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Supplementary Methods 

Generation of Mossy Fiber activity patterns. To generate activity patterns 

with fixed mean and spatially-dependent correlations, we first defined the 

desired correlation coefficient of two mossy fibers (MFs) as a Gaussian 

function of the distance between them: 

𝜌(𝑑) = 𝐴𝑒
!!!
!!!  

where d is the distance between the MFs, σ is the correlation radius, and A is 

a scaling factor. This yields a desired correlation matrix for the full population 

of MFs. We then used a Dichotomized Gaussian based method to generate 

binary vectors (representing population activity patterns) with the desired 

correlations and mean activity1. If the desired correlation is not positive 

semidefinite, an iterative correction procedure was used to find the nearest 

symmetric positive semidefinite matrix2. For these simulations, we chose the 

scaling factor A such that ρ(0) = 0.9 as this gave more stable fits than ρ(0) = 

1. Similar results were obtained for lower values of ρ(0). This procedure 

resulted in binary spike patterns with approximately the desired correlation 

coefficient matrix and the desired average fMF (although the actual fMF varied 

on pattern-by-pattern basis; see Fig. 1b, right). 

 

Network Activity Dependent Thresholding (NADT). To model the effects of 

feedforward inhibition from Golgi cells, we used Network Activity Dependent 

Thresholding3, which implements an adaptive threshold to increase the 

intrinsic threshold of a neuron by an amount proportional to the fraction of 
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active MFs (simulating the decrease in excitability due to feedforward 

inhibition). For the simplified model, NADT was implemented by modifying the 

threshold directly: 

𝜃 = 3+ 𝛼!"#$𝑓!". 

For the constant of proportionality, αNADT, we took αNADT=0.3, the previously 

experimentally estimated value3. In the biologically detailed model, NADT was 

implemented by increasing the tonic GABAA receptor-mediated conductance 

by a factor of αNADT ·fMF. In practice, this meant incorporating this additional fMF 

–dependent conductance into the leak conductance and leak reversal 

parameters of the integrate-and-fire model granule cell (GC). 

 

Biologically detailed network model. We simulated a previously published 

model of the cerebellar input layer3. The model was written in NeuroML2 and 

simulated in jLEMS4. GCs were modeled as conductance-based integrate-

and-fire model neurons with an absolute refractory period. A constant 

inhibitory conductance was included to model the effect of tonic GABAA 

receptor-mediated inhibition of GCs5. In practice, this meant that the GABAA 

receptor-mediated conductance and reversal potentials6 were incorporated 

into the leak conductance and reversal potential parameters. Each excitatory 

synaptic conductance consisted of both AMPA receptor-mediated and NMDA 

receptor-mediated conductances that incorporate short-term plasticity7,8 as 

well as double-exponential waveforms for direct and spillover components. A 

Mg2+ block was implemented by scaling the NMDAR conductances by a 

voltage-dependent function to model the fraction of unblocked NMDARs9,10. 
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Finally, synaptic conductances were scaled by a factor of 1/Nsyn to keep the 

maximum excitatory input to the GC fixed as the synaptic connectivity was 

varied. Parameters for synaptic waveforms and plasticity were fitted to 

previously published experimental data3. Passive parameters and parameters 

for the Mg2+ block mechanism were taken from previously published 

experiments6,10,11.  

 

Robustness. For a specified correlation radius, the robustness of GC 

learning, population sparsening, or expansion was defined as the fraction of 

parameter space (of synaptic connectivity and the fraction of active MFs) over 

which the normalized speed, or normalized population sparseness, or 

normalized total variance was >1 (e.g., GC learning was faster than MF 

learning). The robustness of decorrelation was defined as the fraction of 

parameter space over which the normalized population correlation was <1. 

 

Heterogeneous variances. Because our definition of population correlation 

does not control for heterogeneities in the variance of different neurons, we 

reproduced our results after scaling the activity of each cell by its standard 

deviation over patterns. This scaling factor normalizes the variance of each 

cell to 1 to control for heterogeneous variances. However, the scaling did not 

change the qualitative effect of synaptic connectivity and mossy fiber (MF) 

input statistics on the population correlation. We therefore present the 

unscaled version in the manuscript for clarity. 
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Shuffling algorithm. The procedure for shuffling activity patterns was 

implemented as follows. First, to shuffle patterns from a higher population 

correlation to a lower population correlation, for each neuron i in the 

population we chose random patterns t1 and t2 and updated the patterns x by 

swapping the values of the neuron’s activity: 

𝑥!(𝑡!) → 𝑥!(𝑡!) 

𝑥!(𝑡!) → 𝑥!(𝑡!) 

This basic step was repeated over all neurons. This was then iterated until the 

population correlation of the shuffled activity patterns matched the desired 

value. Note that for an infinite number of iterations this reduces to traditional 

shuffling12–15. Iteration allows the partial removal of correlations rather than 

removing all correlations. Next, to shuffle patterns from a lower population 

correlation to a higher population correlation, we instead updated the patterns 

in the following way for all neurons:  

𝑥! 𝑡! → min(𝑥! 𝑡! , 𝑥!(𝑡!)) 

𝑥! 𝑡! → max(𝑥! 𝑡! , 𝑥!(𝑡!)) 

This step modifies the activity patterns so that the neurons are together more 

active than their means in pattern t2 and less active than their means in 

pattern t1, thereby increasing the population correlation. This was iterated until 

the population correlation of the shuffled activity patterns matched the desired 

population correlation. Importantly, this algorithm changes the correlation 

structure without changing the single-cell statistics, including the variance and 

firing rates of each cell (Fig. 5b) nor the fraction of inactive cells (Fig. 5c). 

