]	
Heterogeneity: Tau ² = 0.2			= 5 (P < 0.	00001); l² =	96%				
Test for overall effect: Z =	2.09 (P =	0.04)							
1.8.3 S100B(Postoperati	ion)								
Huangping Yuan 2015	1.45	0.1	25	2.32	0.15	25	6.6%	-0.87 [-0.94, -0.80]	+
Jianrong Guo 2009	0.49	0.13	15	0.45	0.15	15	6.4%	0.04 [-0.06, 0.14]	+
Jiying Zhong 2010	0.14	0.16	15	0.21	0.13	15	6.3%	-0.07 [-0.17, 0.03]	
Lei Li 2010	0.53	0.09	15	0.45	0.11	15	6.6%	0.08 [0.01, 0.15]	+
Sarvesh Pal 2011	0.48	1.28	60	1.71	1.9	61	2.0%	-1.23 [-1.81, -0.65]	
Shudong Ma 2015	0.333	0.028	30	0.592	0.037	30	6.8%	-0.26 [-0.28, -0.24]	
Subtotal (95% CI)			160			161	34.8%	-0.32 [-0.59, -0.05]	•
Heterogeneity: Tau ² = 0.1	0; Chi ² = 4	29.90, df	= 5 (P < 0.	00001); l² =	99%				
Test for overall effect: Z =	2.31 (P =	0.02)							
Total (95% CI)			480			483	100.0%	-0.20 [-0.30, -0.10]	•
	1. 01.17 4	F 1 7 00 1	- 47 0	0.000043-13	- 0001				
Heterogeneity: Tau ² = 0.0	14; Chi* = 1	547.86, a	1 = 17 (P <	0.00001), 1	= 99%				-2 -1 0 1

Figure 2. Forest plot showing the meta-analysis outcomes of the S100B between

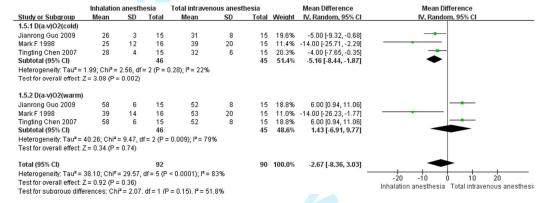
	Inhalation	n anesth	esia	Total intrave	nous anest	thesia		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
1.4.1 CBF(cold)									
Mark F 1998	14.9	9.8	16	12.6	11.2	15	7.9%	2.30 [-5.13, 9.73]	
Thomas E 1987	11.8	2.5	12	8.2	5.5	7	23.5%	3.60 [-0.71, 7.91]	
Subtotal (95% CI)			28			22	31.4%	3.27 [-0.46, 7.00]	
Heterogeneity: Chi ² =	0.09, df = 1	(P = 0.77)	'); I ² = 09	6					
Test for overall effect:	Z=1.72 (P=	= 0.09)							
1.4.2 CBF(warm)									
Mark F 1998	28.8	9	16	21.6	8.8	15	11.1%	7.20 [0.93, 13.47]	
Thomas E 1987	19.6	4.7	12	14.9	1	7	57.4%	4.70 [1.94, 7.46]	
Subtotal (95% CI)			28			22	68.6%	5.11 [2.58, 7.63]	•
Heterogeneity: Chi ² =	0.51, df = 1	(P = 0.47)); I ² = 09	6					
Test for overall effect:	Z = 3.96 (P <	< 0.0001)						
Total (95% CI)			56			44	100.0%	4.53 [2.44, 6.62]	•
Heterogeneity: Chi ² =	1.24, df = 3	(P = 0.74)	(); $I^2 = 0.9$	6				-	
Test for overall effect:	Z= 4.24 (P	< 0.0001)						-10 -5 0 5 10
Test for subaroup diff				$P = 0.42$), $ ^2 = 0$	%				Inhalation anesthesia Total intravenous anesthesi

Figure 3. Forest plot showing the meta-analysis outcomes of the CBF between inhalation anesthesia and TIVA group.

				0	-				
	Inhalatio	n anesth	esia	Total intrave	nous anest	thesia		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.2.1 pre-operation									
Huangping Yuan 2015	28.83	1.15	25	28.31	1.08	25	13.3%	0.52 [-0.10, 1.14]	
Jiying Zhong 2010	28.8	0.3	15	28.2	0.94	15	13.9%	0.60 [0.10, 1.10]	
Lei Li 2010	26.93	0.88	15	27.6	1.3	15	12.3%	-0.67 [-1.46, 0.12]	
Shudong Ma 2015	29.05	1.18	30	29.24	1.04	30	13.6%	-0.19 [-0.75, 0.37]	
Subtotal (95% CI)			85			85	52.9%	0.11 [-0.44, 0.66]	•
Heterogeneity: Tau ² = 0.22	; Chi ² = 9.	94, df = 3	(P = 0.0)	2); I ² = 70%					
Test for overall effect: Z = 0).39 (P = 0	.70)							
1.2.2 post-operation									
Huangping Yuan 2015	26.52	2.03	25	24.15	1.83	25	10.6%	2.37 [1.30, 3.44]	
Jiying Zhong 2010	28.2	0.6	15	27.1	0.3	15	14.5%	1.10 [0.76, 1.44]	
Lei Li 2010	26.93	0.88	15	27.6	1.3	15	12.3%	-0.67 [-1.46, 0.12]	
Shudong Ma 2015	26.38	3.03	30	23.89	1.57	30	9.7%	2.49 [1.27, 3.71]	
Subtotal (95% CI)			85			85	47.1%	1.26 [0.04, 2.47]	
Heterogeneity: Tau ² = 1.34			3 (P < 0.)	00001); I² = 90	1%				
Test for overall effect: Z = 2	2.02 (P = 0	.04)							
Total (95% CI)			170			170	100.0%	0.61 [-0.02, 1.25]	•
Heterogeneity: Tau ² = 0.69	; Chi² = 55	5.26, df =	7 (P < 0.1	00001); I ² = 87	'%				
Test for overall effect: Z = 1	.90 (P = 0	.06)							-4 -2 0 2 Inhalation anesthesia Total intravenous anest
Test for subaroup differen	ces: Chi ² =	= 2.82. df	= 1 (P = 1	0.09). I ² = 64.6	96				minanauon anesulesia Total Intravenous anest

Figure 4. Forest plot showing the meta-analysis outcomes of the MMSE score between inhalation anesthesia and TIVA group.

There was no significant difference in CMRO2, D(a-j)O2, O2ER%,


and SjvO2% during operation between inhalation anesthesia group and

TIVA group (Figure5,6,7,8).

	Inhalatio	n anesth	esia	Total intraveno	us anest	hesia		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
1.3.1 CMRO2(cold)									
Mark F 1998	0.31	0.14	16	0.41	0.31	15	20.8%	-0.10 [-0.27, 0.07]	
Thomas E 1987	0.29	0.04	12	0.27	0.02	7	41.1%	0.02 [-0.01, 0.05]	
Subtotal (95% CI)			28			22	61.8%	-0.01 [-0.11, 0.09]	•
Heterogeneity: Tau ² = 0	.00; Chi ² =	= 1.84, df	= 1 (P = 0	0.17); I² = 46%					
Test for overall effect: Z	= 0.18 (P	= 0.86)							
1.3.2 CMRO2(warm)									
Mark F 1998	1.08	0.3	16	0.97	0.41	15	12.9%	0.11 [-0.14, 0.36]	
Thomas E 1987	0.76	0.16	12	0.92	0.14	7	25.3%	-0.16 [-0.30, -0.02]	
Subtotal (95% CI)			28			22	38.2%	-0.05 [-0.31, 0.21]	
Heterogeneity: Tau ² = 0	.03; Chi ² =	= 3.35, df	= 1 (P = 0	0.07); I² = 70%					
Test for overall effect: Z	= 0.35 (P	= 0.72)							
Total (95% CI)			56			44	100.0%	-0.04 [-0.15, 0.07]	-
Heterogeneity: Tau ² = 0	.01; Chi ² =	= 8.55, df	= 3 (P = (0.04); I ² = 65%					
Test for overall effect: Z	= 0.70 (P	= 0.49)							-0.5 -0.25 0 0.25 0.5 Inhalation anesthesia Total intravenous anesthe
Test for subaroup differ	ences: Ch	ni² = 0.07.	df = 1 (P	= 0.79). I ² = 0%					innalauon anesulesia - Lotal Intravenous anestre

Figure 5. Forest plot showing the meta-analysis outcomes of the CMRO₂ between

inhalation anesthesia and TIVA group.

Figure 6. Forest plot showing the meta-analysis outcomes of the D(a-v)O₂between inhalation anesthesia and TIVA group.

	Inhalatio	n anesth	iesia	Total intrave	enous anest	thesia		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.7.1 SjvO2%(cold)									
Jianrong Guo 2009	74	7	15	72	7	15	13.4%	2.00 [-3.01, 7.01]	
Mark F 1998	77.4	11.5	16	68.4	18.5	15	6.5%	9.00 [-1.93, 19.93]	
Min Jiang 2007	76	4.9	20	81.6	4.9	20	16.4%	-5.60 [-8.64, -2.56]	
Tingting Chen 2007	68	9	15	66	10	15	10.8%	2.00 [-4.81, 8.81]	
Subtotal (95% CI)			66			65	47.1%	0.68 [-5.24, 6.59]	
Heterogeneity: Tau ² = 2	25.96; Chi ²	= 13.01,	df = 3 (P	= 0.005); I ² = 7	77%				
Test for overall effect. Z	= 0.22 (P =	= 0.82)							
1.7.2 Sjv02%(warm)									
Jianrong Guo 2009	54	5	15	62	7	15	14.4%	-8.00 [-12.35, -3.65]	
Mark F 1998	65.3	12.5	16	56.3	13.7	15	7.9%	9.00 [-0.25, 18.25]	
Min Jiang 2007	49.2	3.8	20	55	4.1	20	17.2%	-5.80 [-8.25, -3.35]	
Tingting Chen 2007	58	8	15	60	6	15	13.3%	-2.00 [-7.06, 3.06]	
Subtotal (95% CI)			66			65	52.9%	-3.22 [-7.93, 1.48]	
Heterogeneity: Tau ² = 1	6.18; Chi ²	= 12.38,	df = 3 (P	= 0.006); I ² = 7	76%				
Test for overall effect: Z	(P = 1.34	= 0.18)							
Total (95% CI)			132			130	100.0%	-1.56 [-4.98, 1.86]	-
Heterogeneity: Tau ² = 1	16.19; Chi ²	= 28.50,	df = 7 (P	= 0.0002); I ² =	75%			-	-20 -10 0 10 20
Test for overall effect: Z	= 0.89 (P =	= 0.37)							-20 -10 0 10 20 Inhalation anesthesia Total intravenous anesthes
Test for subaroup diffe	rences: Ch	ni² = 1.02.	df = 1 (P	= 0.31). I ² = 2	.3%				innarauon anesuresia Total Intravenous anestresi

Figure 7. Forest plot showing the meta-analysis outcomes of the SjvO₂%between inhalation anesthesia and TIVA group.

				-	-				
	Inhalatio	n anesth	esia	Total intrave	nous anest	hesia		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
1.6.1 O2ER%(cold)									
Jianrong Guo 2009	38	3	15	38	4	15	19.9%	0.00 [-2.53, 2.53]	+
Mark F 1998	25.1	11	16	35.9	17.6	15	11.7%	-10.80 [-21.21, -0.39]	
Tingting Chen 2007	25	9	15	28	4	15	17.7%	-3.00 [-7.98, 1.98]	
Subtotal (95% CI)			46			45	49.3%	-2.58 [-7.08, 1.91]	
Heterogeneity: Tau ² =	8.65; Chi ² =	4.62, df=	= 2 (P = I	0.10); I ² = 57%					
Test for overall effect: 2	Z = 1.13 (P =	= 0.26)							
1.6.2 O2ER%(warm)									
Jianrong Guo 2009	50	4	15	41	4	15	19.6%	9.00 [6.14, 11.86]	
Mark F 1998	36.4	12.7	16	47.2	12.7	15	13.2%	-10.80 [-19.75, -1.85]	
Tingting Chen 2007	52	8	15	48	5	15	17.9%	4.00 [-0.77, 8.77]	
Subtotal (95% CI)			46			45	50.7%	1.77 [-6.97, 10.52]	
Heterogeneity: Tau ² =	51.09; Chi ² :	= 18.34,	df = 2 (P	= 0.0001); I ² =	89%				
Test for overall effect: 2	Z = 0.40 (P =	= 0.69)							
Total (95% CI)			92			90	100.0%	-0.75 [-6.16, 4.66]	-
Heterogeneity: Tau ² =	36.72; Chi2;	= 43.35, (df = 5 (P	< 0.00001); l ²	= 88%				
Test for overall effect: 2									-20 -10 0 10 20
Test for subaroup diffe			df = 1 (P	= 0.39), ² = 0	%				Inhalation anesthesia Total intravenous anesthe

Figure 8. Forest plot showing the meta-analysis outcomes of the O₂ER%between inhalation anesthesia and TIVA group.

Egger's regression test of S100B levels, MMSE scores, CMRO2,

D(a-j)O2, O2ER%, and SjvO2% indicated little evidence of publication

bias, respectively (Table2).

Std_Eff	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
bias(S100B)	-2.67	2.35	-1.14	0.27	[-7.65 2.32]
bias(MMSE)	2.89	5.30	0.54	0.61	[-10.08 15.85]
bias(CMRO2)	-1.85	6.10	-0.30	0.79	[-28.16 24.41]
bias(D(a-j)O2)	186.01	99.93	1.86	0.14	[-91.44 463.46]
bias(O2ER%)	13.87	6.58	3.63	0.12	[5.59 42.14]
bias(SjvO2%)	2.12	19.48	0.11	0.92	[-45.56 49.79]

Table2. The Egger's test of Publication bias

We also conduct sensitivity analysis of the meta-analysis. We omitted one study sequentially, and the calculated combined WMD for the remaining studies yielded consistent results. In the overall meta-analysis, no single study significantly changed the combined results, which indicated that the results were statistically stable and reliable (Figure9,10).

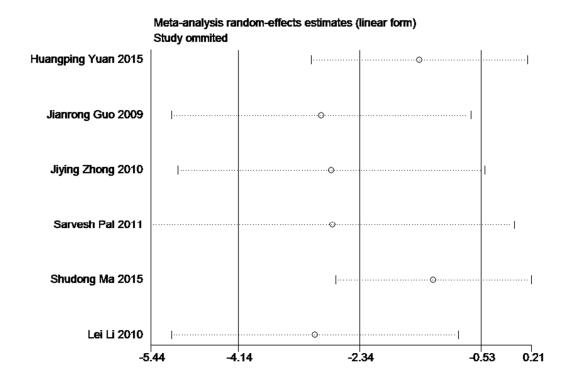


Figure 9. The plot of sensitivity analysis of S100B.

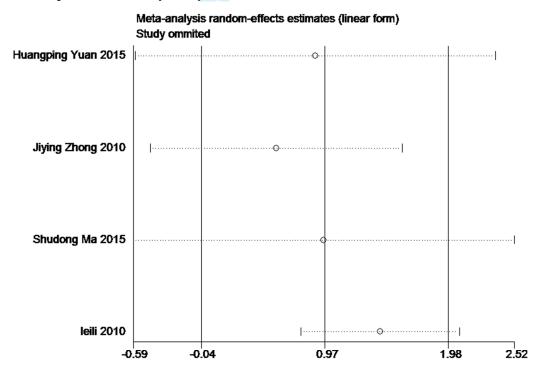


Figure 10. The plot of sensitivity analysis of MMSE score.

Discussion

In our study, thirteen published articles studied the difference of cerebral protection for patients between inhalation anesthesia and TIVA in cardiac surgery with CPB. Eight out of the thirteen papers noted that inhalation anesthesia may be superior to TIVA on cerebral protection after CPB^[17, 19-21, 24-26, 28]. However, the other five studies reported opposite results^[16, 18, 22, 23, 27]. These results underline the existing debate about which anesthetic approach was better for patients. However, in the current systematic review and meta-analysis, both of the results of primary and secondary outcome showed that inhalation anesthesia may be superior to TIVA in cardiac surgery with CPB.

S100B mainly expressed in the astrocytes, and blood S100B level was commonly used as an outcome parameter for evaluation the postoperative neurological dysfunction^[29]. Its increase in the blood has been shown in patients after ischemic stroke and brain trauma^[30]. Serum S100Bhas also been detected after adult cardiac operations complicated with neurological injury, thus it has the potential to serve as an early marker of brain damage ^[31, 32].In this meta-analysis, the serum level of S100B after CPB in inhalation anesthesia group was significantly lower than that in TIVA group(P<0.05)^[17, 24-26, 28], suggesting that inhalation anesthetics provide better cerebral protection against patients' brain damage compared to TIVA. Furthermore, our results also show that

postoperative MMSE score of patients in inhalation anesthesia group was significantly higher than that of TIVA group(P<0.05)^[17, 24, 28].As we know, although MMSE is relative simple, it is one of the most commonly used methods for clinical evaluation of cognitive function. These results suggest that compared to TIVA, inhalation anesthesia may maintain better postoperative cognitive function for patients undergoing cardiac surgery with CPB.

For the secondary outcomes, the meta-analysis showed that several outcomes, such as $D(a-i)O_2$, $O_2ER\%$, $SivO_2\%$, were not significantly different between TIVA and inhalation anesthesia groups. However, we found that in many studies cerebral metabolic rate of oxygen inpatients receiving inhalation anesthetics was consistently lower than that in patients receiving TIVA. Also, the intraoperative CBF in inhalation anesthesia group was significantly higher than that in TIVA $group(P < 0.05)^{[19, 20]}$. As we know, the lower ratio of global cerebral oxygen and adequate cerebral blood supply is an important mechanism for interpreting the cerebral protection^[33]. The neuroprotection effects may be mediated by favourable expression of some protective and anti-protective proteins, inhibit extracellular to excitatory neurotransmitter accumulation and systemic inflammatory response. Thus, the results of CMRO₂ and CBF can strengthen the finding that the inhalation anesthesia may provide better neuroprotection than TIVA.

BMJ Open

Because a series of neurological complications after cardiac surgery with CPB, various techniques of neurologic protection including deep hypothermic cardiopulmonary bypass^[34], embolic filtering device^[35],monitoring equipment (transcranial doppler and near-infrared spectroscopy)^[36]and pharmacological therapy have been developed. Meanwhile, increased attention was paid to anesthetics in neurologic protection. Both of inhalation anesthesia and TIVA are reported having cerebral protection for patients undergoing cardiac surgery with CPB^[37-39].However, it is still unclear which type of anesthesia can provide better cerebral protection for the patients. Based on this meta-analysis, the results strongly supports that inhalation anesthesia may be superior to

TIVA in cerebral protection.

Experimental data suggest that direct positive effects of volatile anesthetics may be caused by various application methods including pre-conditioning and post-conditioning mechanisms^[40, 41], which attenuate apoptosis and necrosis of cerebral neuron, and reduce neurological dysfunction after ischaemia. Moreover, the contribution of inhalation agents to preserving satisfactory haemodynamics may ensure adequate perfusion and oxygenation of other organ systems^[42-45] and improve the chances for recovery and survival after surgery. All these effects can be expanded well beyond the immediate perioperative periodon account of anesthetics-induced neuroprotection that can be long

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

lasting^[46, 47]. Additionally, a recent meta-analysis found that in cardiac surgery, when compared to TIVA, inhalation anesthesia was associated with major benefits in outcome, including reduced mortality, as well as lower incidence of pulmonary and other complications. Therefore, based on the previous findings and the current meta-analysis, it is speculated that inhalation anesthesia have the potential to serve as a preferential anesthesia strategy for patients.

Several limitations should be considered in our study. Firstly, the sample size of the included studies was relatively small and the total number of cases is very limited. Secondly, there was heterogeneity in some of our results. Because of the included trials based on different countries and hospitals, it was unable to avoid the effects of race, age, gender and underlying disease of patients in these studies. Therefore, the findings of the current study were limited by the overall low quality of evidence and lack of robustness in higher-quality trials. Thirdly, the current study focused on the overall comparison between inhalation anesthesia and TIVA, and in the included studies different inhalation anesthetics (isoflurane, desflurane, or sevoflurane) and intravenous anesthetics (sodium thiopental, propofol, etc.) were studied. And because of the shortage number of reported clinical trials, limited outcome data could be considered for subgroup analysis. Therefore, further studies with larger sample sizes are needed to demonstrate which anesthetics is the

more beneficial for patients.

In summary, the results of this meta-analysis indicate that inhalation anesthesia produce better cerebral protection for patients undergoing cardiac surgery with CPB when compared to TIVA. And further higher-quality trials with large sample size to investigate the effect of anesthetics on cerebral protection are warranted in the future.

Authors' contributions

Conceived and designed the experiments: F.C, H.L, Z.Z. Performed the experiments: F.C, G.D, Z.W, Z.Z. Analyzed the data: F.C, G.D, Z.W. Contributed reagents/materials/analysis tools: Z.Z, H.L. Wrote the paper: F.C, G.D, H.L, Z.Z. All authors reviewed the manuscript.

Funding

This study was supported by a grant from the National Natural Science Foundation of China (No.81571870) and the Natural Science Foundation Project of Chongqing (cstc20136jjB10026).

Competing interests The authors declare no conflict of interest.

Data sharing statement No additional data are available.

Reference

- [1] Gravlee GP DRFea. Cardiopulmonary Bypass Principles and Practice. Br J Anaesth 2008;100(5): 732.
- [2] Shroyer AL, Coombs LP, Peterson ED, et al. The Society of Thoracic Surgeons: 30-day operative mortality and morbidity risk models. *Ann Thorac Surg* 2003;75(6): 1856-64.
- [3] Yoon BW, Bae HJ, Kang DW, et al. Intracranial cerebral artery disease as a risk factor for central nervous system complications of coronary artery bypass graft surgery. *Stroke* 2001;32(1): 94-9.
- [4] Wimmer-Greinecker G, Matheis G, Brieden M, et al. Neuropsychological changes after cardiopulmonary bypass for coronary artery bypass grafting. *Thorac Cardiovasc Surg* 1998;46(4): 207-12.
- [5] Blumenthal JA, Mahanna EP, Madden DJ, et al. Methodological issues in the assessment of neuropsychologic function after cardiac surgery. *Ann Thorac Surg* 1995;59(5): 1345-50.
- [6] Pape M, Engelhard K, Eberspacher E, et al. The long-term effect of sevoflurane on neuronal cell damage and expression of apoptotic factors after cerebral ischemia and reperfusion in rats. *Anesth Analg* 2006;103(1): 173-9.
- [7] Sakai H, Sheng H, Yates RB, et al. Isoflurane provides long-term protection against focal cerebral ischemia in the rat. Anesthesiology 2007;106(1): 92-9.
- [8] Selman WR, Spetzler RF, Roessmann UR, et al. Barbiturate-induced coma therapy for focal cerebral ischemia. Effect after temporary and permanent MCA occlusion. J Neurosurg 1981;55(2): 220-6.
- [9] Iwata T, Inoue S, Kawaguchi M, et al. Comparison of the effects of sevoflurane and propofol on cooling and rewarming during deliberate mild hypothermia for neurosurgery. *Br J Anaesth* 2003;90(1): 32-8.
- [10] Schell RM, Cole DJ. Cerebral monitoring: jugular venous oximetry. Anesth Analg 2000;90(3): 559-66.
- [11] Sagara Y, Hendler S, Khoh-Reiter S, et al. Propofol hemisuccinate protects neuronal cells from oxidative injury. J Neurochem 1999;73(6): 2524-30.
- [12] Wang H, Lu S, Yu Q, et al. Sevoflurane preconditioning confers neuroprotection via anti-inflammatory effects. *Elite Ed* 2011;1(3): 604-15.
- [13] McAuliffe JJ, Loepke AW, Miles L, et al. Desflurane, isoflurane, and sevoflurane provide limited neuroprotection against neonatal hypoxia-ischemia in a delayed preconditioning paradigm. *Anesthesiology* 2009;111(3): 533-46.
- [14] Moher D1, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med* 2009;6(7):e1000097.
- [15] Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002;21(11): 1539-58.
- [16] Min J, Yanlin B. Target controlled infusion of propofol in shallow perioperative cardiopulmonary bypass for brain protection. *Int J Clin Exp Med* 2007;4(6): 120-121.
- [17] Huaping Y. Two methods of anesthesia of CPB heart valve replacement patients plasma level and the influence of cognitive function according to beta. *Shandong Med* 2015;55(15): 71-72.
- [18] Lei L, Weifu L, Jianchun F, et al. Effects of different anesthesia on cognition function in geriatric patients following off-pump coronary artery bypass grafting. *Chin J Geriatr Heart Brain Vessel Dis* 2010;12 (11): 1002-1004.
- [19] Newman MF, Croughwell ND, White WD, et al. Pharmacologic electroencephalographic suppression during cardiopulmonary bypass: a comparison of thiopental and isoflurane. *Anesth Analg* 1998;86(2): 246-51.
- [20] Woodcock TE, Murkin JM, Farrar JK, et al. Pharmacologic EEG suppression during cardiopulmonary bypass: cerebral hemodynamic and metabolic effects of thiopental or isoflurane during hypothermia and normothermia. *Anesthesiology* 1987;67(2): 218-24.
- [21] Guclu CY, Unver S, Aydinli B, et al. The effect of sevoflurane vs. TIVA on cerebral oxygen saturation during cardiopulmonary bypass--randomized trial. Adv Clin Exp Med 2014;23(6): 919-24.
- [22] Tingting C, Gang W, Qi Z, et al. The comparison between isoflurane and propofol with effect on cerebral

4

5

6 7

8

9

10

11

12 13

14

15

16

17 18

19

20

21 22

23

24

25

26 27

28

29

30

31 32

33

34

35

36 37

38

39

40

41 42

43

44

45

46 47

48

49

50

51 52

53

54

55

56 57

58 59 60 protection in cardiac valve replacement Surgery. Chin J ECC 2007;5(2): 91-93+117.

- [23] Jianrong G, Donglin J, Liyuan R, et al. Isoflurane and propofol for extracorporeal circulation open-heart surgery in patients with a comparative study of perioperative cerebral protection. *Chin J Clin Pharmacol Ther* 2009;14(7): 812-817.
- [24] Shudong M, Propofol and seven halothane Anesthesia for experacorporeal circulation of brain protection effect comparison. *Chin & F Med treatment* 2015;12(9): 145-146
- [25] Singh SP, Kapoor PM, Chowdhury U, et al. Comparison of S100beta levels, and their correlation with hemodynamic indices in patients undergoing coronary artery bypass grafting with three different anesthetic techniques. *Ann Card Anaesth* 2011;14(3): 197-202.
- [26] Kanbak M, Saricaoglu F, Avci A, et al. Propofol offers no advantage over isoflurane anesthesia for cerebral protection during cardiopulmonary bypass: a preliminary study of S-100beta protein levels. *Can J Anaesth* 2004;51(7): 712-7.
- [27] Baki ED, Aldemir M, Kokulu S, et al. Comparison of the effects of desflurane and propofol anesthesia on the inflammatory response and s100beta protein during coronary artery bypass grafting. *Inflammation* 2013;36(6): 1327-33.
- [28] Jiying Z, Feng X, Xianjie W, et al. Brain protection of desflurane in old patients undergoing coronary artery bypass grafting. *Chin J New Drugs Clin Rem* 2010;29(11):847-849.
- [29] Wang DD, Bordey A. The astrocyte odyssey. Prog Neurobiol 2008;86(4): 342-67.
- [30] An SA, Kim J, Kim OJ, et al. Limited clinical value of multiple blood markers in the diagnosis of ischemic stroke. *Clin Biochem* 2013;46(9): 710-5.
- [31] Kuzumi E, Vuylsteke A, Guo X, et al. Serum S100 protein as a marker of cerebral damage during cardiac surgery. Br J Anaesth 2000;85(6): 936-7.
- [32] Rasmussen LS, Christiansen M, Eliasen K, et al. Biochemical markers for brain damage after cardiac surgery -- time profile and correlation with cognitive dysfunction. *Acta Anaesthesiol Scand* 2002;46(5): 547-51.
- [33]Goldman S, Sutter F, Ferdinand F, et al. Optimizing intraoperative cerebral oxygen delivery using noninvasive cerebral oximetry decreases the incidence of stroke for cardiac surgical patients. *Heart Surg Forum* 2004;7: 376–381.
- [34] Nathan HJ, Rodriguez R, Wozny D, et al. Neuroprotective effect of mild hypothermia in patients undergoing coronary artery surgery with cardiopulmonary bypass: five-year follow-up of a randomized trial. J Thorac Cardiovasc Surg 2007;133(5): 1206-11.
- [35] Djaiani G, Fedorko L, Borger MA, et al. Continuous-flow cell saver reduces cognitive decline in elderly patients after coronary bypass surgery. *Circulation* 2007;116(17): 1888-95.
- [36] Florio P, Abella R, Marinoni E, et al. Adrenomedullin blood concentrations in infants subjected to cardiopulmonary bypass: correlation with monitoring parameters and prediction of poor neurological outcome. *Clin Chem* 2008;54(1): 202-6.
- [37] Schmid E, Krajewski S, Bachmann D, et al. The volatile anesthetic sevoflurane inhibits activation of neutrophil granulocytes during simulated extracorporeal circulation. *Int Immunopharmacol* 2012;14(2): 202-8.
- [38] Kawamura T, Kadosaki M, Nara N, et al. Effects of sevoflurane on cytokine balance in patients undergoing coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth 2006;20(4): 503-8.
- [39] Nader ND, Karamanoukian HL, Reedy RL, et al. Inclusion of sevoflurane in cardioplegia reduces neutrophil activity during cardiopulmonary bypass. J Cardiothorac Vasc Anesth 2006;20(1): 57-62.
- [40] McMurtrey RJ, Zuo Z. Isoflurane preconditioning and postconditioning in rat hippocampal neurons. *Brain Res* 2010;1358: 184-90.

- [41] Lee JJ, Li L, Jung HH, et al. Postconditioning with isoflurane reduced ischemia-induced brain injury in rats. *Anesthesiology* 2008;108(6): 1055-62.
- [42] Julier K, da SR, Garcia C, et al. Preconditioning by sevoflurane decreases biochemical markers for myocardial and renal dysfunction in coronary artery bypass graft surgery: a double-blinded, placebo-controlled, multicenter study. *Anesthesiology* 2003;98(6): 1315-27.
- [43] Kim M, Kim M, Kim N, et al. Isoflurane mediates protection from renal ischemia-reperfusion injury via sphingosine kinase and sphingosine-1-phosphate-dependent pathways. *Am J Physiol Renal Physiol* 2007; 293(6): F1827-35.
- [44] Lee HT, Kim M, Kim J, et al. TGF-beta1 release by volatile anesthetics mediates protection against renal proximal tubule cell necrosis. Am J Nephrol 2007;27(4): 416-24.
- [45] Beck-Schimmer B, Breitenstein S, Urech S, et al. A randomized controlled trial on pharmacological preconditioning in liver surgery using a volatile anesthetic. *Ann Surg* 2008;248(6): 909-18.
- [46] Li H, Yin J, Li L, et al. Isoflurane postconditioning reduces ischemia-induced nuclear factor-kappaB activation and interleukin 1beta production to provide neuroprotection in rats and mice. *Neurobiol Dis* 2013; 1(54): 216-24.
- [47] Zuo Z. A novel mechanism for sevoflurane preconditioning-induced neuroprotection. Anesthesiology 2012; 117(5): 942-4.

10

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reporte on page
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT	•		
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	1-2
INTRODUCTION	•		
Rationale	3	Describe the rationale for the review in the context of what is already known.	3
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	6
nformation sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	6
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	7
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	6-7
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	7
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	7
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	7

PRISMA 2009 Checklist

Pag	<u>م</u>	of	2
Pag	eı	0I	2

Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	6-7
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	6-7
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	9
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	7-10
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	13
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	10-13
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	10-13
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	13
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	13-14
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	15-18
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	18
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	19
FUNDING	<u>. </u>		
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	19

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. 43 doi:10.1371/journal.pmed1000097

For more information, visit: www.prisma-statement.org.

Page 2 of 2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Comparison of the cerebroprotective effect of inhalation anaesthesia and total intravenous anaesthesia in patients undergoing cardiac surgery with cardiopulmonary bypass: A systematic review and meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2016-014629.R1
Article Type:	Research
Date Submitted by the Author:	27-Apr-2017
Complete List of Authors:	Chen, Feng Duan, You Wu, Xi Zuo, Yi Li, Hong; Xinqiao Hospital, Third Military Medical University, Anesthesiology
Primary Subject Heading :	Anaesthesia
Secondary Subject Heading:	Neurology
Keywords:	Anaesthesia in cardiology < ANAESTHETICS, Adult anaesthesia < ANAESTHETICS, Anaesthesia in neurology < ANAESTHETICS
	·

SCHOLARONE[™] Manuscripts

BMJ Open

Comparison of the cerebroprotective effect of inhalation anaesthesia and total intravenous anaesthesia in patients undergoing cardiac surgery with cardiopulmonary bypass: A systematic review and meta-analysis

Feng Chen^ª, Guangyou Duan^ª, Zhuoxi Wu^a, Zhiyi Zuo^b, Hong Li^{*}

^a Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing,400037, China
 ^b Department of Anesthesiology, University of Virginia, Charlottesville, Virginia,USA
 ^{*} Corresponding author at: Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University.

* Corresponding author at: Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China. Email: lh78553@163.com

Abstract

Objective: Neurological dysfunction remains a devastating postoperative complication undergoing in patients cardiac surgery with cardiopulmonary bypass (CPB), and previous studies have shown that inhalation anaesthesia and total intravenous anaesthesia (TIVA) may produce different degrees of cerebral protection in these patients. Therefore, we conducted a systematic literature review and meta-analysis to compare the neuroprotective effects of inhalation anaesthesia and TIVA.

Design: Searching in PubMed, EMBASE, Science Direct/Elsevier, China
 national knowledge infrastructure (CNKI), and Cochrane Library up to
 August 2016, we selected related randomized controlled trials for this

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 meta-analysis.

Result(s): A total of 1485 studies were identified. After eliminating duplicate articles and screening titles and abstracts, 445 studies were potentially eligible. After applying exclusion criteria (full texts reported as abstracts, review article, no control case, lack of outcome data, etc.), 13 studies were selected for review. Our results demonstrated that the primary outcome related to S100B level in the inhalation anaesthesia group was significantly lower than in the TIVA group at the end of CPB and 24 hours postoperatively (weighted mean difference [WMD]; 95% confidence interval [CI]: -0.41 [-0.81, -0.01], -0.32 [-0.59, -0.05], respectively). Among secondary outcome variables, mini-mental state examination (MMSE) scores of the inhalation anaesthesia group were significantly higher than those of the TIVA group 24 hours after operation [WMD (95%CI): 1.87 (0.82, 2.92)], cerebral blood flow (CBF) in the inhalation anaesthesia group was significantly higher than in the TIVA group at rewarming during CPB [WMD] (95%CI): 5.11 (2.58, 7.63)], and no significant difference was found in cerebral metabolic rate of oxygen consumption (CMRO₂), arteriovenous oxygen content difference $[D(a-v)O_2]$, cerebral oxygen extraction ratio $(O_2 ER)$, and jugular bulb venous oxygen saturation $(SivO_2)$, which were assessed at cooling and rewarming during CPB.

22 Conclusion(s): This study demonstrates that anaesthesia with volatile

BMJ Open

1	agents appears to provide better cerebral protection than TIVA for					
2	patients undergoing cardiac surgery with CPB, suggesting that inhalation					
3	anaesthesia may be more suitable for patients undergoing cardiac surgery.					
4	Keywords: anaesthesia; cerebral protection; cardiac surgery;					
5	cardiopulmonary bypass.					
6	Strengths and limitations of this study					
7	1. This is the first systematic review and meta-analysis to compare the					
8	neuroprotective effects of inhalation anaesthesia and those of total					
9	intravenous anaesthesia (TIVA) in cardiac surgery with					
10	cardiopulmonary bypass (CPB).					
11	2. This meta-analysis indicates that inhalation anaesthesia may produce					
12	better cerebral protection than TIVA for patients undergoing cardiac					
13	surgery with CPB.					
14	3. The methodological quality of each study was assessed using the					
15	Jadad Scale for randomised controlled trials. Meta-analysis,					
16	heterogeneity test, bias assessment, sensitivity analysis, and subgroup					
17	analysis were also conducted.					
18	4. Because of the shortage of reported clinical trials, limited outcome					
19	data could be considered for subgroup analysis. The strength of the					
20	conclusion is limited by the quality and number of studies.					
21						
22						

|--|

1 2	
3	
4	
5 6	
6 7	
8	
9	
10	
12	
13	
14 15	
16	
9 10 11 12 13 14 15 16 17 18 19	
18	
20	
21	
20 21 22 23	
23 24	
25	
26	
26 27 28	
29	
30	
31 32	
33	
33 34 35	
35	
36 37	
38	
39	
40 41	
42 43	
43 44	
44 45	
46	
47	
48 49	
50	
51	
52 53	
54	
55	
56	
57	

1

1

Introduction

Cardiopulmonary bypass (CPB) is a necessary and common 2 procedure to support the patient's circulation during cardiac surgery. 3 Although previous studies ^[1,2] reported that CPB does not increase the 4 postoperative morbidity and mortality in patients undergoing coronary 5 artery bypass graft (CABG) surgery, it was demonstrated that the 6 incidence of some postoperative complications for these patients remains 7 high. Neurological dysfunction is one of the most commonly reported 8 postoperative complications in patients undergoing cardiac surgery ^[3,4]. 9 Several factors including cerebral anoxia, embolism, excessive excitatory 10 neurotransmitter release, and systemic inflammatory response have been 11 demonstrated to contribute to postoperative neurological dysfunction^[5]. 12 However, at present, there is no definitive clinical evidence regarding 13 cerebral protection for patients undergoing cardiac surgery with CPB^[6]. 14 Previous studies on animals support the hypothesis that anaesthetics can 15 produce cerebral protection ^[7-9]. Many recent studies have found that 16 anaesthetic agents may be neuroprotective and may provide cerebral 17 protection to surgery patients ^[10, 11]. However, clinical studies show that 18 the relative effects of inhalation anaesthesia or total intravenous 19 anaesthesia (TIVA) on neuroprotection in cardiac surgery with CPB 20 remain controversial and much devbated ^[12-14]. Therefore, which option 21 provides better cerebral protection to patients undergoing cardiac surgery 22

BMJ Open

1		5
1 2		
3 4	1	with CPB is unknown. Since inhalation anaesthesia and TIVA are the
5 6 7	2	most commonly used strategies for general anaesthesia, it is important to
8 9	3	clarify this issue. Moreover, since it is difficult to include patients in
10 11	4	neurologic dysfunction studies for cardiac surgery with CPB, the sample
12 13 14	5	size of these previous studies was generally small. For these reasons, it is
15 16	6	necessary to systematically review the available literature and perform a
17 18		
19 20	7	meta-analysis to compare the neuroprotective effects of inhalation
21 22 23	8	anaesthesia and TIVA.
23 24 25	9	
26 27	10	Materials and Methods
28 29 30	11	The current systematic review and meta-analysis was carried out in
30 31 32	12	accordance with the preferred reporting items for systematic reviews and
33 34 35	13	meta-analyses (PRISMA) reporting guidelines for intervention trials ^[15] .
35 36 37	14	
38 39	15	Literature search
40 41 42	16	This meta-analysis was restricted to published studies that
43 44	17	investigated the cerebral protective effects of anaesthetics in patients with
45 46	18	CPB. Two independent reviewers searched PubMed, EMBASE, Science
47 48		
49 50 51	19	Direct/Elsevier, MEDLINE, CNKI, and the Cochrane Library from
52 53	20	inception to August 2016, without restrictions on language or study type.
54 55	21	The search terms combined text words and medical subject headings
56 57 58	22	(MeSH) terms. For example, the search terms for CPB were:
59		

1	'Cardiopulmonary Bypass' and 'Heart Lung Bypass'. Those for TIVA
2	were: 'propofol', 'disoprofol', 'etomidate' 'midazolam', 'sodium
3	pentothal', 'thiopental', and 'ketamine', while those for inhalation
4	anaesthesia were 'halothane', 'sevoflurane', 'isoflurane', 'desflurane',
5	'enflurane', and 'methoxyflurane'. (The MEDLINE search strategy is
6	provided in the online supplementary appendix, and the finalised
7	MEDLINE search strategy will be adapted to the syntax and subject
8	headings specifications of the other databases.). All relevant articles and
9	abstracts were retrieved. In addition, references cited within relevant
10	reviews were retrieved manually and only full articles were searched in
11	this case.
12	
13	Eligibility criteria
14	Inclusion criteria: Original articles in which all patients undergoing
15	cardiac surgery with CPB were randomly allocated to receive the
16	inhalation anaesthesia or TIVA. Patients underwent cardiac surgery with
17	no restriction on dose and the administration time of anaesthetics.
18	Exclusion criteria: Case reports, review articles, duplicate publications,
19	and studies without outcome data were excluded. Studies involving
20	patients with cerebrovascular disease, central nervous system disorders,
21	use of psychotropic drugs, or a history of alcohol or substance abuse were
22	also excluded.