While it theoretically does change the population sparseness of the patterns 
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due to cross terms in the equation for population sparseness, in practice, the 

change was very small (Fig. 5c). While the second algorithm may introduce 

some higher-order correlations, because they are added in a stimulus-

independent manner, they are unlikely to affect the information in the 

networks16.  Because the algorithm is iterative, it was unable to converge for 

some parameter sets when the GC activity was extremely sparse (i.e., large 

Nsyn, low fMF), especially for the spiking model. These were discarded in the 

analysis. 
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Supplementary Figure 1 | Varying expansion ratio does not qualitatively 

affect the dependence of pattern separation and learning on synaptic 

connectivity. (a-e) Learning speed and pattern separation for networks with 

a 1:1 expansion ratio. (a) Normalized learning speed for different fractions of 

active mossy fibers (MFs) and synaptic connectivities, for correlated MF 

inputs (σ = 20 μm). (b) Top: Median normalized learning speed (across fMF) 
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plotted for different correlation radii for sparse (Nsyn = 4) and dense (dashed, 

Nsyn = 16) synaptic connectivities. Bottom: Robustness of rapid granule cell 

(GC) learning for different correlation radii. (c-e) Same as (b) for normalized 

population sparseness (c), normalized total variance (d), and normalized 

population correlation (e). (f-j) Same as (a-e) but for a 1:9 expansion ratio. 
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Supplementary Figure 2 | Network activity dependent thresholding does 

not qualitatively affect the dependence of pattern separation and 

learning on synaptic connectivity. (a-e) Learning and pattern separation in 

simplified networks with network activity dependent thresholding (NADT). (a) 

Normalized learning speed for different synaptic connectivities and fractions of 

active MFs, for correlated MF inputs (σ = 20 μm). (b) Top: Median normalized 

learning speed (across fMF) plotted for different MF correlation radii for sparse 

(Nsyn = 4) and dense (dashed, Nsyn = 16) synaptic connectivities. Bottom: 

Robustness of learning of granule cell (GC) activity for different MF correlation 

radii. (c-e) Same as (b) for normalized population sparseness (c), normalized 
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total variance (d), and normalized population correlation (e). (f-j) Learning and 

pattern separation in biologically detailed networks with NADT. (f) Normalized 

learning speed for different synaptic connectivities and fractions of active 

MFs, for correlated MF inputs (σ=10μm). (g) Normalized learning speed 

plotted for different correlation radii for sparse (Nsyn = 4) and dense (dashed, 

Nsyn = 16) synaptic connectivities. (h-j) Same as (g) for normalized population 

sparseness (h), normalized total variance (i), and normalized population 

correlation (j). 
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Supplementary Figure 3 | Statistical significance of decorrelation. Top 

row shows standard error of the normalized pairwise Pearson correlation 

coefficient (left) and normalized population correlation (right) for correlated 

mossy fiber (MF) inputs (σ = 20μm) with different fMF and Nsyn (cf. Fig. 3c,d for 

mean values). Bottom row shows parameter region in which there is a 

statistically significant difference between MF correlation and GC correlation 

(grey regions, Wilcoxon signed rank test with Bonferroni correction; white 

indicates lack of statistical significance), showing that the results are 

statistically significant over the majority of the parameter space. Red outline 

indicates the region in which the normalized population correlation <1 

(corresponding to active decorrelation as described in the main text) but the 

normalized Pearson correlation coefficient >1; i.e., the red outline depicts the 

region over which the Pearson correlation coefficient incorrectly shows no 

active decorrelation.  
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Supplementary Figure 4 | Increasing granule cell threshold increases 

decorrelation but decreases the size of the coding space. Top row shows 

relationship between normalized total variance for correlated mossy fiber (MF) 

inputs (σ = 20μm) with different synaptic connectivities and fractions of active 

MFs. Columns indicate increasing threshold, from left to right, where θ 

indicates the threshold. Bottom row as for top row but for log normalized 

population correlation. 
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Supplementary Figure 5 | Pattern separation and decorrelation extends 

to regions of dense granule cell population activity. (a) Fraction of active 

granule cells (GCs; i.e., fraction of non-silent GCs, averaged over all activity 

patterns) for different synaptic connectivities and fractions of active mossy 

fibers (MFs), shown for both independent (left) and correlated (right, σ = 20 

μm) MFs. White lines indicate boundaries at which the normalized learning 

speed equals 1 (see Fig. 1f). (b) Normalized learning speed plotted against 

the fraction of active GCs for all input statistics (i.e., the full range of fMF and σ) 

and for all Nsyn. Blue points indicate a normalized learning speed >1 

(corresponding to faster learning and pattern separation) while grey points 

indicate a normalized learning speed <1. (c) Histograms of the fraction of 

active GCs over all patterns in the full parameter space (top; full range of Nsyn, 



16 
 

fMF, σ) and over the region of parameter space in which the normalized GC 

speed >1 (bottom; corresponding to faster GC learning). 
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Supplementary Figure 6 | Comparison of clustered MF patterns. Top row 

shows correlation matrices for MF patterns generated by the method used in 

Babadi & Sompolinksy 2014 (left, clustered in state space) and the method 

used in this paper, both for independently activated MFs (center, not 

clustered), and spatially correlated MFs (right, clustered in physical space). 

Bottom row shows corresponding histograms of the correlation coefficient with 

mean values indicated in black. Note the different scale for the independent 

MFs. 

 