1	
2	Outcomes
3	The primary outcome of the current study was S100B protein level
4	which was detected at pre-CPB, post-CPB and 24 hours postoperatively.
5	The secondary outcomes included mini-mental state examination (MMSE)
6	scores assessed pre- and 24 hours postoperatively, and cerebral blood
7	flow (CBF), cerebral metabolic rate of oxygen consumption (CMRO ₂),
8	jugular bulb venous oxygen saturation (SjvO2), arteriovenous oxygen
9	content difference $[D(a-v)O_2]$ and cerebral oxygen extraction ratio (O_2ER)
10	were tested at cooling and rewarming during CPB.
11	
12	Study selection and validity assessment
13	Two independent reviewers screened titles and abstracts of all
14	papers from the literature search. All relevant studies that appeared to
15	meet the inclusion criteria were retrieved. Full texts were obtained to
16	check if an ambiguous decision was made based on the title and the
17	abstract. Only randomized controlled trials were included in the analysis.
18	Disagreements were resolved through consensus or by a third reviewer.
19	Two reviewers completed the quality assessment according to the
20	primary criteria for randomized controlled trial studies
21	

22 Data extraction and statistical analysis

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	Data on authors, year of publication, number and mean age of				
2	participants, anaesthetics, and study setting and outcomes were extracted				
3	by three reviewers. Disagreements between reviewers were resolved by				
4	consensus. Quantitative meta-analysis was performed by two reviewers				
5	with Review Manager (RevMan) software (version 5.2, Nordic Cochrane				
6	Centre, Cochrane Collaboration, 2012, Copenhagen).				
7	The weighted mean differences (WMD) of outcomes in randomized				
8	controlled trials and their 95% confidence intervals (CI) were presented.				
9	Heterogeneity was assessed using the P-value and the I-square statistic (I^2)				
10	in the pooled analysis, which represents the percentage of total variation				
11	across studies ^[16] . If the <i>P</i> -value was less than 0.1 or the I^2 value was				
12	greater than 50%, the summary estimate was analysed in a				
13	random-effects model. Otherwise, a fixed-effects model was applied. In				
14	addition, publication bias was detected using Egger's test in the				
15	meta-analysis. If the <i>P</i> -value was less than 0.05, publication bias was				
16	assumed existed.				
17	Results				
18	Characteristics of the included studies				
19	A total of 1485 studies were retrieved. Of these, 1148 remained after				
20	duplicate articles were eliminated. After screening titles and abstracts,				

21 445 studies were potentially eligible. Based on the exclusion criteria, 13

studies were ultimately selected (Fig. 1). All reviewers agreed to include

all 13 papers. Although all of these randomized controlled trials (RCTs)
were considered to have a low risk of bias, nine studies included no
details on the method of random sequence generation and allocation
^[17-25].Only one study provided the details about the blinding of the data
collection^[26].

'Inhalation anaesthesia' was defined as a group receiving a volatile agent like isoflurane, sevoflurane, or desflurane. In the included studies, patients in the 'volatile anaesthesia' group had not received propofol, thiopental, or ketamine during the surgery and CPB. The patients in the 'Total Intravenous Anaesthesia' (TIVA) group had received only intravenous anaesthetics, but not volatile agents. These studies involved 549 patients, including 272 patients with inhalation anaesthesia and 277 patients with TIVA (Table 1). Patients' age ranges in 'inhalation anaesthesia' and 'TIVA' groups were 44 to 75 years and 43 to 74 years, respectively. The mean age of patients was unavailable for three studies ^[17-19]. All the articles had reported exclusion/inclusion criteria ^[17-29]. Of these, seven studies had used isoflurane vs. TIVA ^[17, 19-21, 23, 24, 27], four studies had used sevoflurane vs. TIVA ^[18, 22, 25, 26], and two studies had used desflurane vs. TIVA ^[28, 29], in patients.

53 54	Mean			Volatile			
55	Study	age(inhalation/TIVA)	Setting	Case	agents	Comparator	Outcomes
56	Min Jiang .2007	36-62	CPB-Cardiac surgery	15/15	Isoflurane	Propofol	SjvO ₂ %, CBP time
57	Huaping Yuan .2015	40-65	CPB-Cardiac valve replacement	15/15	Sevoflurane	Propofol	S100B,MMSE
58 59							
60							

1							10	
2 3	Lei Li 2010	60-70	CPB-CABG	15/15	Isoflurane	Propofol	S100B,MMSE	
4	Mark F. 1997	56±12/61±14	CPB-Cardiac valve replacement	16/15	Isoflurane	Thiopental	CBF,CMRO ₂ ,D(a-v)O ₂ ,O ₂ H	ER%,SjvO ₂ %,CBP time
5	Thomas E1987	55.5±9.9/63.1±6.5	CPB-CABG	16/21	Isoflurane	Thiopental	CBF,CMRO ₂ , CBP time	/ 5 - /
6 7	Gigdem Y.2014	57.37±9.8/57.33±7.2	CPB-Cardiac surgery	10/10	Sevoflurane	Midazolam	CBP time	
8	Meral kanbak .2004	56±7.6/54.5±5.9	CPB-CABG	20/20	Isoflurane	Propofol	S100B, CBP time	
9	Elif Dogan.2013	64.57±10.84/66.45±13.04	CPB-CABG	60/61	Desflurane	Propofol	S100B,CBP time	
10	Sarvesh pal .2011	60.10±7.9/59.54±8.83	CPB-CABG	15/15	Sevoflurane	Midazolam	S100B,CBP time	
11 12	Tingting Chen .2007	52±5/48±7	CPB-Cardiac valve replacement		Isoflurane	Propofol	S100B,D(a-v)O ₂ ,O ₂ ER%,S	jvO ₂ %,CBP time
13	Jianrong Guo .2009	44±8/43±7	CPB-Cardiac valve replacement		Isoflurane	Propofol	S100B,D(a-v)O ₂ ,O ₂ ER%,S	
14	Shudong Ma .2015	49.5±2.6/49.1±2.4	CPB-Cardiac valve replacement	15/15	Sevoflurane	Propofol	S100B,MMSE	, - 2, -
15	Jiying Zhong .2010	75±5/74±4	CPB-CABG	25/25	Desflurane	Ketamine	S100B,MMSE	
16 17	1						2	
18	2	Table 1 Study c	haracteristics of the in	habula	studies			
19	2	Table 1. Study C	har acteristics of the m	ltiuutu	studies			
20		(n) TIVA total	ntravenous anaesthesi	o. CDR	cordionu	lmonoryl	hypass: CARC	
21 22	4		bypass grafting; MMS	-	· •	•	•••	
23	5	• •	low; CMRO ₂ , cerebral					
24	6					• •	▲ ·	
25	7		ovenous oxygen conter				ai oxygen	
26 27	8	extraction; sjv0	₂ , jugular bulb venous	soxygei	a saturatio	11		
28	9							
29								
30	10	Methodology	quality of the inclu	ded tri	ials			
31								
32 33	11	Methodol	ogy quality of the	include	ed studies	was as	sessed using a	
34							U	
35	12	modified Jadad	d scale. A score of 4-	–7 indi	cated a hi	gh-auali	tv study, and a	
36				,		0 1	· j · · · · · j ; · · - · · ·	
37 38	13	score of $1-3$ ir	dicated a low-qualit	v stud	v. Of the	13 includ	led studies 10	
39				.,). 01 1			
40	14	received scores	s of 1-3 and three red	reived	scores of	4-7 (Tab	le 2)	
41	14			cervea	500105 01	17(140	<i>10 2)</i> .	
42	15							
43 44					Jadad	Score		
45	S	tudy Rando	mization Allocaion co	oncealmen	t Bl	linding	Attrition	Score
46	Min Jiang .2	007	1 0			1	0	2
47	Huaping Yua	an .2015	1 0			0	0	1
48 49	Lei Li 2010		1 0			1	0	2
49 50	Mark F. 199'	7	1 0			0	0	1

 Thomas E1987

Gigdem Y.2014

Elif Dogan.2013

Sarvesh pal .2011

Tingting Chen .2007

Meral kanbak .2004

Page 11 of 33

BMJ Open

						11	
Jianrong	g Guo .:	2009	1	0	0	0	1
Shudon	g Ma .2	2015	1	0	0	0	1
Jiying Z	Zhong .2	2010	2	0	1	0	3
	1						
	2	Table 2.	Methodology	quality of the inc	luded randomized	controlled trials	
	3	(RCTs)					
	л						

Meta-analysis

Data on S100B levels, MMSE scores, CMRO₂, D(a-v)O₂, O₂ER, and SivO₂ were analysed in a random-effects model and, CBF was analysed in a fixed-effects model. S100B levels assessed at the end of CPB and 24 hours postoperatively in inhalation anaesthesia group were significantly lower than those in TIVA group [WMD (95% CI): -0.41 (-0.81, -0.01), -0.32 (-0.59, -0.05), respectively, Fig. 2]. The postoperative MMSE scores of the inhalation anaesthesia group were significantly higher than those of the TIVA group[WMD (95%CI): 1.87 (0.82, 2.92)], Fig. 3]. The CBF assessed at rewarming during CPB was significantly higher in the inhalation anaesthesia group than in the TIVA group [WMD (95% CI): 5.11 (2.58, 7.63), Fig. 4].

There was no significant difference in $CMRO_2$, $D(a-v)O_2$, O_2ER , and SivO₂ assessed at cooling and rewarming during CPB between the inhalation anaesthesia group and the TIVA group (Fig. 5, 6, 7, 8).

Egger's regression test of S100B levels, MMSE scores, CMRO₂, $D(a-v)O_2$, O_2ER , and $SivO_2$ indicated little evidence of publication bias, respectively (Table 3).

1	2
т	2

Std_Eff	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
bias(S100B)	-2.67	2.35	-1.14	0.27	[-7.65 2.32]
bias(MMSE)	2.89	5.30	0.54	0.61	[-10.08 15.85]
bias(CMRO ₂)	-1.85	6.10	-0.30	0.79	[-28.16 24.41]
bias(D(a-v)O ₂)	186.01	99.93	1.86	0.14	[-91.44 463.46]
bias(O2ER%)	13.87	6.58	3.63	0.12	[5.59 42.14]
bias(SjvO ₂ %)	2.12	19.48	0.11	0.92	[-45.56 49.79]

Table 3. Egger's test of Publication bias

(n) MMSE, mini-mental state examination; CBF, cerebral blood flow; CMRO₂,
cerebral metabolic rate of oxygen consumption; D(a-v)O₂, arteriovenous oxygen
content difference; O₂ER, cerebral oxygen extraction; SjvO₂, jugular bulb
venous oxygen saturation

9	We conducted sensitivity analysis of the meta-analysis. We omitted
10	one study sequentially, and calculated the combined WMD for the
11	remaining studies, which yielded consistent results. In the overall
12	meta-analysis, no single study significantly changed the combined results,
13	which indicated that the results were statistically stable and reliable (Fig.
14	9, 10).

Discussion

In our study, thirteen published articles were included to determine the difference in the extent of cerebral protection provided by inhalation anaesthesia and TIVA during cardiac surgery with CPB. Eight out of the thirteen studies suggested that inhalation anaesthesia might be superior to TIVA in terms of their cerebroprotective effect after CPB ^[18, 20-22, 25-27, 29]. However, the results reported in other five studies were the opposite ^[17, 19, 10]

BMJ Open

^{23, 24, 28]}. These results underline the existing debate on which anaesthetic approach is better for the patients. However, in the current systematic review and meta-analysis, the results of primary and secondary outcomes showed that inhalation anaesthesia might be superior to TIVA during cardiac surgery with CPB. S100B is mainly expressed in the astrocytes, and blood S100B level is commonly used as an outcome parameter for evaluating the postoperative neurological dysfunction^[30]. Its level in the blood has been shown to increase in patients after ischemic stroke and brain trauma^[31]. Serum S100B has also been detected after cardiac surgery complicated by neurological injury in adults; thus, it has the potential to serve as an early marker of brain damage ^[32, 33]. In this meta-analysis, the serum level of S100B after CPB in the inhalation anaesthesia group was found to be significantly lower than that in the TIVA group (P<0.05) ^[18, 25-27, 29]. suggesting that inhalation anaesthetics provide better cerebral protection than TIVA against brain damage. As reported by Svenmarker et al^[34], it is inevitable that S100B contamination will occur due to the pericardial suction blood, which is often re-transfused or processed in the cell saver and then re-transfused

during CPB. However, a strict control of clinical procedures may decrease its potential effect on the difference of S100B detection between the two groups. In the included studies, the use of re-transfusion and cell

salvage were not mentioned. Therefore, the possible effect of
 re-transfusion and cell salvage should not be neglected, and this is a
 potential limitation of the current study.

Among the secondary outcomes, the MMSE is one of the most commonly used parameters for the clinical evaluation of cognitive function. Our results show that postoperative MMSE scores of patients in the inhalation anaesthesia group were significantly higher than those in the TIVA group (P<0.05) $^{[18, 25, 29]}$. These results suggest that inhalation anaesthesia is better than TIVA in terms of protecting the postoperative cognitive function of patients undergoing cardiac surgery with CPB. The meta-analysis also showed that the other outcomes such as $D(a-v)O_2$, O_2ER , and SivO₂, were not significantly different for TIVA and inhalation anaesthesia groups. However, we found that in many studies, the cerebral oxygen metabolic rate in patients receiving inhalation anaesthetics was consistently lower than that in patients receiving TIVA. Additionally, the intraoperative CBF in the inhalation anaesthesia group was significantly higher than that in the TIVA group (P < 0.05)^[20, 21]. A low ratio of global cerebral oxygen and adequate cerebral blood supply is an important parameter for evaluating cerebral protection ^[35]. Thus, the results based on CMRO₂ and CBF can strengthen the finding that inhalation anaesthesia may provide better neuroprotection than TIVA.

Experimental data suggest that direct positive effects of volatile

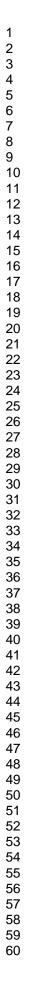
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1	anaesthetics may be caused by various pre-conditioning and
2	post-conditioning mechanisms [36, 37], which attenuate apoptosis and
3	necrosis of cerebral neurons, thereby reducing neurological dysfunction
4	after ischaemia. Moreover, the contribution of inhalation agents in
5	preserving satisfactory haemodynamics may ensure adequate perfusion
6	and oxygenation of other organ systems, ^[38-41] and improve the chances
7	for recovery and survival after surgery. All these effects can be expanded
8	well beyond the immediate perioperative period because of
9	anaesthetic-induced neuroprotection that can be long lasting ^[42, 43] .
10	Additionally, a recent meta-analysis found that in cardiac surgery ^[44] , as
11	compared to TIVA, inhalation anaesthesia was associated with major
12	benefits in outcome, including reduced mortality, as well as a lower
13	incidence of pulmonary and other complications. Therefore, based on
14	previous findings and the current meta-analysis, it is speculated that
15	inhalation anaesthesia has the potential to serve as a preferential
16	anaesthesia strategy for cardiac patients.
17	Our study has few limitations. First, the sample size of the included
18	studies was relatively small and the total number of cases is very limited.
19	Second, there was heterogeneity in some of our results. Since trials were
20	based in different countries and hospitals, we were unable to avoid the
21	effects of race, age, gender, and underlying disease(s) of patients in our

study. Therefore, findings of the current study

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


1	were limited by the overall low quality of evidence and the lack of robust
2	data. Third, our study focused on the overall comparison between
3	inhalation anaesthesia and TIVA, and different inhalation (isoflurane,
4	desflurane, or sevoflurane) and intravenous (sodium thiopental, propofol,
5	etc.) anaesthetics were investigated in the included studies. Because of
6	the limited number of reported clinical trials, limited outcome data could
7	be considered for subgroup analysis. Therefore, further studies with
8	larger sample sizes are needed to demonstrate which anaesthetics are
9	more beneficial for cardiac patients.
10	In summary, the results of this meta-analysis indicate that the
11	cerebroprotective effect of inhalation anaesthesia is better than that of
12	TIVA in patients undergoing cardiac surgery with CPB. Further high
13	quality trials with larger sample sizes are warranted to investigate the
14	effect of anaesthetics on cerebral protection.
15	
16	Authors' contributions
17	Autnors' contributions Conception and design of experiments: F.C, H.L, Z.Z. Performed the experiments: F.C. G.D. Z.W. Z.Z.
18	Performed the experiments: F.C, G.D, Z.W, Z.Z.
19	Analysis of data: F.C, G.D, Z.W.
20	Contribution of reagents/materials/analysis tools: Z.Z, H.L.
21	Paper written by: F.C, G.D, H.L, Z.Z.
22	All authors have reviewed the manuscript.

1	
2	Funding
3	This study was supported by a grant from the National Natural Science
4	Foundation of China (No. 81571870) and the Natural Science Foundation
5	Project of Chongqing (cstc20136jjB10026).
6	
7	Competing interests: The authors declare no conflicts of interest.
	Competing interests. The autions declare no conflicts of interest.
8	
9	Data sharing statement: No additional data are available.
10	
11	
12	References
12	Kelerences
13 14	[1] Lamy A, Devereaux PJ, Prabhakaran D, et al. Effects of off-pump and on-pump coronary-artery bypass
14	grafting at 1 year. N Engl J Med. 2013. 368(13): 1179-88.
16	[2] Lamy A, Devereaux PJ, Prabhakaran D, et al. Five-Year Outcomes after Off-Pump or On-Pump
17	Coronary-Artery Bypass Grafting. N Engl J Med. 2016. 375(24): 2359-2368.
18	[3] McKhann GM, Grega MA, Borowicz LM, et al. Stroke and encephalopathy after cardiac surgery: an update.
19	Stroke. 2006. 37(2): 562-71.
20	[4] Hogue CW, Palin CA, Arrowsmith JE. Cardiopulmonary bypass management and neurologic outcomes: an
21	evidence-based appraisal of current practices. <i>Anesth Analg.</i> 2006. 103(1): 21-37.
22	[5] Wimmer-Greinecker G, Matheis G, Brieden M, et al. Neuropsychological changes after cardiopulmonary
23 24	bypass for coronary artery bypass grafting. <i>Thorac Cardiovasc Surg</i> 1998;46(4): 207-12.
24 25	[6] Blumenthal JA, Mahanna EP, Madden DJ, et al. Methodological issues in the assessment of neuropsychologic function after cardiac surgery. <i>Ann Thorac Surg</i> 1995;59(5): 1345-50.
26	[7] Pape M, Engelhard K, Eberspacher E, et al. The long-term effect of sevoflurane on neuronal cell damage and
27	expression of apoptotic factors after cerebral ischemia and reperfusion in rats. <i>Anesth Analg</i> 2006;103(1):
28	173-9.
29	[8] Sakai H, Sheng H, Yates RB, et al. Isoflurane provides long-term protection against focal cerebral ischemia in
30	the rat. Anesthesiology 2007;106(1): 92-9.
31	[9] Selman WR, Spetzler RF, Roessmann UR, et al. Barbiturate-induced coma therapy for focal cerebral ischemia.
32	Effect after temporary and permanent MCA occlusion. J Neurosurg 1981;55(2): 220-6.
33	[10] Iwata T, Inoue S, Kawaguchi M, et al. Comparison of the effects of sevoflurane and propofol on cooling and

4	
1	rewarming during deliberate mild hypothermia for neurosurgery. <i>Br J Anaesth</i> 2003;90(1): 32-8.
2	[11] Dabrowski W, Rzecki Z, Czajkowski M, et al. Volatile anesthetics reduce biochemical markers of brain injury
3	and brain magnesium disorders in patients undergoing coronary artery bypass graft surgery. J Cardiothorac
4	Vasc Anesth. 2012. 26(3): 395-402.
5	[12] Sagara Y, Hendler S, Khoh-Reiter S, et al. Propofol hemisuccinate protects neuronal cells from oxidative
6	injury. J Neurochem 1999;73(6): 2524-30.
7	[13] Wang H, Lu S, Yu Q, et al. Sevoflurane preconditioning confers neuroprotection via anti-inflammatory effects.
8	<i>Elite Ed</i> 2011;1(3): 604-15.
9	[14] McAuliffe JJ, Loepke AW, Miles L, et al. Desflurane, isoflurane, and sevoflurane provide limited
10	neuroprotection against neonatal hypoxia-ischemia in a delayed preconditioning paradigm. Anesthesiology
11	2009;111(3): 533-46.
12	[15] Moher D1, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses:
13	the PRISMA statement. PLoS Med 2009;6(7):e1000097.
14	[16] Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002;21(11): 1539-58.
15	[17] Min J, Yanlin B. Target controlled infusion of propofol in shallow perioperative cardiopulmonary bypass for
16	brain protection. Int J Clin Exp Med 2007;4(6): 120-121.
17	[18] Huaping Y. Two methods of anesthesia of CPB heart valve replacement patients plasma level and the
18	influence of cognitive function according to beta. Shandong Med 2015;55(15): 71-72.
19	[19] Lei L, Weifu L, Jianchun F, et al. Effects of different anesthesia on cognition function in geriatric patients
20	following off-pump coronary artery bypass grafting. Chin J Geriatr Heart Brain Vessel Dis 2010;12 (11):
21	1002-1004.
22	[20] Newman MF, Croughwell ND, White WD, et al. Pharmacologic electroencephalographic suppression during
23	cardiopulmonary bypass: a comparison of thiopental and isoflurane. Anesth Analg 1998;86(2): 246-51.
24	[21] Woodcock TE, Murkin JM, Farrar JK, et al. Pharmacologic EEG suppression during cardiopulmonary bypass:
25	cerebral hemodynamic and metabolic effects of thiopental or isoflurane during hypothermia and
26	normothermia. Anesthesiology 1987;67(2): 218-24.
27	[22] Guclu CY, Unver S, Aydinli B, et al. The effect of sevoflurane vs. TIVA on cerebral oxygen saturation during
28	cardiopulmonary bypassrandomized trial. Adv Clin Exp Med 2014;23(6): 919-24.
29	[23] Tingting C, Gang W, Qi Z, et al. The comparison between isoflurane and propofol with effect on cerebral
30	protection in cardiac valve replacement Surgery. <i>Chin J ECC</i> 2007;5(2): 91-93+117.
31	[24] Jianrong G, Donglin J, Liyuan R, et al. Isoflurane and propofol for extracorporeal circulation open-heart
32	surgery in patients with a comparative study of perioperative cerebral protection. Chin J Clin Pharmacol Ther
33	2009;14(7): 812-817.
34	[25] Shudong M, Propofol and seven halothane Anesthesia for experacorporeal circulation of brain protection
35	effect comparison. Chin & F Med treatment 2015;12(9): 145-146
36	[26] Singh SP, Kapoor PM, Chowdhury U, et al. Comparison of S100beta levels, and their correlation with
37	hemodynamic indices in patients undergoing coronary artery bypass grafting with three different anesthetic
38	techniques. Ann Card Anaesth 2011;14(3): 197-202.
39	[27] Kanbak M, Saricaoglu F, Avci A, et al. Propofol offers no advantage over isoflurane anesthesia for cerebral
40	protection during cardiopulmonary bypass: a preliminary study of S-100beta protein levels. Can J Anaesth
41	2004;51(7): 712-7.
42	[28] Baki ED, Aldemir M, Kokulu S, et al. Comparison of the effects of desflurane and propofol anesthesia on the
43	inflammatory response and s100beta protein during coronary artery bypass grafting. Inflammation 2013;36(6):
44	1327-33.

BMJ Open

1 [2	9] Jiying Z, Feng X, Xianjie W, et al. Brain protection of desflurane in old patients undergoing coronary artery
2	bypass grafting. Chin J New Drugs Clin Rem 2010;29(11):847-849.
3 [3	0] Wang DD, Bordey A. The astrocyte odyssey. Prog Neurobiol 2008;86(4): 342-67.
4 [3	1] An SA, Kim J, Kim OJ, et al. Limited clinical value of multiple blood markers in the diagnosis of ischemic
5	stroke. Clin Biochem 2013;46(9): 710-5.
6 [3	2] Kuzumi E, Vuylsteke A, Guo X, et al. Serum S100 protein as a marker of cerebral damage during cardiac
7	surgery. Br J Anaesth 2000;85(6): 936-7.
8 [3	3] Rasmussen LS, Christiansen M, Eliasen K, et al. Biochemical markers for brain damage after cardiac surgery
9	time profile and correlation with cognitive dysfunction. Acta Anaesthesiol Scand 2002;46(5): 547-51.
10 [3	4] Svenmarker S, Engström KG, Karlsson T, et al. Influence of pericardial suction blood retransfusion on
11	memory function and release of protein S100B. Perfusion. 2004;19(6):337-43.
-	5] Goldman S, Sutter F, Ferdinand F, et al. Optimizing intraoperative cerebral oxygen delivery using noninvasive
13	cerebral oximetry decreases the incidence of stroke for cardiac surgical patients. Heart Surg Forum 2004;7:
14	376–381.
15 [3	6] McMurtrey RJ, Zuo Z. Isoflurane preconditioning and postconditioning in rat hippocampal neurons. Brain
16	<i>Res</i> 2010;1358: 184-90.
17 [3	7] Lee JJ, Li L, Jung HH, et al. Postconditioning with isoflurane reduced ischemia-induced brain injury in rats.
18	Anesthesiology 2008;108(6): 1055-62.
-	8] Julier K, da SR, Garcia C, et al. Preconditioning by sevoflurane decreases biochemical markers for
20	myocardial and renal dysfunction in coronary artery bypass graft surgery: a double-blinded,
21	placebo-controlled, multicenter study. Anesthesiology 2003;98(6): 1315-27.
-	9] Kim M, Kim M, Kim N, et al. Isoflurane mediates protection from renal ischemia-reperfusion injury via
23	sphingosine kinase and sphingosine-1-phosphate-dependent pathways. Am J Physiol Renal Physiol 2007;
24	293(6): F1827-35.
-	0] Lee HT, Kim M, Kim J, et al. TGF-beta1 release by volatile anesthetics mediates protection against renal
26	proximal tubule cell necrosis. Am J Nephrol 2007;27(4): 416-24.
-	1] Beck-Schimmer B, Breitenstein S, Urech S, et al. A randomized controlled trial on pharmacological
28	preconditioning in liver surgery using a volatile anesthetic. <i>Ann Surg</i> 2008;248(6): 909-18.
-	2] Li H, Yin J, Li L, et al. Isoflurane postconditioning reduces ischemia-induced nuclear factor-kappaB
30	activation and interleukin 1beta production to provide neuroprotection in rats and mice. Neurobiol Dis 2013;
31	1(54): 216-24.
-	3] Zuo Z. A novel mechanism for sevoflurane preconditioning-induced neuroprotection. <i>Anesthesiology</i> 2012;
33	117(5): 942-4.
-	4] Uhlig C, Bluth T, Schwarz K, et al. Effects of Volatile Anesthetics on Mortality and Postoperative Pulmonary
	d Other Complications in Patients Undergoing Surgery: A Systematic Review and Meta-analysis. <i>Anesthesiology</i> .
	16. 124(6): 1230-45.
37	

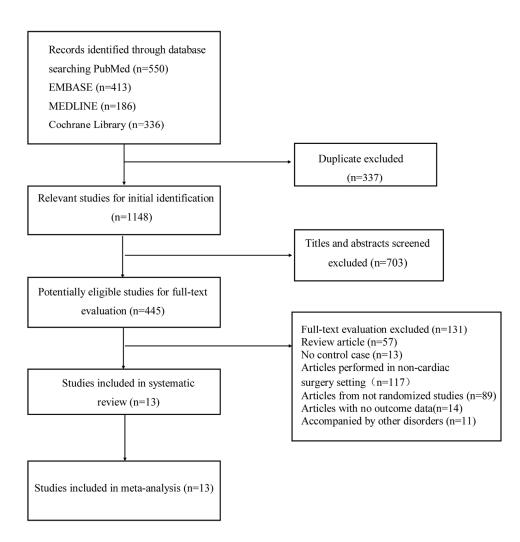


Fig. 1 Flow diagram for the selection of eligible studies

160x160mm (300 x 300 DPI)

		on anesth		total intrave				Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
1.1.1 S100B(pre-CPB)								
Huaping Yuan 2015	0.42	0.05	25	0.44	0.08	25	6.8%	-0.02 [-0.06, 0.02]	1
Jianrong Guo 2009	0.45	0.17	15	0.46	0.21	15	6.0%	-0.01 [-0.15, 0.13]	+
Jiying Zhong 2010	0.18	0.12	15	0.17	0.18	15	6.3%	0.01 [-0.10, 0.12]	+
Lei Li 2014	0.33	0.06	15	0.32	0.07	15	6.7%	0.01 [-0.04, 0.06]	+
Barvesh pal 2011	0.05	0.1	60	0.04	0.09	61	6.8%	0.01 [-0.02, 0.04]	t
Shudong Ma 2015	0.045	0.013	30	0.041	0.015	30	6.9%	0.00 [-0.00, 0.01]	
Subtotal (95% CI)			160			161	39.5%	0.00 [-0.00, 0.01]	
Heterogeneity: Tau ² =	0.00; Chi ² :	= 1.84, df	= 5 (P = 0).87); I ^z = 0%					
Test for overall effect: .	Z=1.03 (P	= 0.30)							
1.1.2 \$100B(post-CPE	3)								
Huaping Yuan 2015	2.66	0.38	25	3.81	0.62	25	4.3%	-1.15 [-1.44, -0.86]	_ _
Jianrong Guo 2009	3.23	0.78	15	2.78	0.64	15	2.3%	0.45 [-0.06, 0.96]	
Jiying Zhong 2010	0.43	0.21	15	1.4	0.4	15	4.9%		
Lei Li 2014	0.99	0.22	15	0.82	0.21	15	5.8%	0.17 [0.02, 0.32]	
Sarvesh pal 2011	0.9	1.68	60	1.68	2	61	1.6%		
Shudona Ma 2015	0.972	0.111	30	1.141	0.126	30	6.7%	-0.17 [-0.23, -0.11]	-
Subtotal (95% CI)	0.012	2.111	160	1.1 11	0.120	161	25.7%		-
Heterogeneity: Tau ² =	0.22 [.] Chi ² :	= 118 66	df = 5 (P)	< N NONO13: 13	= 96%				
Test for overall effect:									
1.1.3 \$100B(24h pos	toperative	V)							
Huaping Yuan 2015	1.45	0.1	25	2.32	0.15	25	6.6%	-0.87 [-0.94, -0.80]	+
Jianrong Guo 2009	0.49	0.13	15	0.45	0.15	15	6.4%	0.04 [-0.06, 0.14]	+
Jiying Zhong 2010	0.14	0.16	15	0.21	0.13	15	6.3%	-0.07 [-0.17, 0.03]	
Lei Li 2014	0.53	0.09	15	0.45	0.11	15	6.6%	0.08 [0.01, 0.15]	+
Sarvesh pal 2011	0.48	1.28	60	1.71	1.9	61	2.0%	-1.23 [-1.81, -0.65]	
Shudong Ma 2015	0.333	0.028	30	0.592	0.037	30	6.8%	-0.26 [-0.28, -0.24]	
Subtotal (95% CI)	0.000	0.020	160	0.002	0.001	161	34.8%		•
Heterogeneity: Tau ² =	0.10: Chi ² :	= 429.90.		< 0.00001); l ^a	= 99%				
Fest for overall effect: .			e e						
Total (95% CI)			480			493	100.0%	-0.20 [-0.29, -0.10]	•
Heterogeneity: Tau ² =	0.04: Chi2-	- 1645 21		/P ~ 0 00001	17 - 0.0%	405	100.070	-0.20[-0.20,-0.10]	
	0.04, 011 -	- 1040.21	$u_1 = 171$	(0.00001)	1 - 39%				-1 -0.5 0 0.5 1
Test for overall effect: .	7 = 4.00 / P	~ 0.0001							avours experimental Favours co

Fig. 2 Forest plot showing the meta-analysis outcomes of the difference in S100B levels of inhalation anaesthesia and total intravenous anaesthesia (TIVA) groups

160x113mm (300 x 300 DPI)

	inhalatio	n anesth	etics	s total intravenous anesth		thesia		Mean Difference	Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI		
1.3.1 MMSE(pre-operation	ation)										
Huaping Yuan 2015	28.83	1.15	25	28.31	1.08	25	17.7%	0.52 [-0.10, 1.14]			
Jiying Zhong 2010	28.8	0.3	15	28.2	0.94	15	18.8%	0.60 [0.10, 1.10]			
Shudong Ma 2015	29.05	1.18	30	29.24	1.04	30	18.3%	-0.19 [-0.75, 0.37]			
Subtotal (95% CI)			70			70	54.8%	0.31 [-0.18, 0.81]	◆		
Heterogeneity: Tau ² =	0.11; Chi ² =	4.76, df =	2 (P = 0	.09); l ² = 58%							
Test for overall effect:	Z = 1.24 (P	= 0.22)									
1.3.2 MMSE(24 hours	postopera	tively)									
Huaping Yuan 2015	26.52	2.03	25	24.15	1.83	25	13.2%	2.37 [1.30, 3.44]			
Jiying Zhong 2010	28.2	0.6	15	27.1	0.3	15	20.1%	1.10 [0.76, 1.44]	-		
Shudong Ma 2015	26.38	3.03	30	23.89	1.57	30	11.8%	2.49 [1.27, 3.71]			
Subtotal (95% CI)			70			70	45.2%	1.87 [0.82, 2.92]			
Heterogeneity: Tau ² =	0.65; Chi ² =	8.81, df =	2 (P = 0	.01); l ² = 77%							
Test for overall effect:	Z = 3.49 (P	= 0.0005)									
Total (95% CI)			140			140	100.0%	1.00 [0.37, 1.63]	•		
Heterogeneity: Tau ² =	0.48; Chi ² =	31.86, df	= 5 (P <	0.00001); l ² =	84%						
Test for overall effect:	Z = 3.12 (P	= 0.002)		,,				F =	-4 -2 0 2 4		
Test for subgroup diffe	rences: Chi	² = 6.88. d	f = 1 (P =	= 0.009). I ² = 8	5.5%			Fa	vours experimental Favours control		

Fig. 3 Forest plot showing the meta-analysis outcomes of the difference in mini-mental state examination (MMSE) scores of inhalation anaesthesia and total intravenous anaesthesia (TIVA) groups

160x64mm (300 x 300 DPI)

	inhalation	n anesth	etics	total intrave	nous anest	thesia		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% Cl
1.2.1 CBF(cooling)									
Mark F 1997	14.9	9.8	16	12.6	11.2	15	7.9%	2.30 [-5.13, 9.73]	I — — —
Thomas E 1987	11.8	2.5	12	8.2	5.5	7	23.5%	3.60 [-0.71, 7.91]	i ++
Subtotal (95% CI)			28			22	31.4%	3.27 [-0.46, 7.00]	-
Heterogeneity: Chi ² =	0.09, df = 1	(P = 0.77)	'); I² = 0%						
Test for overall effect:	Z=1.72 (P:	= 0.09)							
1.2.2 CBF(rewarming	0								
Mark F 1997	28.8	9	16	21.6	8.8	15	11.1%	7.20 [0.93, 13.47]	
Thomas E 1987	19.6	4.7	12	14.9	1	7	57.4%	4.70 [1.94, 7.46]	_
Subtotal (95% CI)			28			22	68.6%	5.11 [2.58, 7.63]	•
Heterogeneity: Chi ² =	0.51, df = 1	(P = 0.47)	'); I² = 0%						
Test for overall effect:									
									~
Total (95% CI)			56			44	100.0%	4.53 [2.44, 6.62]	•
Heterogeneity: Chi ² =	1.24, df = 3	(P = 0.74)	= 0%						-10 -5 0 5 10

Fig. 4 Forest plot showing the meta-analysis outcomes of the difference in cerebral blood flow (CBF) of the inhalation anaesthesia and total intravenous anaesthesia (TIVA) groups

160x59mm (300 x 300 DPI)

2	
$1 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 101 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 9 \\ 201 \\ 22 \\ 24 \\ 25 \\ 26 \\ 27 \\ 8 \\ 9 \\ 301 \\ 32 \\ 33 \\ 4 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 0 \\ 11 \\ 23 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 101 \\ 21 \\ 22 \\ 24 \\ 25 \\ 26 \\ 27 \\ 8 \\ 9 \\ 301 \\ 32 \\ 33 \\ 4 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 0 \\ 1 \\ 20 \\ 1 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 8 \\ 9 \\ 301 \\ 32 \\ 33 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 0 \\ 1 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $	
6	
7 8	
9	
10	
12	
13	
14 15	
16	
17 18	
19	
20 21	
22	
23 24	
25	
26 27	
28	
29 30	
31	
32 33	
33 34	
35 26	
30 37	
38	
39 40	
41	
42 43	
44	
45 46	
47	
48 49	
50	
51 52	
53	
54 55	
56	
57 58	
59	
60	

	inhalation	1 anesth	etics	total intrave	nous anest	thesia		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
1.4.1 CMRO2(cooling)								
Mark F 1997	0.31	0.14	16	0.41	0.31	15	20.8%	-0.10 [-0.27, 0.07]	
Thomas E 1987	0.29	0.04	12	0.27	0.02	7	41.1%	0.02 [-0.01, 0.05]	—
Subtotal (95% CI)			28			22	61.8%	-0.01 [-0.11, 0.09]	-
Heterogeneity: Tau ² =	0.00; Chi ² =	= 1.84, df	= 1 (P =	0.17); I ^z = 46%	5				
Test for overall effect:	and and second and second	and the second second second							
1.4.2 CMRO2(rewarm	ning)								
Mark F 1997	1.08	0.3	16	0.97	0.41	15	12.9%	0.11 [-0.14, 0.36]	1
Thomas E 1987	0.76	0.16	12	0.92	0.14	7	25.3%	-0.16 [-0.30, -0.02]	
Subtotal (95% CI)			28			22	38.2%	-0.05 [-0.31, 0.21]	
Heterogeneity: Tau ² =	0.03; Chi ² =	= 3.35, df	= 1 (P =	0.07); l ² = 70%	0				
Test for overall effect:	Z = 0.35 (P	= 0.72)							
Total (95% CI)			56			44	100.0%	-0.04 [-0.15, 0.07]	-
Heterogeneity: Tau ² =	0.01; Chi ² =	= 8.55, df	= 3 (P =	0.04); l ² = 65%)				
Test for overall effect.	Z = 0.70 (P	= 0.49							-0.2 -0.1 0 0.1 0.2
Test for subaroup diff			. df = 1 (F	P = 0.79), $ P = 0$	1%				Favours experimental Favours control

Fig. 5 Forest plot showing the meta-analysis outcomes of the difference in cerebral metabolic rate of oxygen consumption (CMRO2) of inhalation anaesthesia and total intravenous anaesthesia (TIVA) groups

Δ, thesi. 38mm (30)

	inhalation	anesthe	etics	total intravence	us anest	thesia		Mean Difference	Mean Di	fference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Rando	om, 95% Cl
1.5.1 D(a-v)O2(cooling	g)									
Jianrong Guo 2009	26	3	15	31	8	15	19.6%	-5.00 [-9.32, -0.68]		
Mark F 1997	25	12	16	39	20	15	11.4%	-14.00 [-25.71, -2.29]		
Tingting Chen 2007	28	4	15	32	6	15	20.3%	-4.00 [-7.65, -0.35]		
Subtotal (95% CI)			46			45	51.4%	-5.16 [-8.44, -1.87]	•	
Heterogeneity: Tau ² =	1.99; Chi ² = 2	2.56, df =	2 (P = 0	.28); l ² = 22%						
Test for overall effect:	Z = 3.08 (P =	0.002)								
1.5.2 D(a-v)O2(rewarn	ning)									
Jianrong Guo 2009	58	6	15	52	8	15	18.8%	6.00 [0.94, 11.06]		
Mark F 1997	39	14	16	53	20	15	11.0%	-14.00 [-26.23, -1.77]		
Tingting Chen 2007	58	6	15	52	8	15	18.8%	6.00 [0.94, 11.06]		-
Subtotal (95% CI)			46			45	48.6%	1.43 [-6.91, 9.77]	-	
Heterogeneity: Tau ² =	40.26; Chi ² =	9.47, df	= 2 (P =	0.009); l ² = 79%						
Test for overall effect:	Z = 0.34 (P =	0.74)								
Total (95% CI)			92			90	100.0%	-2.67 [-8.36, 3.03]	-	
Heterogeneity: Tau ² = 3	38.10; Chi ² =	29.57, d	f = 5 (P <	< 0.0001); l ² = 83	%				-20 -10	
Test for overall effect: 2	Z = 0.92 (P =	0.36)						E.	-20 -10 (avours experimental	Favours control
Test for subaroup diffe		- 2 0 7 4	f = 1 (D =	0 45) 12 - 54 00	4			Fa	avours experimental	Favours control

Fig. 6 Forest plot showing the meta-analysis outcomes of the difference in arteriovenous oxygen content difference [D(a-v) O2] of inhalation anaesthesia and total intravenous anaesthesia (TIVA) groups

160x63mm (300 x 300 DPI)

1
2 3
4
5
6
7
8
9 10
11
12
13
14
15
16
17
19
20
$\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 2 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 $
22
23
24
25
20 27
28
29
30
31
32
33
35
36
37
38
39
40
41 42
43
44
45
46
47 48
48 49
49 50
50 51
52
53
54
55
56 57
57 58
58 59
60

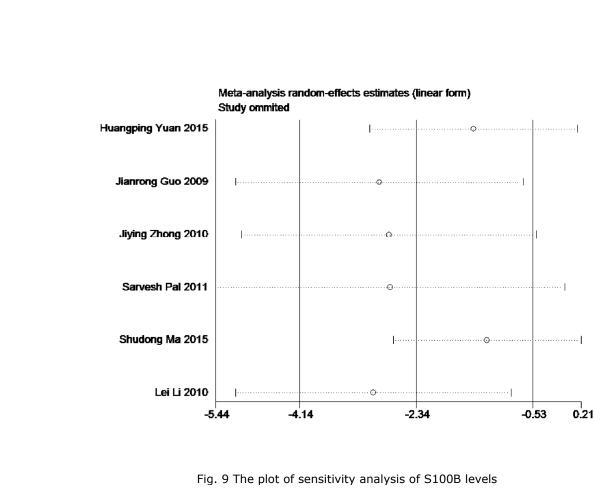

	inhalatio			total intrave			100000 01 10-00	Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
1.6.1 SjvO2%(cooling)									
Jianrong Guo 2009	74	7	15	72	7	15	13.4%	2.00 [-3.01, 7.01]	
Mark F 1997	77.4	11.5	16	88.4	18.5	15	6.0%	-11.00 [-21.93, -0.07]	
Min Jiang 2007	76	4.9	20	81.6	4.9	20	17.0%	-5.60 [-8.64, -2.56]	
Tingting Chen 2007	68	9	15	66	10	15	10.5%	2.00 [-4.81, 8.81]	
Subtotal (95% CI)			66			65	46.8%	-2.46 [-7.84, 2.92]	-
Heterogeneity: Tau ^z = 1	20.07; Chi ^z	= 10.74,	df = 3 (P =	= 0.01); I ^z = 7	2%				
Test for overall effect. 2	Z = 0.90 (P =	= 0.37)							
1.6.2 SjvO2%(rewarmi	ing)								
Jianrong Guo 2009	54	5	15	62	7	15	14.6%	-8.00 [-12.35, -3.65]	
Mark F 1997	65.3	12.5	16	56.3	13.7	15	7.4%	9.00 [-0.25, 18.25]	
Min Jiang 2007	49.2	3.8	20	55	4.1	20	17.9%	-5.80 [-8.25, -3.35]	
Tingting Chen 2007	58	8	15	60	6	15	13.3%	-2.00 [-7.06, 3.06]	
Subtotal (95% CI)			66			65	53.2%	-3.22 [-7.93, 1.48]	-
Heterogeneity: Tau ² = 1	16.18; Chi ²	= 12.38,	df = 3 (P =	= 0.006); I ² =	76%				
Test for overall effect: 2	z = 1.34 (P =	= 0.18)							
Total (95% CI)			132			130	100.0%	-2.93 [-6.11, 0.25]	•
Heterogeneity: Tau ² = 1	13.15; Chi [≇]	= 24.46,	df = 7 (P =	= 0.0009); l ^a =	71%				
Test for overall effect: 2	Z = 1.80 (P =	= 0.07)						-	-20 -10 0 10 20
Test for subaroup diffe			df = 1 / D	- 0.02\ 18 - 0	04			F	avours experimental Favours control

Fig. 7 Forest plot showing the meta-analysis outcomes of the difference in jugular bulb venous oxygen saturation (SjvO2) of inhalation anaesthesia and total intravenous anaesthesia (TIVA) groups L , 2 × 300, 2

	inhalation	n anesth	etics	total intrave	nous anes	thesia		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.7.1 O2ER%(cooling)									
Jianrong Guo 2009	38	3	15	38	4	15	20.2%	0.00 [-2.53, 2.53]	+
Mark F 1997	25.1	11	16	35.9	17.6	15	11.3%	-10.80 [-21.21, -0.39]	
Tingting Chen 2007	25	9	15	28	4	15	17.7%	-3.00 [-7.98, 1.98]	
Subtotal (95% CI)			46			45	49.2%	-2.58 [-7.08, 1.91]	
Heterogeneity: Tau ² =	8.65; Chi ² =	4.62, df	= 2 (P = 0	0.10); l ² = 57%					
Test for overall effect: .	Z = 1.13 (P =	= 0.26)							
1.7.2 O2ER%(rewarm	ing)								
Jianrong Guo 2009	50	4	15	41	4	15	19.9%	9.00 [6.14, 11.86]	
Mark F 1997	36.4	12.7	16	42.7	12.7	15	12.9%	-6.30 [-15.25, 2.65]	
Tingting Chen 2007	52	8	15	48	5	15	17.9%	4.00 [-0.77, 8.77]	
Subtotal (95% CI)			46			45	50.8%	3.38 [-3.67, 10.44]	
Heterogeneity: Tau ² =	30.70; Chi²	= 11.82,	df = 2 (P	= 0.003); l ² = 3	83%				
Test for overall effect: .	Z = 0.94 (P =	= 0.35)							
Total (95% CI)			92			90	100.0%	-0.05 [-5.18, 5.07]	+
Heterogeneity: Tau ² =	32.16; Chi ²	= 38.60,	df = 5 (P	< 0.00001); P	= 87%				
Test for overall effect:								-	-20 -10 0 10 avours experimental Favours contr

Fig. 8 Forest plot showing the meta-analysis outcomes of the difference in cerebral oxygen extraction ratio (O2ER) between inhalation anaesthesia and total intravenous anaesthesia (TIVA) groups

160x63mm (300 x 300 DPI)

160x119mm (300 x 300 DPI)

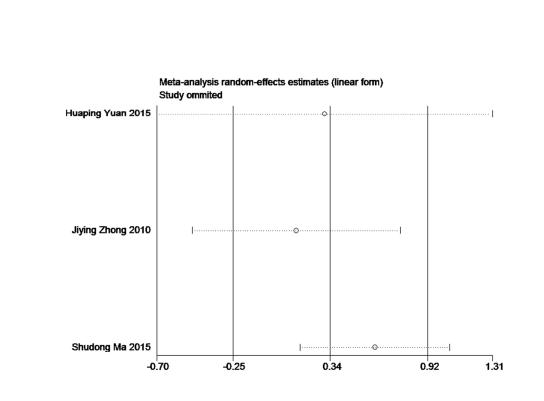


Fig. 10 The plot of sensitivity analysis of mini-mental state examination (MMSE) scores

160x106mm (300 x 300 DPI)

Appendix. MEDLINE search strategy

#1 Heart surgery[MeSH] OR heart operation or cardiac surgery, valve replacement[MeSH] or Coronary artery bypass surgery[MeSH]

#2 Extracorporeal Circulation[MeSH] OR Circulation, Extracorporeal OR

Circulations, Extracorporeal OR Extracorporeal Circulations

#3 Cardiopulmonary Bypass[MeSH] OR Bypass, Cardiopulmonary OR

Bypasses, Cardiopulmonary OR Cardiopulmonary Bypasses

#4 Heart-Lung Bypass[MeSH] OR Bypass, Heart-Lung OR Bypasses,

Heart-Lung OR Heart Lung Bypass OR Heart-Lung Bypasses

#5 #2 OR #3 OR #4

#6 cerebral protection[MeSH] OR Brain protection[MeSH] OR neuroprotection[MeSH]

#7 Anesthesia, Inhalation[MeSH] OR Inhalation Anesthesia OR Anesthesia, Insufflation

#8 Isoflurane OR Sevoflurane OR Enflurane OR Desflurane OR Halothane

OR Nitrous Oxide OR Xenon

#9 #7 OR #8

#10 Anesthesia, Intravenous[MeSH] OR Anesthesias, Intravenous OR Intravenous Anesthesia OR Intravenous Anesthesias

#11 Propofol[MeSH] OR Disoprofol

#12 Etomidate[MeSH] OR Ethomidate;

13 Thiopental[MeSH] OR Penthiobarbital OR Thiomebumal OR

BMJ Open

2	
3	
4	Thiopentobarbital OR Thiopentone OR Bomathal OR Pentothal Sodico
5	
6	#14 Vatamina[MaSII] OD Calunaal OD Valina
7	#14 Ketamine[MeSH] OR Calypsol OR Kalips
8	
9	#15 Midazolam[MeSH] OR Hydrochloride, Midazolam OR Maleate
10	
11	
12	Midazolam
13	
14	#1C OD /#10 #15
15	#16 OR/#10-#15
16	
17	#17 randomized controlled trial [pt]
18	"I / Tundomized controlled that [pt]
19	
20	#18 controlled clinical trial [pt]
21	
22	#10 rendersized [tigh]
23	#19 randomized [tiab]
24	
25	#20 placebo [tiab]
26	
27	
28	#21 drug therapy [sh]
29	
30	#22 mandamly [tich]
31	#22 randomly [tiab]
32	
33	#23 trial [tiab]
34	
35	
36	#24 groups [tiab]
37	
38	#25 OR/#17-#24
39	#23 OK/#17-#24
40	
41	#26 animals [mh] NOT humans [mh]
42	
43	
44 45	#27 #25 NOT #26
46 47	#27 #25 NOT #26 #28 #1 AND #5 AND #9 AND #16 AND #27
48	$\pi_{20} \pi_{1} \operatorname{AIND} \pi_{2} \operatorname{AIND} \pi_{7} \operatorname{AIND} \pi_{10} \operatorname{AIND} \pi_{21}$
40	
49 50	
51	
01	

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT	• •		
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	1-3
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	4-5
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5
METHODS	·		
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5-6
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	6
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	6
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	6
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	7
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	7-8
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	7
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	8
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	8
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	8

Page 33 of 33

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page a
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	7-8
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	7-8
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	8-9
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	9-10
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	11
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	11-12
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	11-12
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	11
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	12
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	12-15
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	15
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	16
FUNDING	<u> </u>		
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	17

42 From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. 43 doi:10.1371/journal.pmed1000097

For more information, visit: www.prisma-statement.org.

Page 2 of 2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Comparison of the cerebroprotective effect of inhalation anaesthesia and total intravenous anaesthesia in patients undergoing cardiac surgery with cardiopulmonary bypass: A systematic review and meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2016-014629.R2
Article Type:	Research
Date Submitted by the Author:	09-Jun-2017
Complete List of Authors:	Chen, Feng Duan, You Wu, Xi Zuo, Yi Li, Hong; Xinqiao Hospital, Third Military Medical University, Anesthesiology
Primary Subject Heading :	Anaesthesia
Secondary Subject Heading:	Neurology
Keywords:	Anaesthesia in cardiology < ANAESTHETICS, Adult anaesthesia < ANAESTHETICS, Anaesthesia in neurology < ANAESTHETICS
	·

SCHOLARONE[™] Manuscripts

BMJ Open

Comparison of the cerebroprotective effect of inhalation anaesthesia and total intravenous anaesthesia in patients undergoing cardiac surgery with cardiopulmonary bypass: A systematic review and meta-analysis

Feng Chen^a, Guangyou Duan^a, Zhuoxi Wu^a, Zhiyi Zuo^b, Hong Li^{*}

^a Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing,400037, China
 ^b Department of Anesthesiology, University of Virginia, Charlottesville, Virginia,USA
 ^{*} Corresponding author at: Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University.

* Corresponding author at: Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China. Email: lh78553@163.com

Abstract

Objective: Neurological dysfunction remains a devastating postoperative complication undergoing in patients cardiac surgery with cardiopulmonary bypass (CPB), and previous studies have shown that inhalation anaesthesia and total intravenous anaesthesia (TIVA) may produce different degrees of cerebral protection in these patients. Therefore, we conducted a systematic literature review and meta-analysis to compare the neuroprotective effects of inhalation anaesthesia and TIVA.

Design: Searching in PubMed, EMBASE, Science Direct/Elsevier, China
 national knowledge infrastructure (CNKI), and Cochrane Library up to
 August 2016, we selected related randomized controlled trials for this

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 meta-analysis.

Result(s): A total of 1485 studies were identified. After eliminating duplicate articles and screening titles and abstracts, 445 studies were potentially eligible. After applying exclusion criteria (full texts reported as abstracts, review article, no control case, lack of outcome data, etc.), 13 studies were selected for review. Our results demonstrated that the primary outcome related to S100B level in the inhalation anaesthesia group was significantly lower than in the TIVA group after CPB and 24 hours postoperatively (weighted mean difference [WMD]; 95% confidence interval [CI]: -0.41 [-0.81, -0.01], -0.32 [-0.59, -0.05], respectively). Among secondary outcome variables, mini-mental state examination (MMSE) scores of the inhalation anaesthesia group were significantly higher than those of the TIVA group 24 hours after operation [WMD (95%CI): 1.87 (0.82, 2.92)], but no significant difference was found in arteriovenous oxygen content difference $[D(a-v)O_2]$, cerebral oxygen extraction ratio (O_2ER) , and jugular bulb venous oxygen saturation (SjvO₂), which were assessed at cooling and rewarming during CPB.

Conclusion(s): This study demonstrates that anaesthesia with volatile agents appears to provide better cerebral protection than TIVA for patients undergoing cardiac surgery with CPB, suggesting that inhalation anaesthesia may be more suitable for patients undergoing cardiac surgery.

BMJ Open

1	Keywords: anaesthesia; cerebral protection; cardiac surgery;								
2	cardiopulmonary bypass.								
3	Strengths and limitations of this study								
4	1. This is the first systematic review and meta-analysis to compare the								
5	neuroprotective effects of inhalation anaesthesia and those of total								
6	intravenous anaesthesia (TIVA) in cardiac surgery with								
7	cardiopulmonary bypass (CPB).								
3	2. This study focused on the overall comparison between inhalation								
9	anaesthesia and TIVA, different inhalation and intravenous								
0	anaesthetics were investigated in the included studies.								
1	3. The methodological quality of each study was assessed using the								
2	Jadad Scale for randomised controlled trials. Meta-analysis,								
3	heterogeneity test, bias assessment, sensitivity analysis, and subgroup								
ļ	analysis were also conducted.								
5	4. Because of the shortage of reported clinical trials, limited outcome								
5	data could be considered for subgroup analysis. The strength of the								
7	conclusion is limited by the quality and number of studies.								
8									
9									
0	Introduction								
1	Cardiopulmonary bypass (CPB) is a necessary and common								
2	procedure to support the patient's circulation during cardiac surgery.								
	For poor roviow only - http://bmiopon.hmi.com/sito/about/quidolinos.yhtml								

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	Although previous studies ^[1,2] reported that CPB does not increase the
2	postoperative morbidity and mortality in patients undergoing coronary
3	artery bypass graft (CABG) surgery, it was demonstrated that the
4	incidence of some postoperative complications for these patients remains
5	high. Neurological dysfunction is one of the most commonly reported
6	postoperative complications in patients undergoing cardiac surgery ^[3,4] .
7	Several factors including cerebral anoxia, embolism, excessive excitatory
8	neurotransmitter release, and systemic inflammatory response have been
9	demonstrated to contribute to postoperative neurological dysfunction ^[5] .
10	However, at present, there is no definitive clinical evidence regarding
11	cerebral protection for patients undergoing cardiac surgery with CPB ^[6] .
12	Previous studies on animals support the hypothesis that anaesthetics can
13	produce cerebral protection ^[7-9] . Many recent studies have found that
13 14	produce cerebral protection ^[7-9] . Many recent studies have found that anaesthetic agents may be neuroprotective and may provide cerebral
14	anaesthetic agents may be neuroprotective and may provide cerebral
14 15	anaesthetic agents may be neuroprotective and may provide cerebral protection to surgery patients ^[10, 11] . However, clinical studies show that
14 15 16	anaesthetic agents may be neuroprotective and may provide cerebral protection to surgery patients ^[10, 11] . However, clinical studies show that the relative effects of inhalation anaesthesia or total intravenous
14 15 16 17	anaesthetic agents may be neuroprotective and may provide cerebral protection to surgery patients ^[10, 11] . However, clinical studies show that the relative effects of inhalation anaesthesia or total intravenous anaesthesia (TIVA) on neuroprotection in cardiac surgery with CPB
14 15 16 17 18	anaesthetic agents may be neuroprotective and may provide cerebral protection to surgery patients ^[10, 11] . However, clinical studies show that the relative effects of inhalation anaesthesia or total intravenous anaesthesia (TIVA) on neuroprotection in cardiac surgery with CPB remain controversial and much debated ^[12-14] . Therefore, which option
14 15 16 17 18 19	anaesthetic agents may be neuroprotective and may provide cerebral protection to surgery patients ^[10, 11] . However, clinical studies show that the relative effects of inhalation anaesthesia or total intravenous anaesthesia (TIVA) on neuroprotection in cardiac surgery with CPB remain controversial and much debated ^[12-14] . Therefore, which option provides better cerebral protection to patients undergoing cardiac surgery
14 15 16 17 18 19 20	anaesthetic agents may be neuroprotective and may provide cerebral protection to surgery patients ^[10, 11] . However, clinical studies show that the relative effects of inhalation anaesthesia or total intravenous anaesthesia (TIVA) on neuroprotection in cardiac surgery with CPB remain controversial and much debated ^[12-14] . Therefore, which option provides better cerebral protection to patients undergoing cardiac surgery with CPB is unknown. Since inhalation anaesthesia and TIVA are the

BMJ Open

1	neurologic dysfunction studies for cardiac surgery with CPB, the sample
2	size of these previous studies was generally small. For these reasons, it is
3	necessary to systematically review the available literature and perform a
4	meta-analysis to compare the neuroprotective effects of inhalation
5	anaesthesia and TIVA.
6	
7	Materials and Methods
8	The current systematic review and meta-analysis was carried out in
9	accordance with the preferred reporting items for systematic reviews and
10	meta-analyses (PRISMA) reporting guidelines for intervention trials ^[15] .
11	
12	Literature search
13	This meta-analysis was restricted to published studies that
14	investigated the cerebral protective effects of anaesthetics in patients with
15	CPB. Two independent reviewers searched PubMed, EMBASE, Science
16	Direct/Elsevier, MEDLINE, CNKI, and the Cochrane Library from
17	inception to August 2016, without restrictions on language or study type.
18	The search terms combined text words and medical subject headings
19	(MeSH) terms. For example, the search terms for CPB were:
20	'Cardiopulmonary Bypass' and 'Heart Lung Bypass'. Those for TIVA
21	were: 'propofol', 'disoprofol', 'etomidate' 'midazolam', 'sodium
22	pentothal', 'thiopental', and 'ketamine', while those for inhalation

10	Eligibility criteria
9	
8	this case.
7	reviews were retrieved manually and only full articles were searched in
6	abstracts were retrieved. In addition, references cited within relevant
5	headings specifications of the other databases.). All relevant articles and
4	MEDLINE search strategy will be adapted to the syntax and subject
3	provided in the online supplementary appendix, and the finalised
2	'enflurane', and 'methoxyflurane'. (The MEDLINE search strategy is
1	anaesthesia were 'halothane', 'sevoflurane', 'isoflurane', 'desflurane',

Eligibility criteria

Inclusion criteria: Original articles in which all patients undergoing cardiac surgery with CPB were randomly allocated to receive the inhalation anaesthesia or TIVA. Patients underwent cardiac surgery with no restriction on dose and the administration time of anaesthetics.

Exclusion criteria: Case reports, review articles, duplicate publications, and studies without outcome data were excluded. Studies involving patients with cerebrovascular disease, central nervous system disorders, use of psychotropic drugs, or a history of alcohol or substance abuse were also excluded.

Outcomes

In the included studies, S100B levels in serum were detected before

CPB (pre-CPB), after CPB (post-CPB) and 24 hours postoperatively. And the primary outcomes were protein S100B levels in serum post-CPB and The secondary hours postoperatively. outcomes included mini-mental state examination (MMSE) scores assessed preoperatively and 24 hours postoperatively, the jugular bulb venous oxygen saturation $(SivO_2)$, arteriovenous oxygen content difference $[D(a-v)O_2]$ and cerebral oxygen extraction ratio (O_2ER) were tested at cooling and rewarming during CPB.

10 Study selection and validity assessment

Two independent reviewers screened titles and abstracts of all papers from the literature search. All relevant studies that appeared to meet the inclusion criteria were retrieved. Full texts were obtained to check if an ambiguous decision was made based on the title and the abstract. Only randomized controlled trials were included in the analysis. Disagreements were resolved through consensus or by a third reviewer. Two reviewers completed the quality assessment according to the primary criteria for randomized controlled trial studies

20 Data extraction and statistical analysis

Data on authors, year of publication, number and mean age of participants, anaesthetics, and study setting and outcomes were extracted

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	by three reviewers. Disagreements between reviewers were resolved by
2	consensus. Quantitative meta-analysis was performed by two reviewers
3	with Review Manager (RevMan) software (version 5.2, Nordic Cochrane
4	Centre, Cochrane Collaboration, 2012, Copenhagen).
5	The weighted mean differences (WMD) of outcomes in randomized
6	controlled trials and their 95% confidence intervals (CI) were presented.
7	Heterogeneity was assessed using the P-value and the I-square statistic (I^2)
8	in the pooled analysis, which represents the percentage of total variation
9	across studies ^[16] . If the <i>P</i> -value was less than 0.1 or the I^2 value was
10	greater than 50%, the summary estimate was analysed in a
11	random-effects model. Otherwise, a fixed-effects model was applied. In
12	addition, publication bias was detected using Egger's test in the
13	meta-analysis. If the P -value was less than 0.05, publication bias was
14	assumed existed.
15	Results
16	Characteristics of the included studies
17	A total of 1485 studies were retrieved. Of these, 1148 remained after
18	duplicate articles were eliminated. After screening titles and abstracts,
19	445 studies were potentially eligible. Based on the exclusion criteria, 13
20	studies were ultimately selected (Fig. 1). All reviewers agreed to include
21	all 13 papers. Although all of these randomized controlled trials (RCTs)
22	were considered to have a low risk of bias, nine studies included no

BMJ Open

details on the method of random sequence generation and allocation
^[17-25].Only one study provided the details about the blinding of the data
collection^[26].
'Inhalation anaesthesia' was defined as a group receiving a volatile
agent like isoflurane, sevoflurane, or desflurane. In the included studies,

patients in the 'volatile anaesthesia' group had not received propofol, thiopental, or ketamine during the surgery and CPB. The patients in the 'Total Intravenous Anaesthesia' (TIVA) group had received only intravenous anaesthetics, but not volatile agents. These studies involved 549 patients, including 272 patients with inhalation anaesthesia and 277 patients with TIVA (Table 1). Patients' age ranges in 'inhalation anaesthesia' and 'TIVA' groups were 44 to 75 years and 43 to 74 years, respectively. The mean age of patients was unavailable for three studies ^[17-19]. All the articles had reported exclusion/inclusion criteria ^[17-29]. Of these, seven studies had used isoflurane vs. TIVA [17, 19-21, 23, 24, 27], four studies had used sevoflurane vs. TIVA ^[18, 22, 25, 26], and two studies had used desflurane vs. TIVA ^[28, 29], in patients.

48 49	Mean				Volatile		
49 50	Study	age(inhalation/TIVA)	Setting	Case	agents	Comparator	Outcomes
51	Min Jiang .2007	36-62	CPB-Cardiac surgery	15/15	Isoflurane	Propofol	SjvO ₂ %, CBP time
52	Huaping Yuan .2015	40-65	CPB-Cardiac valve replacement	15/15	Sevoflurane	Propofol	S100B,MMSE
53 54	Lei Li 2010	60-70	CPB-CABG	15/15	Isoflurane	Propofol	S100B
55	Mark F. 1997	56±12/61±14	CPB-Cardiac valve replacement	16/15	Isoflurane	Thiopental	CBF,CMRO ₂ ,D(a-v)O ₂ ,O ₂ ER%,SjvO ₂ %,CBP time
56	Thomas E1987	55.5±9.9/63.1±6.5	CPB-CABG	16/21	Isoflurane	Thiopental	CBF,CMRO ₂ , CBP time
57	Gigdem Y.2014	57.37±9.8/57.33±7.2	CPB-Cardiac surgery	10/10	Sevoflurane	Midazolam	CBP time
58							

1							10		
2 3	Meral kanbak .2004	56±7.6/54.5±5.9	CPB-CAE	3G 20/20	Isoflurane	Propofol	S100B, CBP time		
4	Elif Dogan.2013	64.57±10.84/66.45±13.04	CPB-CAE		Desflurane	Propofol	S100B,CBP time		
5	Sarvesh pal .2011	60.10±7.9/59.54±8.83	CPB-CAE		Sevoflurane	Midazolam	S100B,CBP time		
6	Tingting Chen .2007	52±5/48±7	CPB-Cardiac valve		Isoflurane	Propofol	S100B,D(a-v)O ₂ ,O ₂ ER%	SivO ₂ % CBP time	
7 8	Jianrong Guo .2009	44±8/43±7	CPB-Cardiac valve	•	Isoflurane	Propofol	S100B,D(a-v)O ₂ ,O ₂ ER%		
9	Shudong Ma .2015	44±8/43±7 49.5±2.6/49.1±2.4	CPB-Cardiac valve	-	Sevoflurane	Propofol	S100B,MMSE	SJVO ₂ %,CBF time	
10	Jiying Zhong .2010	49.3±2.0/49.1±2.4 75±5/74±4	CPB-Caldiac valve	•	Desflurane	Ketamine	S100B,MMSE		
11 12		/ 5±5/ / 4±4	CI B-CAI	50 25/25	Destitutatie	Ketainine	5100B,MINISE		
13	1	Table 1. Study	haractoristics	of the included	studios				
14	2	Table 1. Study	character istics	of the included	studies				
15	3	(n) TIVA, total	intravonous an	aasthasia. CDI	2 aardianu	Imonary	hypass: CARC		
16 17		coronary artery		-	· •	•	• •		
18	5	cerebral blood	••••	0					
19	7	$D(a-v)O_2$, arter				• •	· ·		
20 21	, 8	extraction; Sjv(.0		,	,	ai oxygen		
21	0	extraction, Sjv	52, jugulai bul	o venous oxyge	ii satui atio				
23	9								
24									
25 26	10	Methodology	quality of th	e included tr	rials				
27			1 1.		1 / 1.		, ·		
28	11	Methodology quality of the included studies was assessed using a							
29 30									
31	12	modified Jadad scale. A score of 4–7 indicated a high-quality study, and a							
32	12	score of 1–3 indicated a low-quality study. Of the 13 included studies, 10							
33 34	13	Score of 1-3 1		v-quality stud	ly. Of the	15 meruo	ueu studies, 10		
35	14	received score	$e_{\rm s}$ of 1-3 and t	hree received	scores of	4-7 (Tab	le 2)		
36					500105 01	1 / (140	<i>(ie 2)</i> .		
37 38	15				In de d	Score			
39	s	tudy Rando	omization	Allocaion concealme	Jadad	linding	Attrition	Score	
40 41	Min Jiang .2		1	0		1	0	2	
42	Huaping Yua		1	0		0	0	1	
43	Lei Li 2010		1	0		1	0	2	
44 45	Mark F. 199	7	1	0		0	0	1	
45 46	Thomas E19		1	0		0	0	1	
47	Gigdem Y.20		1	0		1	0	1	
48 40	Meral kanba		1	2		1	0	4	
49 50	Elif Dogan.2	013	1	2		1	0	4	
51	Sarvesh pal.	2011	2	2		1	0	5	
52	Tingting Che	en .2007	1	0		0	0	1	
53 54	Jianrong Guo	0.2009	1	0		0	0	1	
55	Shudong Ma	.2015	1	0		0	0	1	
56	Jiying Zhong	g.2010	2	0		1	0	3	
57	16								

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Table 2. Methodology quality of the included randomized controlled trials (RCTs) **Meta-analysis** Summary estimate for S100B levels post-CPB and 24 hours postoperatively were analysed in a random-effects model because of the heterogeneity ($I^2=96\%$ and $I^2=99\%$, respectively). Based on 6 studies from 230 patients, S100B levels assessed at the end of CPB and 24 hours postoperatively in inhalation anaesthesia group were significantly lower than those in TIVA group [WMD (95% CI): -0.41 (-0.81, -0.01), -0.32 (-0.59, -0.05), respectively, Fig. 2]. Based on 3 studies from 110 patients, postoperative MMSE scores of the inhalation anaesthesia group were significantly higher than those of the TIVA group [WMD (95%CI): 1.87 (0.82, 2.92)], Fig. 3]. A significant heterogeneity was detected ($I^2=77\%$), and thus summary estimate was analysed in a random-effects model. There was no significant difference in $D(a-v)O_2$, O_2ER , and $SivO_2$ assessed at cooling and rewarming during CPB between the inhalation anaesthesia group and the TIVA group (Fig. 4, 5, 6). Egger's regression test of S100B levels, MMSE scores, $D(a-v)O_2$, O_2ER , and SivO₂ indicated little evidence of publication bias, respectively (Table 3).

Std_Eff	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
bias(S100B)	-2.67	2.35	-1.14	0.27	[-7.65 2.32]
bias(MMSE)	2.89	5.30	0.54	0.61	[-10.08 15.85]
bias(D(a-v)O ₂)	186.01	99.93	1.86	0.14	[-91.44 463.46]

		B	MJ Open			
						12
bias(O ₂ ER%)	13.87	6.58	3.63	0.12	[5.59	42.14
bias(SjvO ₂ %)	2.12	19.48	0.11	0.92	[-45.56	49.79
Table 3. Egger	's test of Pul	blication bi	as			
(n) MMSE, mi content differe venous oxygen	ence; O2ER,		-		iovenous oxyg 2, jugular bulb	en
We cond	ducted sens	itivity and	alysis of	the meta-ana	alysis. We on	nitted
one studv s	equentially.	and cal	culated t	he combine	ed WMD for	r the
-						
remaining si	tudies, wh		ed const	stent result	s. In the ov	veral
neta-analysis	s, no single	study sign	nificantly	changed the	e combined re	sults
which indicat	ted that the	results w	ere statist	tically stable	e and reliable	(Fig
7, 8).						
		Disc	cussion			
In our s	tudy, thirte	en publisł	ned article	es were incl	uded to deter	mine
the difference	e in the ext	ent of cer	ebral pro	tection prov	ided by inhal	atior
anaesthesia a	nd TIVA d	uring care	diac surge	ery with CPI	B. Eight out o	of the
thirteen studi	es suggeste	d that inh	alation ar	naesthesia m	ight be super	ior to
TIVA in term	ns of their o	erebropro	otective et	ffect after C	PB ^{[18, 20-22, 25-}	27, 29]
					the opposite	
nowever, me	results rep					
22 24 201		adamlina fl	ne existin	g debate on	which anaest	thetic
^{23, 24, 28]} . Thes	se results ur	idenine u		B desute sh		liielii
^{23, 24, 28]} . Thes approach is						

showed that inhalation anaesthesia might be superior to TIVA during
 cardiac surgery with CPB.

S100B is mainly expressed in the astrocytes, and blood S100B level is commonly used as an outcome parameter for evaluating the postoperative neurological dysfunction^[30]. Its level in the blood has been shown to increase in patients after ischemic stroke and brain trauma^[31]. Serum S100B has also been detected after cardiac surgery complicated by neurological injury in adults; thus, it has the potential to serve as an early marker of brain damage [32, 33]. In this meta-analysis, the serum level of S100B after CPB in the inhalation anaesthesia group was found to be significantly lower than that in the TIVA group (P<0.05) ^[18, 25-27, 29]. suggesting that inhalation anaesthetics provide better cerebral protection than TIVA against brain damage.

As reported by Svenmarker et al^[34], it is inevitable that S100B contamination will occur due to the pericardial suction blood, which is often re-transfused or processed in the cell saver and then re-transfused during CPB. However, a strict control of clinical procedures may decrease its potential effect on the difference of S100B detection between the two groups. In the included studies, the use of re-transfusion and cell salvage were not mentioned. Therefore, the possible effect of re-transfusion and cell salvage should not be neglected, and this is a potential limitation of the current study.

1	Among the secondary outcomes, the MMSE is one of the most
2	commonly used parameters for the clinical evaluation of cognitive
3	function. Our results show that postoperative MMSE scores of patients in
4	the inhalation anaesthesia group were significantly higher than those in
5	the TIVA group (P<0.05) ^[18, 25, 29] . These results suggest that inhalation
6	anaesthesia is better than TIVA in terms of protecting the postoperative
7	cognitive function of patients undergoing cardiac surgery with CPB. The
8	meta-analysis also showed that the other outcomes such as D(a-v)O ₂ ,
9	O ₂ ER, and SjvO ₂ , were not significantly different for TIVA and
10	inhalation anaesthesia groups. However, we found that in some studies,
11	the cerebral oxygen metabolic rate (CMRO ₂) in patients receiving
12	inhalation anaesthetics assessed at cooling and rewarming during CPB
13	was consistently lower than that in patients receiving TIVA ^[20, 21] .
14	Additionally, the intraoperative cerebral blood flow (CBF) assessed at
15	cooling and rewarming during CPB in the inhalation anaesthesia group
16	was significantly higher than that in the TIVA group ^[20, 21] . A low ratio of
17	global cerebral oxygen and adequate cerebral blood supply is an
18	important parameter for evaluating cerebral protection ^[35] . Thus, these
19	results based on CMRO ₂ and CBF can strengthen the finding that
20	inhalation anaesthesia may provide better neuroprotection than TIVA.
21	Experimental data suggest that direct positive effects of volatile

Experimental data suggest that direct positive effects of volatile anaesthetics may be caused by various pre-conditioning and

BMJ Open

1	post-conditioning mechanisms ^[36, 37] , which attenuate apoptosis and
2	necrosis of cerebral neurons, thereby reducing neurological dysfunction
3	after ischaemia. Moreover, the contribution of inhalation agents in
5	
4	preserving satisfactory haemodynamics may ensure adequate perfusion
5	and oxygenation of other organ systems, ^[38-41] and improve the chances
6	for recovery and survival after surgery. All these effects can be expanded
7	well beyond the immediate perioperative period because of
8	anaesthetic-induced neuroprotection that can be long lasting [42, 43].
9	Additionally, a recent meta-analysis found that in cardiac surgery ^[44] , as
10	compared to TIVA, inhalation anaesthesia was associated with major
11	benefits in outcome, including reduced mortality, as well as a lower
12	incidence of pulmonary and other complications. Therefore, based on
13	previous findings and the current meta-analysis, it is speculated that
14	inhalation anaesthesia has the potential to serve as a preferential
15	anaesthesia strategy for cardiac patients.
16	Our study has few limitations. First, the sample size of the included
17	studies was relatively small and the total number of cases is very limited.
18	Second, there was heterogeneity in some of our results. Since trials were
19	based in different countries and hospitals, we were unable to avoid the
20	effects of race, age, gender, and underlying disease(s) of patients in our
21	study. Therefore, findings of the current study
22	were limited by the overall low quality of evidence and the lack of robust

data. Third, our study focused on the overall comparison between
inhalation anaesthesia and TIVA, and different inhalation (isoflurane,
desflurane, or sevoflurane) and intravenous (sodium thiopental, propofo
etc.) anaesthetics were investigated in the included studies. Because of
the limited number of reported clinical trials, limited outcome data coul
be considered for subgroup analysis. Therefore, further studies with
larger sample sizes are needed to demonstrate which anaesthetics are
more beneficial for cardiac patients.
In summary, the results of this meta-analysis indicate that
cerebroprotective effect of inhalation anaesthesia is better than that
TIVA in patients undergoing cardiac surgery with CPB. Further his
quality trials with larger sample sizes are warranted to investigate
effect of anaesthetics on cerebral protection.
Authors' contributions
Conception and design of experiments: F.C, H.L, Z.Z.
Conception and design of experiments: F.C, H.L, Z.Z. Performed the experiments: F.C, G.D, Z.W, Z.Z. Analysis of data: F.C. G.D. Z.W.
Analysis of data: F.C, G.D, Z.W.
Contribution of reagents/materials/analysis tools: Z.Z, H.L.
Paper written by: F.C, G.D, H.L, Z.Z.
All authors have reviewed the manuscript.

1	Funding
2	This study was supported by a grant from the National Natural Science
3	Foundation of China (No. 81571870) and the Natural Science Foundation
ļ	Project of Chongqing (cstc20136jjB10026).
5	
6	Competing interests: The authors declare no conflicts of interest.
7	
8	Data sharing statement: No additional data are available.
9	
10	
1	References
2	
.3	[1] Lamy A, Devereaux PJ, Prabhakaran D, et al. Effects of off-pump and on-pump coronary-artery bypass
14	grafting at 1 year. N Engl J Med. 2013. 368(13): 1179-88.
.5	[2] Lamy A, Devereaux PJ, Prabhakaran D, et al. Five-Year Outcomes after Off-Pump or On-Pump
L6	Coronary-Artery Bypass Grafting. N Engl J Med. 2016. 375(24): 2359-2368.
17	[3] McKhann GM, Grega MA, Borowicz LM, et al. Stroke and encephalopathy after cardiac surgery: an update.
18	Stroke. 2006. 37(2): 562-71.
19 20	[4] Hogue CW, Palin CA, Arrowsmith JE. Cardiopulmonary bypass management and neurologic outcomes: an
20	evidence-based appraisal of current practices. <i>Anesth Analg.</i> 2006. 103(1): 21-37.
71	[5] Wimmer-Greinecker G. Matheis G. Brieden M. et al. Neuronsychological changes after cardionulmonary
	[5] Wimmer-Greinecker G, Matheis G, Brieden M, et al. Neuropsychological changes after cardiopulmonary bypass for coronary artery bypass grafting. <i>Thorac Cardiovasc Surg</i> 1998;46(4): 207-12.
22	 [5] Wimmer-Greinecker G, Matheis G, Brieden M, et al. Neuropsychological changes after cardiopulmonary bypass for coronary artery bypass grafting. <i>Thorac Cardiovasc Surg</i> 1998;46(4): 207-12. [6] Blumenthal JA, Mahanna EP, Madden DJ, et al. Methodological issues in the assessment of neuropsychologic
22 23	bypass for coronary artery bypass grafting. Thorac Cardiovasc Surg 1998;46(4): 207-12.
22 23 24	bypass for coronary artery bypass grafting. <i>Thorac Cardiovasc Surg</i> 1998;46(4): 207-12.[6] Blumenthal JA, Mahanna EP, Madden DJ, et al. Methodological issues in the assessment of neuropsychologic
22 23 24 25	 bypass for coronary artery bypass grafting. <i>Thorac Cardiovasc Surg</i> 1998;46(4): 207-12. [6] Blumenthal JA, Mahanna EP, Madden DJ, et al. Methodological issues in the assessment of neuropsychologic function after cardiac surgery. <i>Ann Thorac Surg</i> 1995;59(5): 1345-50.
22 23 24 25 26 27	 bypass for coronary artery bypass grafting. <i>Thorac Cardiovasc Surg</i> 1998;46(4): 207-12. [6] Blumenthal JA, Mahanna EP, Madden DJ, et al. Methodological issues in the assessment of neuropsychologic function after cardiac surgery. <i>Ann Thorac Surg</i> 1995;59(5): 1345-50. [7] Pape M, Engelhard K, Eberspacher E, et al. The long-term effect of sevoflurane on neuronal cell damage and expression of apoptotic factors after cerebral ischemia and reperfusion in rats. <i>Anesth Analg</i> 2006;103(1): 173-9.
22 23 24 25 26 27 28	 bypass for coronary artery bypass grafting. <i>Thorac Cardiovasc Surg</i> 1998;46(4): 207-12. [6] Blumenthal JA, Mahanna EP, Madden DJ, et al. Methodological issues in the assessment of neuropsychologic function after cardiac surgery. <i>Ann Thorac Surg</i> 1995;59(5): 1345-50. [7] Pape M, Engelhard K, Eberspacher E, et al. The long-term effect of sevoflurane on neuronal cell damage and expression of apoptotic factors after cerebral ischemia and reperfusion in rats. <i>Anesth Analg</i> 2006;103(1): 173-9. [8] Sakai H, Sheng H, Yates RB, et al. Isoflurane provides long-term protection against focal cerebral ischemia in
22 23 24 25 26 27 28 29	 bypass for coronary artery bypass grafting. <i>Thorac Cardiovasc Surg</i> 1998;46(4): 207-12. [6] Blumenthal JA, Mahanna EP, Madden DJ, et al. Methodological issues in the assessment of neuropsychologic function after cardiac surgery. <i>Ann Thorac Surg</i> 1995;59(5): 1345-50. [7] Pape M, Engelhard K, Eberspacher E, et al. The long-term effect of sevoflurane on neuronal cell damage and expression of apoptotic factors after cerebral ischemia and reperfusion in rats. <i>Anesth Analg</i> 2006;103(1): 173-9. [8] Sakai H, Sheng H, Yates RB, et al. Isoflurane provides long-term protection against focal cerebral ischemia in the rat. <i>Anesthesiology</i> 2007;106(1): 92-9.
22 23 24 25 26 27 28 29 30	 bypass for coronary artery bypass grafting. <i>Thorac Cardiovasc Surg</i> 1998;46(4): 207-12. [6] Blumenthal JA, Mahanna EP, Madden DJ, et al. Methodological issues in the assessment of neuropsychologic function after cardiac surgery. <i>Ann Thorac Surg</i> 1995;59(5): 1345-50. [7] Pape M, Engelhard K, Eberspacher E, et al. The long-term effect of sevoflurane on neuronal cell damage and expression of apoptotic factors after cerebral ischemia and reperfusion in rats. <i>Anesth Analg</i> 2006;103(1): 173-9. [8] Sakai H, Sheng H, Yates RB, et al. Isoflurane provides long-term protection against focal cerebral ischemia in the rat. <i>Anesthesiology</i> 2007;106(1): 92-9. [9] Selman WR, Spetzler RF, Roessmann UR, et al. Barbiturate-induced coma therapy for focal cerebral ischemia.
22 23 24 25 26 27 28 29 30 31	 bypass for coronary artery bypass grafting. <i>Thorac Cardiovasc Surg</i> 1998;46(4): 207-12. [6] Blumenthal JA, Mahanna EP, Madden DJ, et al. Methodological issues in the assessment of neuropsychologic function after cardiac surgery. <i>Ann Thorac Surg</i> 1995;59(5): 1345-50. [7] Pape M, Engelhard K, Eberspacher E, et al. The long-term effect of sevoflurane on neuronal cell damage and expression of apoptotic factors after cerebral ischemia and reperfusion in rats. <i>Anesth Analg</i> 2006;103(1): 173-9. [8] Sakai H, Sheng H, Yates RB, et al. Isoflurane provides long-term protection against focal cerebral ischemia in the rat. <i>Anesthesiology</i> 2007;106(1): 92-9. [9] Selman WR, Spetzler RF, Roessmann UR, et al. Barbiturate-induced coma therapy for focal cerebral ischemia. Effect after temporary and permanent MCA occlusion. <i>J Neurosurg</i> 1981;55(2): 220-6.
21 22 23 24 25 26 27 28 29 30 31 32 33	 bypass for coronary artery bypass grafting. <i>Thorac Cardiovasc Surg</i> 1998;46(4): 207-12. [6] Blumenthal JA, Mahanna EP, Madden DJ, et al. Methodological issues in the assessment of neuropsychologic function after cardiac surgery. <i>Ann Thorac Surg</i> 1995;59(5): 1345-50. [7] Pape M, Engelhard K, Eberspacher E, et al. The long-term effect of sevoflurane on neuronal cell damage and expression of apoptotic factors after cerebral ischemia and reperfusion in rats. <i>Anesth Analg</i> 2006;103(1): 173-9. [8] Sakai H, Sheng H, Yates RB, et al. Isoflurane provides long-term protection against focal cerebral ischemia in the rat. <i>Anesthesiology</i> 2007;106(1): 92-9. [9] Selman WR, Spetzler RF, Roessmann UR, et al. Barbiturate-induced coma therapy for focal cerebral ischemia.

1	and brain magnesium disorders in patients undergoing coronary artery bypass graft surgery. J Cardiothorac
2	Vasc Anesth. 2012. 26(3): 395-402.
3	[12] Sagara Y, Hendler S, Khoh-Reiter S, et al. Propofol hemisuccinate protects neuronal cells from oxidative
4	injury. J Neurochem 1999;73(6): 2524-30.
5	[13] Wang H, Lu S, Yu Q, et al. Sevoflurane preconditioning confers neuroprotection via anti-inflammatory effects.
6	<i>Elite Ed</i> 2011;1(3): 604-15.
7	[14] McAuliffe JJ, Loepke AW, Miles L, et al. Desflurane, isoflurane, and sevoflurane provide limited
8	
8 9	neuroprotection against neonatal hypoxia-ischemia in a delayed preconditioning paradigm. <i>Anesthesiology</i>
	2009;111(3): 533-46.
10 11	[15] Moher D1, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses:
	the PRISMA statement. <i>PLoS Med</i> 2009;6(7):e1000097.
12	[16] Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. <i>Stat Med</i> 2002;21(11): 1539-58.
13	[17] Min J, Yanlin B. Target controlled infusion of propofol in shallow perioperative cardiopulmonary bypass for
14	brain protection. <i>Int J Clin Exp Med</i> 2007;4(6): 120-121.
15	[18] Huaping Y. Two methods of anesthesia of CPB heart valve replacement patients plasma level and the
16	influence of cognitive function according to beta. <i>Shandong Med</i> 2015;55(15): 71-72.
17	[19] Lei L, Weifu L, Jianchun F, et al. Effects of different anesthesia on cognition function in geriatric patients
18	following off-pump coronary artery bypass grafting. Chin J Geriatr Heart Brain Vessel Dis 2010;12 (11):
19	1002-1004.
20	[20] Newman MF, Croughwell ND, White WD, et al. Pharmacologic electroencephalographic suppression during
21	cardiopulmonary bypass: a comparison of thiopental and isoflurane. Anesth Analg 1998;86(2): 246-51.
22	[21] Woodcock TE, Murkin JM, Farrar JK, et al. Pharmacologic EEG suppression during cardiopulmonary bypass:
23	cerebral hemodynamic and metabolic effects of thiopental or isoflurane during hypothermia and
24	normothermia. Anesthesiology 1987;67(2): 218-24.
25	[22] Guclu CY, Unver S, Aydinli B, et al. The effect of sevoflurane vs. TIVA on cerebral oxygen saturation during
26	cardiopulmonary bypassrandomized trial. Adv Clin Exp Med 2014;23(6): 919-24.
27	[23] Tingting C, Gang W, Qi Z, et al. The comparison between isoflurane and propofol with effect on cerebral
28	protection in cardiac valve replacement Surgery. Chin J ECC 2007;5(2): 91-93+117.
29	[24] Jianrong G, Donglin J, Liyuan R, et al. Isoflurane and propofol for extracorporeal circulation open-heart
30	surgery in patients with a comparative study of perioperative cerebral protection. Chin J Clin Pharmacol Ther
31	2009;14(7): 812-817.
32	[25] Shudong M, Propofol and seven halothane Anesthesia for experacorporeal circulation of brain protection
33	effect comparison. Chin & F Med treatment 2015;12(9): 145-146
34	[26] Singh SP, Kapoor PM, Chowdhury U, et al. Comparison of S100beta levels, and their correlation with
35	hemodynamic indices in patients undergoing coronary artery bypass grafting with three different anesthetic
36	techniques. Ann Card Anaesth 2011;14(3): 197-202.
37	[27] Kanbak M, Saricaoglu F, Avci A, et al. Propofol offers no advantage over isoflurane anesthesia for cerebral
38	protection during cardiopulmonary bypass: a preliminary study of S-100beta protein levels. Can J Anaesth
39	2004;51(7): 712-7.
40	[28] Baki ED, Aldemir M, Kokulu S, et al. Comparison of the effects of desflurane and propofol anesthesia on the
41	inflammatory response and s100beta protein during coronary artery bypass grafting. Inflammation 2013;36(6):
42	1327-33.
43	[29] Jiying Z, Feng X, Xianjie W, et al. Brain protection of desflurane in old patients undergoing coronary artery
44	bypass grafting. Chin J New Drugs Clin Rem 2010;29(11):847-849.

1	[30] Wang DD, Bordey A. The astrocyte odyssey. Prog Neurobiol 2008;86(4): 342-67.
2	[31] An SA, Kim J, Kim OJ, et al. Limited clinical value of multiple blood markers in the diagnosis of ischemic
3	stroke. Clin Biochem 2013;46(9): 710-5.
4	[32] Kuzumi E, Vuylsteke A, Guo X, et al. Serum S100 protein as a marker of cerebral damage during cardiac
5	surgery. Br J Anaesth 2000;85(6): 936-7.
6	[33] Rasmussen LS, Christiansen M, Eliasen K, et al. Biochemical markers for brain damage after cardiac surgery
7	time profile and correlation with cognitive dysfunction. Acta Anaesthesiol Scand 2002;46(5): 547-51.
8	[34] Svenmarker S, Engström KG, Karlsson T, et al. Influence of pericardial suction blood retransfusion on
9	memory function and release of protein S100B. Perfusion. 2004;19(6):337-43.
10	[35] Goldman S, Sutter F, Ferdinand F, et al. Optimizing intraoperative cerebral oxygen delivery using noninvasive
11	cerebral oximetry decreases the incidence of stroke for cardiac surgical patients. Heart Surg Forum 2004;7:
12	376–381.
13	[36] McMurtrey RJ, Zuo Z. Isoflurane preconditioning and postconditioning in rat hippocampal neurons. Brain
14	Res 2010;1358: 184-90.
15	[37] Lee JJ, Li L, Jung HH, et al. Postconditioning with isoflurane reduced ischemia-induced brain injury in rats.
16	Anesthesiology 2008;108(6): 1055-62.
17	[38] Julier K, da SR, Garcia C, et al. Preconditioning by sevoflurane decreases biochemical markers for
18	myocardial and renal dysfunction in coronary artery bypass graft surgery: a double-blinded,
19	placebo-controlled, multicenter study. <i>Anesthesiology</i> 2003;98(6): 1315-27.
20	[39] Kim M, Kim M, Kim N, et al. Isoflurane mediates protection from renal ischemia-reperfusion injury via
21	sphingosine kinase and sphingosine-1-phosphate-dependent pathways. <i>Am J Physiol Renal Physiol</i> 2007;
22	293(6): F1827-35.
23	[40] Lee HT, Kim M, Kim J, et al. TGF-beta1 release by volatile anesthetics mediates protection against renal
23	proximal tubule cell necrosis. <i>Am J Nephrol</i> 2007;27(4): 416-24.
25	[41] Beck-Schimmer B, Breitenstein S, Urech S, et al. A randomized controlled trial on pharmacological
26	preconditioning in liver surgery using a volatile anesthetic. <i>Ann Surg</i> 2008;248(6): 909-18.
27	[42] Li H, Yin J, Li L, et al. Isoflurane postconditioning reduces ischemia-induced nuclear factor-kappaB
28	activation and interleukin 1 beta production to provide neuroprotection in rats and mice. <i>Neurobiol Dis</i> 2013;
29	1(54): 216-24.
30	[43] Zuo Z. A novel mechanism for sevoflurane preconditioning-induced neuroprotection. <i>Anesthesiology</i> 2012;
31	117(5): 942-4.
32	[44] Uhlig C, Bluth T, Schwarz K, et al. Effects of Volatile Anesthetics on Mortality and Postoperative Pulmonary
33	and Other Complications in Patients Undergoing Surgery: A Systematic Review and Meta-analysis. <i>Anesthesiology</i> .
34	2016. 124(6): 1230-45.
35	2010. 124(0). 1250-45.
36	
50	
37	Figure legends
38	Fig. 1 Flow diagram for the selection of eligible studies
39	Fig. 2 Forest plot showing the meta-analysis outcomes of the difference
40	in S100B levels of inhalation anaesthesia and total intravenous

 Fig. 3 Forest plot showing the meta-analysis outcomes of the difference in mini-mental state examination (MMSE) scores of inhalation anaesthesia and total intravenous anaesthesia (TIVA) groups Fig 4. Forest plot showing the meta-analysis outcomes of the difference in arteriovenous oxygen content difference [D(a-v)O2] of inhalation anaesthesia and total intravenous anaesthesia (TIVA) groups. Fig 5. Forest plot showing the meta-analysis outcomes of the difference in jugular bulb venous oxygen saturation (SjvO2) of inhalation anaesthesia and total intravenous anaesthesia (TIVA) groups. Fig 6. Forest plot showing the meta-analysis outcomes of the difference in cerebral oxygen extraction ratio (O2ER) of inhalation anaesthesia and total intravenous anaesthesia Fig. 7 The plot of sensitivity analysis of S100B levels Fig. 8 The plot of sensitivity analysis of mini-mental state examination 	 in mini-mental state examination (MMSE) scores of inhalat anaesthesia and total intravenous anaesthesia (TIVA) groups Fig 4. Forest plot showing the meta-analysis outcomes of the difference in arteriovenous oxygen content difference [D(a-v)O2] of inhalat anaesthesia and total intravenous anaesthesia (TIVA) groups. Fig 5. Forest plot showing the meta-analysis outcomes of the difference in jugular bulb venous oxygen saturation (SjvO2) of inhalat anaesthesia and total intravenous anaesthesia (TIVA) groups. Fig 6. Forest plot showing the meta-analysis outcomes of the difference in cerebral oxygen extraction ratio (O2ER) of inhalation anaesthesia at total intravenous anaesthesia (TIVA) groups. Fig. 7 The plot of sensitivity analysis of S100B levels Fig. 8 The plot of sensitivity analysis of mini-mental state examination (CD10E) 	-	20
in mini-mental state examination (MMSE) scores of inhalation anaesthesia and total intravenous anaesthesia (TIVA) groups Fig 4. Forest plot showing the meta-analysis outcomes of the difference in arteriovenous oxygen content difference [D(a-v)O2] of inhalation anaesthesia and total intravenous anaesthesia (TIVA) groups. Fig 5. Forest plot showing the meta-analysis outcomes of the difference in jugular bulb venous oxygen saturation (SjvO2) of inhalation anaesthesia and total intravenous anaesthesia (TIVA) groups. Fig 6. Forest plot showing the meta-analysis outcomes of the difference in cerebral oxygen extraction ratio (O2ER) of inhalation anaesthesia and total intravenous anaesthesia (TIVA) groups. Fig. 7 The plot of sensitivity analysis of S100B levels Fig. 8 The plot of sensitivity analysis of mini-mental state examination (O2ER)	in mini-mental state examination (MMSE) scores of inhalat anaesthesia and total intravenous anaesthesia (TIVA) groups Fig 4. Forest plot showing the meta-analysis outcomes of the different in arteriovenous oxygen content difference [D(a-v)O2] of inhalat anaesthesia and total intravenous anaesthesia (TIVA) groups. Fig 5. Forest plot showing the meta-analysis outcomes of the different in jugular bulb venous oxygen saturation (SjvO2) of inhalat anaesthesia and total intravenous anaesthesia (TIVA) groups. Fig 6. Forest plot showing the meta-analysis outcomes of the different in cerebral oxygen extraction ratio (O2ER) of inhalation anaesthesia a total intravenous anaesthesia (TIVA) groups. Fig. 7 The plot of sensitivity analysis of S100B levels Fig. 8 The plot of sensitivity analysis of mini-mental state examinat		anaesthesia (TIVA) groups
anaesthesia and total intravenous anaesthesia (TIVA) groups Fig 4. Forest plot showing the meta-analysis outcomes of the difference in arteriovenous oxygen content difference [D(a-v)O2] of inhalation anaesthesia and total intravenous anaesthesia (TIVA) groups. Fig 5. Forest plot showing the meta-analysis outcomes of the difference in jugular bulb venous oxygen saturation (SjvO2) of inhalation anaesthesia and total intravenous anaesthesia (TIVA) groups. Fig 6. Forest plot showing the meta-analysis outcomes of the difference in cerebral oxygen extraction ratio (O2ER) of inhalation anaesthesia and total intravenous anaesthesia (TIVA) groups. Fig. 7 The plot of sensitivity analysis of S100B levels Fig. 8 The plot of sensitivity analysis of mini-mental state examination	anaesthesia and total intravenous anaesthesia (TIVA) groups Fig 4. Forest plot showing the meta-analysis outcomes of the different in arteriovenous oxygen content difference [D(a-v)O2] of inhalat anaesthesia and total intravenous anaesthesia (TIVA) groups. Fig 5. Forest plot showing the meta-analysis outcomes of the different in jugular bulb venous oxygen saturation (SjvO2) of inhalat anaesthesia and total intravenous anaesthesia (TIVA) groups. Fig 6. Forest plot showing the meta-analysis outcomes of the different in cerebral oxygen extraction ratio (O2ER) of inhalation anaesthesia a total intravenous anaesthesia (TIVA) groups. Fig. 7 The plot of sensitivity analysis of S100B levels Fig. 8 The plot of sensitivity analysis of mini-mental state examinat		Fig. 3 Forest plot showing the meta-analysis outcomes of the difference
ig 4. Forest plot showing the meta-analysis outcomes of the difference in arteriovenous oxygen content difference [D(a-v)O2] of inhalation maesthesia and total intravenous anaesthesia (TIVA) groups. ig 5. Forest plot showing the meta-analysis outcomes of the difference in jugular bulb venous oxygen saturation (SjvO2) of inhalation maesthesia and total intravenous anaesthesia (TIVA) groups. ig 6. Forest plot showing the meta-analysis outcomes of the difference in cerebral oxygen extraction ratio (O2ER) of inhalation anaesthesia and otal intravenous anaesthesia (TIVA) groups. ig. 7 The plot of sensitivity analysis of S100B levels ig. 8 The plot of sensitivity analysis of mini-mental state examination	ig 4. Forest plot showing the meta-analysis outcomes of the different in arteriovenous oxygen content difference [D(a-v)O2] of inhalat maesthesia and total intravenous anaesthesia (TIVA) groups. ig 5. Forest plot showing the meta-analysis outcomes of the different in jugular bulb venous oxygen saturation (SjvO2) of inhalat maesthesia and total intravenous anaesthesia (TIVA) groups. ig 6. Forest plot showing the meta-analysis outcomes of the different in cerebral oxygen extraction ratio (O2ER) of inhalation anaesthesia a otal intravenous anaesthesia (TIVA) groups. ig. 7 The plot of sensitivity analysis of S100B levels ig. 8 The plot of sensitivity analysis of mini-mental state examinat	ir	n mini-mental state examination (MMSE) scores of inhalation
arteriovenous oxygen content difference [D(a-v)O2] of inhalation aesthesia and total intravenous anaesthesia (TIVA) groups. g 5. Forest plot showing the meta-analysis outcomes of the difference jugular bulb venous oxygen saturation (SjvO2) of inhalation aesthesia and total intravenous anaesthesia (TIVA) groups. g 6. Forest plot showing the meta-analysis outcomes of the difference cerebral oxygen extraction ratio (O2ER) of inhalation anaesthesia and al intravenous anaesthesia (TIVA) groups. g. 7 The plot of sensitivity analysis of S100B levels g. 8 The plot of sensitivity analysis of mini-mental state examination	arteriovenous oxygen content difference [D(a-v)O2] of inhalat aesthesia and total intravenous anaesthesia (TIVA) groups. g 5. Forest plot showing the meta-analysis outcomes of the different jugular bulb venous oxygen saturation (SjvO2) of inhalat aesthesia and total intravenous anaesthesia (TIVA) groups. g 6. Forest plot showing the meta-analysis outcomes of the different cerebral oxygen extraction ratio (O2ER) of inhalation anaesthesia a al intravenous anaesthesia (TIVA) groups. g. 7 The plot of sensitivity analysis of S100B levels g. 8 The plot of sensitivity analysis of mini-mental state examinat	ana	aesthesia and total intravenous anaesthesia (TIVA) groups
 aaesthesia and total intravenous anaesthesia (TIVA) groups. g 5. Forest plot showing the meta-analysis outcomes of the difference jugular bulb venous oxygen saturation (SjvO2) of inhalation aaesthesia and total intravenous anaesthesia (TIVA) groups. g 6. Forest plot showing the meta-analysis outcomes of the difference cerebral oxygen extraction ratio (O2ER) of inhalation anaesthesia and tal intravenous anaesthesia (TIVA) groups. g. 7 The plot of sensitivity analysis of S100B levels g. 8 The plot of sensitivity analysis of mini-mental state examination 	 aaesthesia and total intravenous anaesthesia (TIVA) groups. g 5. Forest plot showing the meta-analysis outcomes of the different jugular bulb venous oxygen saturation (SjvO2) of inhalat haesthesia and total intravenous anaesthesia (TIVA) groups. g 6. Forest plot showing the meta-analysis outcomes of the different cerebral oxygen extraction ratio (O2ER) of inhalation anaesthesia at a intravenous anaesthesia (TIVA) groups. g. 7 The plot of sensitivity analysis of S100B levels g. 8 The plot of sensitivity analysis of mini-mental state examinat 	Fi	g 4. Forest plot showing the meta-analysis outcomes of the difference
 g 5. Forest plot showing the meta-analysis outcomes of the difference jugular bulb venous oxygen saturation (SjvO2) of inhalation aesthesia and total intravenous anaesthesia (TIVA) groups. g 6. Forest plot showing the meta-analysis outcomes of the difference cerebral oxygen extraction ratio (O2ER) of inhalation anaesthesia and al intravenous anaesthesia (TIVA) groups. g. 7 The plot of sensitivity analysis of S100B levels g. 8 The plot of sensitivity analysis of mini-mental state examination 	 g 5. Forest plot showing the meta-analysis outcomes of the different jugular bulb venous oxygen saturation (SjvO2) of inhalat aesthesia and total intravenous anaesthesia (TIVA) groups. g 6. Forest plot showing the meta-analysis outcomes of the different cerebral oxygen extraction ratio (O2ER) of inhalation anaesthesia at an intravenous anaesthesia (TIVA) groups. g. 7 The plot of sensitivity analysis of S100B levels g. 8 The plot of sensitivity analysis of mini-mental state examinat 	in	arteriovenous oxygen content difference [D(a-v)O2] of inhalation
jugular bulb venous oxygen saturation (SjvO2) of inhalation aesthesia and total intravenous anaesthesia (TIVA) groups. g 6. Forest plot showing the meta-analysis outcomes of the difference cerebral oxygen extraction ratio (O2ER) of inhalation anaesthesia and tal intravenous anaesthesia (TIVA) groups. g. 7 The plot of sensitivity analysis of S100B levels g. 8 The plot of sensitivity analysis of mini-mental state examination	jugular bulb venous oxygen saturation (SjvO2) of inhalat aesthesia and total intravenous anaesthesia (TIVA) groups. g 6. Forest plot showing the meta-analysis outcomes of the difference cerebral oxygen extraction ratio (O2ER) of inhalation anaesthesia a tal intravenous anaesthesia (TIVA) groups. g. 7 The plot of sensitivity analysis of S100B levels g. 8 The plot of sensitivity analysis of mini-mental state examinat	an	aesthesia and total intravenous anaesthesia (TIVA) groups.
 aaesthesia and total intravenous anaesthesia (TIVA) groups. g 6. Forest plot showing the meta-analysis outcomes of the difference cerebral oxygen extraction ratio (O2ER) of inhalation anaesthesia and tal intravenous anaesthesia (TIVA) groups. g. 7 The plot of sensitivity analysis of S100B levels g. 8 The plot of sensitivity analysis of mini-mental state examination 	haesthesia and total intravenous anaesthesia (TIVA) groups. g 6. Forest plot showing the meta-analysis outcomes of the difference cerebral oxygen extraction ratio (O2ER) of inhalation anaesthesia a tal intravenous anaesthesia (TIVA) groups. g. 7 The plot of sensitivity analysis of S100B levels g. 8 The plot of sensitivity analysis of mini-mental state examinat	Fi	g 5. Forest plot showing the meta-analysis outcomes of the difference
ig 6. Forest plot showing the meta-analysis outcomes of the difference a cerebral oxygen extraction ratio (O2ER) of inhalation anaesthesia and otal intravenous anaesthesia (TIVA) groups. ig. 7 The plot of sensitivity analysis of S100B levels ig. 8 The plot of sensitivity analysis of mini-mental state examination	ig 6. Forest plot showing the meta-analysis outcomes of the different in cerebral oxygen extraction ratio (O2ER) of inhalation anaesthesia a otal intravenous anaesthesia (TIVA) groups. ig. 7 The plot of sensitivity analysis of S100B levels ig. 8 The plot of sensitivity analysis of mini-mental state examinat	in	jugular bulb venous oxygen saturation (SjvO2) of inhalation
a cerebral oxygen extraction ratio (O2ER) of inhalation anaesthesia and otal intravenous anaesthesia (TIVA) groups. ig. 7 The plot of sensitivity analysis of S100B levels ig. 8 The plot of sensitivity analysis of mini-mental state examination	a cerebral oxygen extraction ratio (O2ER) of inhalation anaesthesia a otal intravenous anaesthesia (TIVA) groups. ig. 7 The plot of sensitivity analysis of S100B levels ig. 8 The plot of sensitivity analysis of mini-mental state examinat	ar	naesthesia and total intravenous anaesthesia (TIVA) groups.
tal intravenous anaesthesia (TIVA) groups. g. 7 The plot of sensitivity analysis of S100B levels g. 8 The plot of sensitivity analysis of mini-mental state examination	tal intravenous anaesthesia (TIVA) groups. g. 7 The plot of sensitivity analysis of S100B levels g. 8 The plot of sensitivity analysis of mini-mental state examinat	Fi	g 6. Forest plot showing the meta-analysis outcomes of the difference
g. 7 The plot of sensitivity analysis of S100B levels g. 8 The plot of sensitivity analysis of mini-mental state examination	g. 7 The plot of sensitivity analysis of S100B levels g. 8 The plot of sensitivity analysis of mini-mental state examinat	in	cerebral oxygen extraction ratio (O2ER) of inhalation anaesthesia and
g. 8 The plot of sensitivity analysis of mini-mental state examination	g. 8 The plot of sensitivity analysis of mini-mental state examinat	tot	al intravenous anaesthesia (TIVA) groups.
		Fi	ig. 7 The plot of sensitivity analysis of S100B levels
/MSE) scores	/MSE) scores	Fi	g. 8 The plot of sensitivity analysis of mini-mental state examination
		()	MMSE) scores

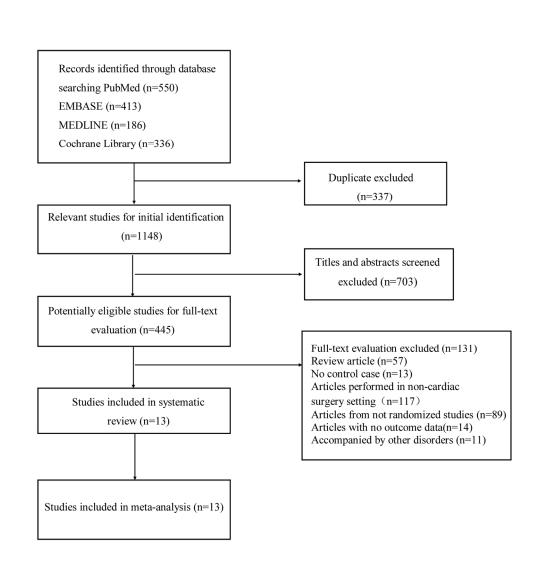


Fig. 1 Flow diagram for the selection of eligible studies

160x160mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1
2
3 4 5 6 7 8
4
5
6
1
8
9
10
11
12
13
14
15
16
17
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
55

	inhalatic	n anesth		total intrav				Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
1.1.1 S100B(pre-CPB)								
Huaping Yuan 2015	0.42	0.05	25	0.44	0.08	25	6.8%	-0.02 [-0.06, 0.02]	1
Jianrong Guo 2009	0.45	0.17	15	0.46	0.21	15	6.0%	-0.01 [-0.15, 0.13]	+
Jiying Zhong 2010	0.18	0.12	15	0.17	0.18	15	6.3%	0.01 [-0.10, 0.12]	+
Lei Li 2014	0.33	0.06	15	0.32	0.07	15	6.7%	0.01 [-0.04, 0.06]	+
Sarvesh pal 2011	0.05	0.1	60	0.04	0.09	61	6.8%	0.01 [-0.02, 0.04]	t
Shudong Ma 2015	0.045	0.013	30	0.041	0.015	30	6.9%	0.00 [-0.00, 0.01]	
Subtotal (95% CI)			160			161	39.5%	0.00 [-0.00, 0.01]	
Heterogeneity: Tau² =			= 5 (P = 0).87); I² = 0%					
Test for overall effect: 2	Z= 1.03 (P	= 0.30)							
1.1.2 S100B(post-CPE	;)								
Huaping Yuan 2015	2.66	0.38	25	3.81	0.62	25	4.3%	-1.15 [-1.44, -0.86]	
Jianrong Guo 2009	3.23	0.78	15	2.78	0.64	15	2.3%	0.45 [-0.06, 0.96]	
Jiying Zhong 2010	0.43	0.21	15	1.4	0.4	15	4.9%	-0.97 [-1.20, -0.74]	
Lei Li 2014	0.99	0.22	15	0.82	0.21	15	5.8%	0.17 [0.02, 0.32]	-
Sarvesh pal 2011	0.9	1.68	60	1.68	2	61	1.6%	-0.78 [-1.44, -0.12]	
Shudong Ma 2015	0.972	0.111	30	1.141	0.126	30	6.7%	-0.17 [-0.23, -0.11]	-
Subtotal (95% CI)			160			161	25.7%	-0.41 [-0.81, -0.01]	-
Heterogeneity: Tau² = Test for overall effect: 3			df = 5 (P	< 0.00001); l ^a	²= 96%				
1.1.3 S100B(24h post	operative	V)							
Huaping Yuan 2015	1.45	0.1	25	2.32	0.15	25	6.6%	-0.87 [-0.94, -0.80]	+
Jianrong Guo 2009	0.49	0.13	15	0.45	0.15	15	6.4%	0.04 [-0.06, 0.14]	
Jiying Zhong 2010	0.14	0.16	15	0.21	0.13	15	6.3%	-0.07 [-0.17, 0.03]	
Lei Li 2014	0.53	0.09	15	0.45	0.11	15	6.6%	0.08 [0.01, 0.15]	
Sarvesh pal 2011	0.48	1.28	60	1.71	1.9	61	2.0%	-1.23 [-1.81, -0.65]	
Shudona Ma 2015	0.333	0.028	30	0.592	0.037	30	6.8%	-0.26 [-0.28, -0.24]	
Subtotal (95% CI)			160			161	34.8%	-0.32 [-0.59, -0.05]	
Heterogeneity: Tau ² =	0.10: Chi ? =	= 429.90.	df = 5 (P	< 0.00001); P	² = 99%			Carlon Contractor	· · · · · · · · · · · · · · · · · · ·
Test for overall effect: J			, e						
Total (95% CI)			480			483	100.0%	-0.20 [-0.29, -0.10]	•
Heterogeneity: Tau ² =	0.04; Chi ² :	= 1545.21	df= 17	(P < 0.00001)); l² = 99%				
			1 a						-1 -0.5 0 0.5 1

Fig. 2 Forest plot showing the meta-analysis outcomes of the difference in S100B levels of inhalation anaesthesia and total intravenous anaesthesia (TIVA) groups

160x113mm (300 x 300 DPI)

	inhalatio	n anesthe	etics	total intrave	nous anest	thesia		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV. Random, 95% Cl	IV, Random, 95% Cl
1.3.1 MMSE(pre-operation	ation)								
Huaping Yuan 2015	28.83	1.15	25	28.31	1.08	25	17.7%	0.52 [-0.10, 1.14]	
Jiying Zhong 2010	28.8	0.3	15	28.2	0.94	15	18.8%	0.60 [0.10, 1.10]	
Shudong Ma 2015	29.05	1.18	30	29.24	1.04	30	18.3%	-0.19 [-0.75, 0.37]	
Subtotal (95% CI)			70			70	54.8%	0.31 [-0.18, 0.81]	•
Heterogeneity: Tau ² =	0.11; Chi ² =	4.76, df =	2 (P = 0	.09); l ² = 58%					
Test for overall effect: 2	Z = 1.24 (P =	= 0.22)							
1.3.2 MMSE(24 hours	postoperat	tively)							
Huaping Yuan 2015	26.52	2.03	25	24.15	1.83	25	13.2%	2.37 [1.30, 3.44]	
Jiying Zhong 2010	28.2	0.6	15	27.1	0.3	15	20.1%	1.10 [0.76, 1.44]	-
Shudong Ma 2015	26.38	3.03	30	23.89	1.57	30	11.8%	2.49 [1.27, 3.71]	
Subtotal (95% CI)			70			70	45.2%	1.87 [0.82, 2.92]	\bullet
Heterogeneity: Tau ² = Test for overall effect: 2				.01); l² = 77%					
Total (95% CI)			140			140	100.0%	1.00 [0.37, 1.63]	•
Heterogeneity: Tau ² =	0.48; Chi ² =	31.86, df	= 5 (P <	0.00001); l ² =	84%			E E	
Test for overall effect:				.,,				-4	-2 0 2
Test for subaroup diffe			f = 1 (D -	- 0 000) 12 - 9	E E0/			Favou	irs experimental Favours control

Fig. 3 Forest plot showing the meta-analysis outcomes of the difference in mini-mental state examination (MMSE) scores of inhalation anaesthesia and total intravenous anaesthesia (TIVA) groups

160x64mm (300 x 300 DPI)

	inhalation	anesthe	etics	total intravenou	s anes	thesia		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.5.1 D(a-v)O2(cooling	3)								
Jianrong Guo 2009	26	3	15	31	8	15	19.6%	-5.00 [-9.32, -0.68]	
Mark F 1997	25	12	16	39	20	15	11.4%	-14.00 [-25.71, -2.29]	
Tingting Chen 2007	28	4	15	32	6	15	20.3%	-4.00 [-7.65, -0.35]	
Subtotal (95% CI)			46			45	51.4%	-5.16 [-8.44, -1.87]	◆
Heterogeneity: Tau ² = 1	1.99; Chi ² = 2	2.56, df =	2 (P = 0	.28); l ² = 22%					
Test for overall effect: Z	z = 3.08 (P =	0.002)							
1.5.2 D(a-v)O2(rewarm	ning)								
Jianrong Guo 2009	58	6	15	52	8	15	18.8%	6.00 [0.94, 11.06]	
Mark F 1997	39	14	16	53	20	15	11.0%	-14.00 [-26.23, -1.77]	
Tingting Chen 2007	58	6	15	52	8	15	18.8%	6.00 [0.94, 11.06]	
Subtotal (95% CI)			46			45	48.6%	1.43 [-6.91, 9.77]	-
Heterogeneity: Tau ² = 4	10.26; Chi ² =	9.47, df	= 2 (P =	0.009); l ² = 79%					
Test for overall effect: Z	z = 0.34 (P =	0.74)							
Total (95% CI)			92			90	100.0%	-2.67 [-8.36, 3.03]	-
Heterogeneity: Tau ² = 3	38.10; Chi ² =	29.57, d	lf = 5 (P <	< 0.0001); l ² = 83%					
Test for overall effect: Z			`					F-	-20 -10 0 10 20
Test for subaroup differ			f = 1 (P =	= 0.15). I ² = 51.8%				Fa	vours experimental Favours control

Fig 4. Forest plot showing the meta-analysis outcomes of the difference in arteriovenous oxygen content difference [D(a-v)O2] of inhalation anaesthesia and total intravenous anaesthesia (TIVA) groups.

160x63mm (299 x 299 DPI)

	inhalation anesthetics			total intravenous anesthesia			Mean Difference		Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
1.6.1 SjvO2%(cooling)										
Jianrong Guo 2009	74	7	15	72	7	15	13.4%	2.00 [-3.01, 7.01]		
Mark F 1997	77.4	11.5	16	88.4	18.5	15	6.0%	-11.00 [-21.93, -0.07]		
Min Jiang 2007	76	4.9	20	81.6	4.9	20	17.0%	-5.60 [-8.64, -2.56]		
Tingting Chen 2007	68	9	15	66	10	15	10.5%	2.00 [-4.81, 8.81]		
Subtotal (95% CI)			66			65	46.8%	-2.46 [-7.84, 2.92]	-	
Heterogeneity: Tau ² = 2	0.07; Chi ^z	= 10.74,	df = 3 (P	= 0.01); I ^z = 73	2%					
Test for overall effect. Z	= 0.90 (P	= 0.37)								
1.6.2 Sjv02%(rewarmi	ng)									
Jianrong Guo 2009	54	5	15	62	7	15	14.6%	-8.00 [-12.35, -3.65]		
Mark F 1997	65.3	12.5	16	56.3	13.7	15	7.4%	9.00 [-0.25, 18.25]		
Min Jiang 2007	49.2	3.8	20	55	4.1	20	17.9%	-5.80 [-8.25, -3.35]		
Tingting Chen 2007	58	8	15	60	6	15	13.3%	-2.00 [-7.06, 3.06]		
Subtotal (95% CI)			66			65	53.2%	-3.22 [-7.93, 1.48]		
Heterogeneity: Tau ² = 1	6.18; Chi2	= 12.38,	df = 3 (P	= 0.006); I ^z = 3	76%					
Test for overall effect: Z	= 1.34 (P	= 0.18)								
Total (95% CI)			132			130	100.0%	-2.93 [-6.11, 0.25]	•	
Heterogeneity: Tau ² = 1	3.15; Chi ²	= 24.46,	df = 7 (P	= 0.0009); I ² =	71%				-20 -10 0 10 20	
Test for overall effect: Z								-	20 10 0 10 20	
Test for subaroup diffe			df = 1 (P)	= 0.83) I ² = 0	96			F	Favours experimental Favours control	

Fig 5. Forest plot showing the meta-analysis outcomes of the difference in jugular bulb venous oxygen saturation (SjvO2) of inhalation anaesthesia and total intravenous anaesthesia (TIVA) groups.

2	
ა ⊿	
3 4 5 6	
6	
0	
7 8	
0	
9	
10	
11	
9 10 11 12 13 14 15 16 17	
13	
14	
15	
16	
17	
18	
 18 19 20 21 22 23 24 25 26 27 28 20 	
20	
21	
22	
23	
24	
25	
26	
27	
28	
23	
30 31 32 33 34 35 36 37 38 39 40	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1 2

	inhalation		etics	total intrave				Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% C	I IV, Random, 95% CI
1.7.1 O2ER%(cooling)									
Jianrong Guo 2009	38	3	15	38	4	15	20.2%	0.00 [-2.53, 2.53	1 +
Mark F 1997	25.1	11	16	35.9	17.6	15	11.3%	-10.80 [-21.21, -0.39]
Tingting Chen 2007	25	9	15	28	4	15	17.7%	-3.00 [-7.98, 1.98	
Subtotal (95% CI)			46			45	49.2%	-2.58 [-7.08, 1.91]	
Heterogeneity: Tau ² =	8.65; Chi ² =	4.62, df:	= 2 (P = 0	0.10); I ² = 57%					
Test for overall effect: 2	Z = 1.13 (P =	= 0.26)							
1.7.2 O2ER%(rewarmi	ing)								
Jianrong Guo 2009	50	4	15	41	4	15	19.9%	9.00 [6.14, 11.86	1
Mark F 1997	36.4	12.7	16	42.7	12.7	15	12.9%	-6.30 [-15.25, 2.65	1
Tingting Chen 2007	52	8	15	48	5	15	17.9%	4.00 [-0.77, 8.77	1 +
Subtotal (95% CI)			46			45	50.8%	3.38 [-3.67, 10.44]	
Heterogeneity: Tau ² = Test for overall effect: J			df= 2 (P	= 0.003); ² = (33%				
Total (95% CI)			92			90	100.0%	-0.05 [-5.18, 5.07	•
Heterogeneity: Tau ² =	32.16; Chi⁼÷	= 38.60,	df = 5 (P	< 0.00001); P	= 87%				
Test for overall effect: 2				1000 C					-20 -10 0 10 20
Test for subaroup diffe				- 0.4 (2) 17 - 4	0.00				Favours experimental Favours control

stomes and total in. s63mm (299 x 25. Fig 6. Forest plot showing the meta-analysis outcomes of the difference in cerebral oxygen extraction ratio (O2ER) of inhalation anaesthesia and total intravenous anaesthesia (TIVA) groups.

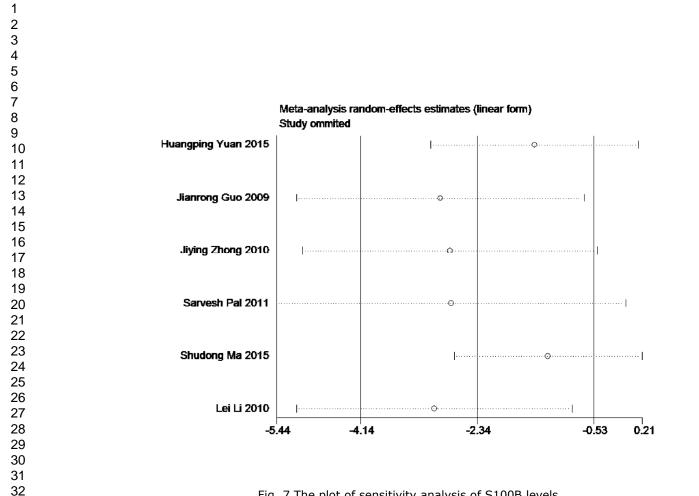
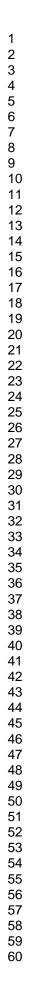



Fig. 7 The plot of sensitivity analysis of S100B levels

160x119mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

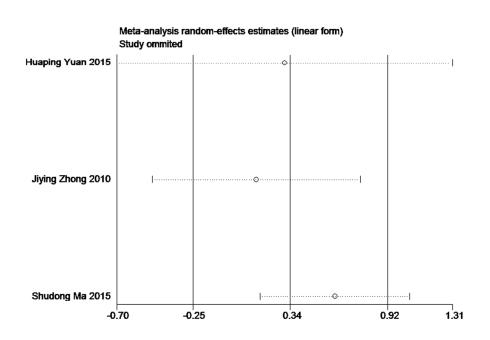


Fig. 8 The plot of sensitivity analysis of mini-mental state examination (MMSE) scores

160x106mm (299 x 299 DPI)

BMJ Open

Appendix. MEDLINE search strategy

#1 Heart surgery[MeSH] OR heart operation or cardiac surgery, valve
replacement[MeSH] or Coronary artery bypass surgery[MeSH]
#2 Extracorporeal Circulation[MeSH] OR Circulation, Extracorporeal OR
Circulations, Extracorporeal OR Extracorporeal Circulations
#3 Cardiopulmonary Bypass[MeSH] OR Bypass, Cardiopulmonary OR
Bypasses, Cardiopulmonary OR Cardiopulmonary Bypasses
#4 Heart-Lung Bypass[MeSH] OR Bypass, Heart-Lung OR Bypasses,
Heart-Lung OR Heart Lung Bypass OR Heart-Lung Bypasses
#5 #2 OR #3 OR #4
#6 cerebral protection[MeSH] OR Brain protection[MeSH] OR
neuroprotection[MeSH]
#7 Anesthesia, Inhalation[MeSH] OR Inhalation Anesthesia OR
Anesthesia, Insufflation
#8 Isoflurane OR Sevoflurane OR Enflurane OR Desflurane OR Halothane
OR Nitrous Oxide OR Xenon
#9 #7 OR #8
#10 Anesthesia, Intravenous[MeSH] OR Anesthesias, Intravenous OR
Intravenous Anesthesia OR Intravenous Anesthesias
#11 Propofol[MeSH] OR Disoprofol

#12 Etomidate[MeSH] OR Ethomidate;

13 Thiopental[MeSH] OR Penthiobarbital OR Thiomebumal OR

Thiopentobarbital OR Thiopentone OR Bomathal OR Pentothal Sodico

- #14 Ketamine[MeSH] OR Calypsol OR Kalips
- #15 Midazolam[MeSH] OR Hydrochloride, Midazolam OR Maleate,

Midazolam

#16 OR/#10-#15

- #17 randomized controlled trial [pt]
- #18 controlled clinical trial [pt]
- #19 randomized [tiab]
- #20 placebo [tiab]
- #21 drug therapy [sh]
- #22 randomly [tiab]
- #23 trial [tiab]
- #24 groups [tiab]

#25 OR/#17-#24

#26 animals [mh] NOT humans [mh]

#27 #25 NOT #26

#28 #1 AND #5 AND #9 AND #16 AND #27

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2 Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.		1-3
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	4-5
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5
METHODS			
Protocol and registration	5	5 Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	6
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	6
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	7
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	7-8
) Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	7
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	8
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	8
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., 1 ²) for each meta-analysis. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	8

BMJ Open

PRISMA 2009 Checklist

Daga	1	of	S
Page		OT	2

Section/topic	# Checklist item			
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	7-8	
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.		
RESULTS				
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	8-9	
Study characteristics	18	18 For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.		
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	11	
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.		
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	11-12	
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	11	
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	12	
DISCUSSION				
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	12-15	
Limitations	25 Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).		15	
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	16	
FUNDING	<u> </u>			
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	17	

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. 43 doi:10.1371/journal.pmed1000097

For more information, visit: www.prisma-statement.org.

Page 2 of 2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml