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Suppl. Note 1 TRAMMBAR estimator

Suppl. Note 1.1 Optimization algorithm

The TRAMMBAR likelihood is minimized under the same constraints of detailed balance and probability
normalization as the TRAM problem [1]. The optimal solution to the TRAMMBAR problem can be obtained
by the fixed-point iteration of the following equations
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Like in TRAM, transitions in an isolated ensemble only need to be sampled in one direction as long as

there is a second ensemble where the transition was sampled reversibly. The global equilibrium assumption
that we make for the samples XMBAR can be understood in the sense the dynamics that generated XMBAR

is infinitely fast and achieved global equilibrium. [2] This implies that all Markov states which were visited
in XMBAR are sampled reversibly. Hence, every transition that is irreversible in the unbiased MD simulation
is implicitly made reversible if the end-states of that transition were visited in XMBAR.

Suppl. Note 1.2 Relative influence of equilibrium data and time-correlated data

An important question in the application of TRAMMBAR is how much weight the datasets XTRAM and
XMBAR each contribute to the estimate. Superficially, the answer to this question seems to be clear: for
given simulation data, the weight is determined according to Eqs. (1-3) form the main text i. e. each
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configuration x enters the likelihood with equal weight (or more precisely with a weight that is exactly

given by µ(x)ef
k
i −b

k(x) or µ (x) ef
k−bk(x) for x ∈ XTRAM or x ∈ XMBAR respectively). However, in the

likelihood Eqs. (1-3) (main text) it is assumed that the configurations from XMBAR have been drawn
independently, and successive transitions inXTRAM are independent. However in practice, neither assumption
is fulfilled. [2] [2, 3] There is always some time correlation between the configurations generated by the replica
exchange simulations and if the so-called “sliding window” method for counting transitions [4] is used, the
transitions in XTRAM are correlated. We solve this problem as follows: we assign an additional weight to
each configuration. All configurations from XTRAM are assigned the constant weight g−1

TRAM := ∆tTRAM/τ ,
where τ is the lag-time of the MEMM and ∆tTRAM is the saving interval of the configurations in XTRAM.
All configurations from XMBAR are assigned the constant weight 1/ḡMBAR where gn,MBAR the is statistical
inefficiency [5, 6] of the Markov state time series (discretized trajectory) of replica n and ḡMBAR is the
average of gn,MBAR over all replicas. The idea behind this is, that if lag-counting had been used and if
the Markov property was fulfilled, successive transitions would be independent. Using the “sliding window”
method, doesn’t invalidate the Markov assumption (this is confirmed by the converging implied time scales
and a successful Chapman-Kolmogorov test) but almost every transition, including its final configuration, is
counted gTRAM = τ/∆tTRAM times more than it should. In XMBAR, due to auto-correlation, every frame is
counted about ḡMBAR times too much when using all the simulation data. So we include reweighting factors
that compensate for this over-counting.

Equation (1) is not affected by the rescaling because ckij scales like vki such that the reweighting factor

cancels. In equation (3), the substitutions ckij → ckij/gTRAM, vki → vki /gTRAM, Nk
i → vki /gTRAM, Nk

MBAR →
Nk

MBAR/ḡMBAR are made. In equation (2), the sum over XTRAM ∪XMBAR is decomposed into two partial
sums, one over XTRAM and one over XMBAR. Each partial sum is multiplied by its scaling factor.

Because the TRAMMBAR equations (as well as the TRAM equations) are invariant under a global
multiplication of the data (i. e. if each configuration is counted n times), both scaling factors can be compiled
into one factor ḡMBAR/gTRAM, which only multiplies the values derived from XTRAM.

Suppl. Note 2 Model system

We consider a two dimensional, x/y-periodic potential energy surface E(x, y) with x, y ∈ [−5, 5) (Suppl. Fig.
1 left), and a biased potential

B(x, y) = max {E(x, y), −0.5 kT} (4)

where the potential wells are flattened (Suppl. Fig. 1 right). The dynamics are defined by a Metropolis
Monte Carlo process which proposes moves ±0.3 length units with uniform probability in each dimension.
A set of 264 cluster centers is used to discretize the space into microstates and to define five macrostates
representing the bound, intermediate, unbound, and two unspecifically bound states.

We compute a reference value for the binding free-energy ∆G∗ = 5.64 kT using

∆G = − ln

(
πunbound

1− πunbound

)
(5)

Here, πunbound is the sum of probabilities of states in the unbound set, and the probability weight of each
microstate is approximated by exp(−E(x, y)). To obtain a reference value for the mean first passage time
(MFPT) of the dissociation, we spawn a series of 13780 simulations from within the bound state and run
until a microstate of the unbound set is reached. The dissociation MFPT, MFPT∗off = 1820000±15000 steps,
is then computed as the arithmetic mean over the observed waiting times (Suppl. Fig. 2).

To compare the performance of TRAMMBAR to that of maximum likelihood MSMs, we perform a set of
simulations for a fixed amount of data, build an MSM (only unbiased data) or an MEMM via TRAMMBAR
(biased and unbiased data), and compute the dimensionless binding free-energy using equation (5) and the
dissociation rate by

koff =
1

MFPT (bound→ unbound)
(6)
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Suppl. Fig. 1: Unbiased (left) and biased (right) potential energy surfaces of the model system.
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Suppl. Fig. 2: Distribution of dissociation waiting times from 13780 independent simulations from the bound
state. The black line shows the mean value while the grey area denotes estimates which are considered
successful in the main text.

where MFPT is the mean first passage time computed from the MSM of the unbiased ensemble.
As a successful estimate of the binding free-energy we define an estimate ∆G that is not farther than

1 kT away from the reference value ∆G∗, and a successful estimate of the dissociation MFPT is one that
falls into the interval [ 1

2MFPT∗off, 2MFPT∗off] where MFPT∗off is considered to be the exact time. To account
for the intrinsic randomness of the kinetic Monte Carlo simulations, we repeat every set of simulations 100
times and compute the success probability for both estimators. For MSMs, we use multiple trajectories of
2 · 106 steps spawned in the bound state. For MEMMs, we use an equal amount of biased and unbiased data,
where the unbiased trajectories are of length 103 steps and spawned in the unbound state, while the biased
data consists of a single trajectory with a starting point drawn from the global equilibrium of the biased
ensemble.

As the total amount of simulation data is increased, the success probability of both estimators converges to
one (Fig. 4 in the main text). Estimates computed from the MEMM converge about two orders of magnitude
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Suppl. Fig. 3: Success probability for ∆G (left) and MFPToff (right) as a function of the used amount of
unbiased and biased data.
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Suppl. Fig. 4: Crystal structure of the 25−109Mdm2 fragment with secondary structure labels (labels and
Mdm2 atom coordinates reproduced from protein data bank file 3eqs [7]). Compared to the full-length
N-terminal domain of Mdm2, the fragment lacks amino acids 1-24 that form a flexible lid. [8, 9, 10]

faster than estimates from the MSM; the performance of a direct sampling of dissociation times is roughly on
par with the performance of MSMs, which is expected as the bottleneck for the estimation of the dissociation
time is sampling the escape form the strongly bound state.

By varying the amounts of biased and unbiased data individually, we see that the MEMM estimates for
∆G and MFPToff are relatively insensitive to the data composition, as long as a sufficient amount of both
data types is available (Suppl. Fig. 3). An interesting conclusion from this plot is that given a significant
amount of biased data, an MEMM with a little bit of biased data added will perform much better than a
plain MSM.

Suppl. Note 3 Mdm2-PMI simulations

Suppl. Note 3.1 Biased MD simulations

Accelerated molecular dynamics simulations [11] (aMD) were performed in a generalized ensemble. In each

ensemble a particular energy bias was applied to the Lennard-Jones (LJ) U = Uprotein−ligand
LJ interaction of

the protein and the peptide. The bias energy (boost potential) for ensemble k is

Bk(x) =

0 U(x) ≥ Ek
(Ek−U(x))

2

αk+Ek−U(x)
U(x) < Ek

where U(x) is the unbiased LJ interaction between protein and ligand as prescribed by the force field, x ∈ R3N

is the molecular conformation and Ek, αk are constants. The zeroth ensemble was left unbiased with the
choice E0 = −∞, α0 = 0. For higher ensembles 1 ≤ k < 14, the constants were chosen by dividing the energy
range of the LJ interaction −250 kJ mol−1 ≤ U ≤ 0 kJ into 14 approximately equals intervals. The constants
αk were then chosen such that the minimum Uk of the biased LJ energy in ensemble k is the lower bound
of interval number k. Ek for each ensemble were chosen to lie 20 kJ mol−1 above Uk. Because the biased
energy Uk(U) = U +Bk(U) is a monotonic function of U , the minimum Uk of the biased energy is given by

Uk = U +
(Ek − U)2

αk + Ek − U

where U is the minimal unbiased LJ interaction energy which was found to be U ≈ −250 kJ mol−1 from direct

MD simulations. This expression can be solved for αk = (Ek−U)2

Uk−U + U − Ek. Together with the above-given

recipe for choosing Uk and Ek, this allows us to fix all parameters of the boost potentials. The reduced bias

energy is given by bk(x) = βBk(x) = Bk(x)
R·300 K where R is the ideal gas constant.
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For the aMD simulations the period between successive calculations of long-range forces was set to one
integration time step (4 fs). The aMD simulations were coupled using the Hamiltonian replica exchange
(HREMD) protocol. [12] In the HREMD simulations, exchanges were only attempted between neighboring
Hamiltonians every 0.5 ps. Initial conformations for the simulations were prepared as described in the Methods
section of the main text but leaving the peptide in the binding pocket. Six independent HREMD runs were
performed of lengths 1052, 2476, 1000, 1000, 1000 and 771 ns giving in total 7299 ns of aggregated simulation
time per replica (102.186µs summed over all replicas). Exchange acceptance probabilities were checked not
to be below 0.2. Still the typical acceptance was above 0.35 for all but one run.

Suppl. Note 3.2 Mutation model

Experimental results of changes in the free-energy of binding upon mutation (∆∆G) are compared between
experiment and simulation. Experimental values are given in reference [13]. The computations were done
using first-order perturbation theory, following the ideas of [14, 15, 16]. The computational protocol used
here was already successfully applied to compute relative binding free energies for the Barnase-Barstar com-
plex. [17]

The unnormalized probabilities of the wild type to be in the associated or dissociated state are defined as

zwt
associated =

∑
x∈SA

µ(x)

zwt
dissociated =

∑
x∈SD

µ(x)

where SA is the set of associated conformations here defined as all conformations where the minimal heavy-
atom distance between PMI and Mdm2 is less or equal to 1.0 nm and SD is the remainder of all dissociated
conformations. µ(x) is the (conformation-wise) reweighting factor computed from MBAR and the sum is
taken over all samples generated by the HREMD simulations.

For the mutant, the corresponding unnormalized probabilities are

zmut
associated =

∑
x∈SA

e−βUmut(x)+βUwt(x)µ(x)

zmut
dissociated =

∑
x∈SD

e−βUmut(x)+βUwt(x)µ(x).

Here, Uwt(x) and Umut(x) are the potential energies of the conformation x computed with implicit-solvent
force field (details below). The change in binding free energy can then be computed to first order as

∆∆G = RT ln
zwt

associated

zwt
dissociated

zmut
dissociated

zmut
associated

where T = 300 K and R is the ideal gas constant. The potential energies Uwt(x) and Umut(x) were computed
with the Amber software using the Amber-99SB-ILDN force field parameters [18] (that same that were
used for the explicit solvent simulations) in combination with the generalized Born-Neck2 model [19] and
the mbondi3 intrinsic radii [19]. This combination of force field and solvation model has been successfully
applied to predict peptide folding preferences. [20] These computations are a pure reanalysis where the present
trajectories are reprocessed with the “sander” module of the AMBER MD suite [21] to compute the potential
energies. Uwt(x) was computed from the original trajectories after removing water and ion coordinates. For
the mutant, trajectories were modified similarly as described in Refs. [22, 16]: for a given mutation the side
chain of the relevant amino acid was cut back to the Cβ-atom and the hydrogens of a methyl-group were
added around the Cβ-atom. The new value of the dihedral angle C−Cα−Cβ−Hβ1 was taken to be identical
to the C − Cα − Cβ − Cγ dihedral angle in the original conformation. All bond angles and bond lengths
between Cβ and the hydrogens of the methyl group were set to the equilibrium values of the Amber-99SB
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force field. These replacements were done for all mutations and all frames of the HREMD trajectories (taking
only one frame every nanosecond, which resulted in a total number of 97986 frames per mutation).

The method described here requires an implicit solvent force field to compute the mutant energies. Com-
puting the energies with an explicit solvent force field would not be possible because the removal of the side
chain leaves an energetically unfavorable void in the water. In the implicit solvent model the void is modeled
automatically as a region of high dielectric constant that corresponds to water. Implicit solvent force fields
have been shown to perform comparably to explicit solvent force fields in predicting binding free energies. [23]

To examine the importance of different PMI side chains for the different binding modes shown in main
text Fig. 1, we compute the change in binding free energy upon mutation ∆∆G but with the probabilities
zmut

associated, zwt
associated of the associated state replaced by the probabilities zmut

i , zwt
i of PCCA state Si. That

is, we pretend that the only associated state of PMI and Mdm2 is the PCCA state Si and ask how then the
binding free energy would change if some PMI side chain was mutated to alanine. Results are shown for all
combinations of macro-state and mutation in table 2.

Suppl. Note 3.3 MEMM weights and bootstrapping

We set ḡMBAR/gTRAM = 0.01, which expresses that we trust the replica-exchange data in XMBAR in estimat-
ing the thermodynamics. Note that that all direct information about the kinetics still come from transition
counts made in the unbiased simulation data.

To compute the error bars for the transition probabilities in the Chapman-Kolmogorov test and for other
observables, a bootstrap was performed. For each bootstrap sample one TRAMMBAR run is performed.
The samples are generated by a hybrid bootstrap algorithm that combines a simple bootstrap with the
stationary bootstrap of Politis et al [24]. From the unbiased simulation data whole trajectories are drawn
with replacement. From the HREMD data, trajectory blocks of random length are drawn according to the
stationary bootstrap algorithm. The block length parameter of the stationary bootstrap is chosen to be the
mean statistical inefficiency [5] of the discretized trajectories in the HREMD data set (40 ns). The HREMD
data are treated as multi-dimensional time series where each dimension corresponds to one replica. During
bootstrap these dimensions are always kept together.

Suppl. Note 3.4 MEMM validation

The strongly connected set of Markov states can vary as the lag-time is changed because some transitions at
the very beginning or the very end of the trajectories are not counted if the lag time is large. Also during
bootstrap the connected set for a single sample can be smaller than the connected set that one would obtain
when using all simulation data. However for the implied time scales test, results from different lag times must
be compared and error estimates, that can currently be only estimated with the bootstrap technique, must
be supplied. To resolve this problem, we extend every estimate of the transition matrix and its stationary
distribution to the full state space and define πi = 0 and Tij = Tji = 0 for every state i that is not in the
connected set of microstates. To find the implied time scale we first compute the Rayleigh quotient

λ̃i =
rTi ΠTri
rTi Πri

where ri is fixed and is the i’th right eigenvector of the MEMM transition matrix T computed at the
reference lag-time of 150 ns and Π is a matrix with the extended stationary distribution on its diagonal. We
then approximate the implied time scale with

ti ≈ −
τ

ln λ̃i

Plots of the implied time scales depending on the lag time are shown in Suppl. Fig. 5. The Chapman-
Kolmogorov test of the unbiased ensemble of the MEMM estimated at 150 ns are shown in Suppl. Fig.
6.
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PCCA
state

PMI residues Mdm2 residues

2 S2, Y6, W7, L10, P12 L54, G58, Y67, Q72,
H96

3 Y6, S11, P12 E25, R97, Y104
5 F3, Y6, W7, N8, L10 L54, F55, G58, Y67,

Q72, V93
6 F3, N8, L9 L54
8 S2, E5, W7 R65, Y67, Q72, H96
9 T1, S2, F3, Y6, L10,

S11, P12
F55, G58, Q59, Y67,
Q72, H96, R97, Y100

10 T1, S2, F3, E5, Y6, L9 L54, F55, Q72, H73,
H96, R97

12 S2, F3, Y6, W7, N8,
L9, L10, S11, P12

L54, I61, Q72, H96,
Y100

13 S2, F3, Y6, W7, L10,
S11, P12

L54, I61, Q72, H96

A F3, Y6, W7, L10, S11,
P12

L54, I61, Q72, H96

B T1, S2, F3, Y6, W7,
L10, S11, P12

K51, F55, Q72, V93,
K94, H96

C T1, F3, Y6, W7, L10,
S11, P12

L54, Y67, Q72, H96

D T1, F3, Y6, W7, L10,
P12

L54, Y67, Q72, V93,
H96, Y100

E T1, S2, F3, E5, Y6,
L9, S11, P12

L54, G58, Y67, Q72,
H96, R97

F T1, E5, Y6, N8, L9,
S11, P12

L54, G58, Y67, D68,
Q71, Q72, H73, I74,

V93, K94, H96
G F3, E5, Y6, W7, L9,

S11, P12
Y67, Q72, H96, R97

H T1, S2, F3, E5, Y6,
W7, P12

L54, G58, Y67, Q72,
H96

I Y6, W7, L10, S11, P12 E25, T26, R97, Y100,
T101, Y104

Suppl. Table 1: Residues that form stable intermolecular contacts by PCCA state. A stable
intermolecular contact of molecule A is defined as a residue from molecule A that has a minimal heavy
distance <0.35 nm with a probability of 0.5 or more to any other residue form molecule B.
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PCCA T1 S2 F3 E5 Y6 W7 N8 L9 L10 S11 P12
0 N.A N.A N.A N.A N.A N.A N.A N.A N.A N.A N.A
1 4.8 4.7 10.9 5.7 9.1 10.7 3.3 5.4 5.4 2.1 6.0
2 3.8 11.3 15.9 3.4 12.2 19.1 10.0 9.3 9.2 1.1 9.5
3 1.6 0.5 5.1 2.9 1.1 0.3 0.6 2.9 4.2 1.1 0.9
4 1.6 1.2 0.2 0.6 2.8 -0.0 3.9 3.6 4.2 1.5 1.9
5 6.0 0.5 10.1 5.2 8.9 9.7 0.2 4.8 5.8 1.8 1.8
6 -0.7 1.3 10.3 2.9 6.0 2.3 2.2 6.5 6.2 2.6 2.6
7 1.6 1.8 8.7 4.8 0.1 14.8 3.4 6.7 7.2 2.1 4.2
8 1.9 1.6 7.6 3.0 3.6 9.5 2.6 2.7 4.6 1.0 3.1
9 -0.3 0.9 8.9 -0.7 8.0 3.4 -0.5 4.5 4.1 -0.0 3.9
10 5.2 2.6 11.5 2.6 7.9 3.4 4.0 8.8 7.1 -0.1 3.6
11 2.2 -0.7 10.3 3.7 3.4 7.2 1.0 4.4 4.4 1.0 1.8
12 2.0 -0.3 9.7 1.1 4.5 7.4 0.7 1.2 1.4 -1.2 3.0
13 -0.7 0.2 5.4 0.7 -0.1 4.9 -0.0 0.2 3.3 -0.3 -0.5
A -0.8 0.1 10.1 0.6 -0.2 7.7 -0.1 0.1 3.2 -0.2 -0.6
B 1.6 1.0 11.3 1.8 4.8 5.5 2.0 0.7 4.7 -0.9 3.7
C 0.2 0.3 5.9 1.6 5.6 3.7 -0.6 2.1 6.4 0.6 2.8
D 1.6 1.7 8.7 3.5 7.6 8.2 2.4 0.9 4.1 0.9 2.3
E 2.4 1.5 8.7 3.4 7.6 2.3 1.6 4.1 7.8 0.4 3.4
F 6.1 0.4 8.8 5.1 6.9 3.1 3.2 5.7 7.1 2.8 2.3
G 4.8 1.2 5.8 4.7 7.4 8.4 4.0 4.6 4.1 0.2 3.6
H 5.0 4.2 15.4 5.4 7.8 9.4 3.2 2.0 5.1 3.0 4.8
I 1.8 0.8 5.1 2.4 1.5 -0.3 -1.6 -0.9 -0.4 -0.3 1.3

Suppl. Table 2: Stability changes of the PCCA states upon PMI mutation. The table contains
the values RT

[
ln(zwt

Si
/zwt

dissociated)− ln(zmut
Si

/zmut
dissociated)

]
in kcal mol−1 for all mutations and all PCCA sets

Si. z
mut
Si

is the (unnormalized) probability of PCCA set Si for a PMI peptide where a given side chain was
mutated to Alanine and zwt

Si
the corresponding probability of the wild type. zmut

dissociated and zwt
dissociated are

the probabilities of the dissociated state for mutant and wild type respectively. Estimates for PCCA state 0
were not computed, because the state was not visited in the biased simulations, so estimates would be very
inaccurate.
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Suppl. Fig. 5: Implied time scales of the unbiased ensemble of the MEMM as a function of lag time.
Transparently colored areas mark 95% confidence intervals.

To quantify how well the joint set of unbiased and biased simulations explored the conformational space,
we check how the total number of macro-states seen in the simulation changes if the total amount of simulation
data is varied. Results are shown in Suppl. Fig. 7. We make the conservative choice, that we only count a
macro-state as being seen if the trajectory visits its core region. The core region of a macro-state is defined
as the set of microstates that have PCCA memberships larger than 0.5. In our data, a core set defined in this
way contains on average 58% of the microstates of the full PCCA set in which it is contained. Since there is
no natural way to order the many short trajectories in our simulation data set and therefore no natural way
to define the x first percent of the data, we pick a random order of the trajectories and repeat the analysis
100 times. Every realization is shown as a thin curve in Suppl. Fig. 7.

Suppl. Fig. 7 shows that the number of newly visited states has almost reached 100%, once 60% of the
simulation data is included in the analysis. This indicates that the overwhelming majority of macro-states
(that are metastable on timescales of the microsecond and longer) have been found in the simulation.

Suppl. Note 3.5 Coarse-graining and TPT analysis

The MEMM was coarse-grained into 15 macro-states. Macro-states 0 to 13 are defined with the PCCA+
algorithm [25] due to a small gap after the 13th implied time scales around 5µs. The 15th macro-state is the
set of all microstates that correspond to completely dissociated states (minimal heavy-atom distance between
Mdm2 and PMI larger than 1.0 nm). The dissociated macro-state had to be defined manually, because it is
of low metastability and is therefore not detected by the PCCA+ algorithm. (The life time of the dissociated
state is only on the order of 10 ns.)

Transition path analysis [26, 27] was carried out for the reactive flux between the set of dissociated
microstates and PCCA-state 13 which contains the crystal-like conformations.

The coarse-grained TPT flux between the 15 macro-states didn’t contain enough information about the
binding mechanism, because most of the TPT flux directly goes from the dissociated macro-state to PCCA-
state 13 without any intermediates. Therefore we split PCCA-state 13 into 83 sub-states. The 83 sub-states
were defined by applying the PCCA algorithm on the MSM of the unbiased ensemble and by taking the
intersections between the new PCCA states with original PCCA state 13 as new (extra) macro-states. The
resulting state definition is hierarchical: between the 14 top-level PCCA states, the kinetics happen on
timescales of tens of microseconds or slower. Between the sub-states inside PCCA-state 13 the kinetics
happen on the single-microsecond time scale or slower.

With the extended set of macro-states, the reactive flux between the set of the dissociated microstates
and PCCA-state A (which contains the the crystal-like conformations) was computed with TPT. Results are
shown in main text Fig. 3.
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Suppl. Fig. 6: Chapman-Kolmogorov test of the unbiased ensemble of the full MEMM with 1056 microstates
estimated at 150 ns using random test sets. Transparent regions represent 95% confidence intervals and were
computed with bootstrap.
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Suppl. Fig. 7: The faction of macro-states seen in the simulation depending on the total amount of simu-
lation data analyzed. Every thin curve was computed from a different permutation of all simulation data
(randomly mixing biased and unbiased data). The apparent convergence of the curves indicates that almost
all metastable states have been discovered in the first 60% of the data. See Suppl. Note 3.4 for details.

In main text Fig. 1 we show only PCCA-states with a free energy that is not higher than 9 kcal mol−1

relative to that of macrostate A.

Suppl. Note 3.6 Computation of Kd and ∆G

We first define the associated state Sassociated of the binding partners. For this definition we use the minimal
heavy-atom distance d between PMI and Mdm2. Because of limited box size and periodic boundary conditions
in the explicit-solvent MD, d can’t exceed 3.5 nm. The histogram of d shows a minimum at 0.5 nm, is relatively
constant between 1.0 nm and 1.8 nm and decreases to zero for larger values. Therefore we pick dmax = 1.0 nm
as a conservative definition for the dissociated state and define the associated state as all points in phase
space with d ≤ dmax. (The dependence of ∆G on the choice of dmax is shown in Suppl. Fig. 10a.) The volume
Vassociated of the associated state in position space is approximately 99.8 nm3. (Computed by counting water
molecules that are beyond a distance of 1.0 nm from Mdm2 and subtracting their volume from the box
volume.) The net solvent volume inside the simulation box is

Vsolvent = Vbox − Vassociated − VPMI = 352.43 nm3

The effective concentration of non-interacting Mdm2 and PMI in the simulation box that can be used to
translate simulation box quantities into molar quantities is then

Ccomput = [PMI] = [MDM2] =
1

NAVsolvent
= 4.71 mM

where NA is Avogadro’s constant. Then Kd can be computed by

Ksim
d =

pdissociated

passociated
Ccomput = 0.34 nM

where passociated =
∑
x∈X(TRAM)MBAR∩Sassociated

µ(x), pdissociated = 1 − passociated and µ(x) is the reweighting

factor of simulation frame (conformation) x towards the unbiased ensemble computed with either MBAR or
TRAMMBAR.
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Suppl. Fig. 8: Lag time dependence of the residence time computed from the rate matrices that were
estimated either according to the maximum-likelihood method from Refs.[28, 29] or the least-squared method
from Ref.[30]. Error bars show 95% confidence intervals and were computed with bootstrap.

The standard free energy of binding is computed as

∆G = RT ln

(
Ksim
d

1 M

)
where T is the temperature and R is the ideal gas constant.

Suppl. Note 3.7 Computational of association rate kMD
on and dissociation rate

kMD
off

To compute the association rate, we use the mean lifetime of the dissociated state (about 10 ns in the
simulation box), and rescale it according to the volume of the dissociated state, resulting in an experimentally
observable association rate of about 109 M−1s−1. For the computation of the residence time (or dissociation
rate), ideally one would compute the mean first passage time (MFPT) from the strongly bound state to a
state where the ligand is well separated from the protein. Because of the finite box size we have to choose a
distance cutoff of dmax = 1.0 nm (see Suppl. Note 3.6). Therefore the ligand will have a certain probability
prebind to rebind to the protein surface after reaching a separation of dmax. We estimate this probability by
running 10000 Brownian dynamics simulations of a point-like ligand, and counting how many time a ligand
started at dmax + rPMI + rMdm2 diffuses to infinity and how many times it hits a sphere located at the origin
with radius rPMI + rMdm2. For rPMI + rMdm2 = 0.63 nm + 1.08 nm (molecule radii computed from volumes
r = 3

√
4V/(3π)) we find prebind = 0.53. This allows us to correct the residence time for the finite cutoff.

We model the true dissociation to infinity as follows: every time the ligand reaches dmax it rebinds with a
probability prebind and fully dissociates with a probability of pescape = 1− prebind. The (properly normalized)
probability of escaping after n rounds of rebinding is Pn = pnrebind(1−prebind). The expected dissociation time
is therefore Toff =

∑∞
n=0 T

MD
off (1 +n)Pn = TMD

off /pescape where TMD
off is the MFPT from the crystal-like bound

state to the set of microstates with d > dmax measured from the MEMM (see below). In this calculation it
is assumed that the binding partners are highly committed to form the crystal-like complex as soon as their
surfaces meet and that binding in the simulation box is much faster than unbinding.

The residence time TMD
off is computed from the MEMM as the mean first passage time [26, 27] from

the crystal-like bound state to the dissociated state with a separation d > dmax between PMI and MDM2.
Computation of the MFPT TMD

off to the dissociated state is complicated by the fact that the dissociated state
is not metastable on timescales comparable to the lag time of the MEMM, because of the small box size. At
large lag times, the trajectory skips over the dissociated state, leading to an overestimation of MFPTs to the
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dissociated state . [31] We addressed this problem by estimating rate matrices according to the maximum-
likelihood method described in references [28, 29] and according to the least-squares method from reference
[30] and subsequently computing the MFPT from these rate matrices. Rate matrices describe the dynamics in
the limit of small lag times. Therefore estimating a rate matrix is a systematic way to extrapolate to a smaller
lag time from data sampled at a larger lag time. In both rate matrix estimation methods we additionally
imposed detailed balance of the rate matrix with respect to the TRAMMBAR equilibrium distribution of
the unbiased ensemble. Furthermore for all pairs of states where no direct transition in either direction was
observed in the unbiased MD trajectories, we constrained the corresponding forward and backward transition
rates to zero. Both methods appear to converge at lag times of 150 ns, but the maximum-likelihood method
[28, 29] gave the least dependence of the MFPT on lag time (Suppl. Fig. 8), so we propose this as a
reference for TMD

off . For comparison we redid the analysis described in Fig. 2b,d of the main text with the
least-squares method [30]. Results are shown in Suppl. Fig. 9. We see that the least-squares method shows a
higher variance than the maximum-likelihood method and gives higher values for the dissociation time. The
higher values for the dissociation time are similar to those estimated from the transition matrix, however the
transition-matrix MFPTs does not converge as a function of lag time.

The dependence of residence time on the choice of the cutoff used to define the dissociated state (dmax)
is shown in Suppl. Fig. 10b.
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Suppl. Fig. 9: Same as the main text Fig. 2b,d but with rate matrices computed according to the least-
squares method from [30]. a: Residence time as a function of the fraction of total data used in the estimation.
b: Residence time as a function of the fraction of biased data used, while keeping the total amount of data
constant. Diamonds mark the least-squares estimates, error bars indicate 95% confidence intervals that were
computed with bootstrap.
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Suppl. Fig. 10: Dependence of simulation results for (a) the free energy of binding ∆G and (b) the complex
residence time Toff from the cutoff value dmax that is used to define the dissociated state. All values are
computed with correction for the volume of the dissociated state that corresponds to a given choice of dmax

(as described in Suppl. Note 3.6 and Suppl. Note 3.7). The residence time is computed with the maximum-
likelihood method from references [28, 29]. All variations are within the range of the statistical errors reported
in the main text (cyan area bounded by the dashed lines).
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Suppl. Note 4 Fluorescence anisotropy experiments

Suppl. Note 4.1 Protein expression, purification and refolding

The N-terminal domain of the Mdm2 protein (residues 25–109) was cloned into the pET21a vector and
expressed in the Escherichia coli BL21(DE3). Cells were grown at 37 ◦C and induced with 1mM IPTG
at an OD600 nm of 0.8. After induction, the cells were cultured for an additional 12 hours at 37 ◦C before
harvesting and the recombinant protein was purified from inclusion bodies as previously described. [32] The
inclusion bodies were washed in PBS containing 0.05% Triton X-100, then solubilized in 6 M GnHCl in 100
mM Tris-HCl (pH 8.0), 1 mM EDTA, and 10 mM β-mercaptoethanol. The solubilized protein was dialyzed
against 4 M GnHCl (pH 3.5) in 100 mM Tris, 1 mM EDTA, supplemented with 10 mM β-mercaptoethanol.
Protein refolding was performed for 18 hours at 4 ◦C in 10 mM Tris-HCl (pH 7.0), 1 mM EDTA, and 10 mM
β-mercaptoethanol. The protein was diluted (1:100) into the refolding buffer by adding in several sequential
steps. To purify the protein, ammonium sulphate was added to a final concentration of 1.5 M and after 2
hours the mixture was centrifuged for 20 minutes at 10,000 rpm. The supernatant was then mixed with
10 ml of the Butyl Sepharose 4 Fast Flow. The protein was eluted with 100 mM Tris-HCl (pH 7.2) and
5 mM β-mercaptoethanol. The eluted protein was purified in a final step by gel filtration on HiLoad 26/60
Superdex 75 pg column with the running buffer containing 5 mM Tris-HCl (pH 8.0), 50 mM NaCl, and 10
mM β-mercaptoethanol.

Suppl. Note 4.2 Measurements of binding affinity and dissociation rate

Fluorescence anisotropy experiments were performed on a Multilabel 384-well plate reader (Tecan, Infinite
M1000 PRO). The binding affinity of the PMI peptide towards the Mdm2 protein was determined using
N-terminally fluorescently labelled peptide (fluorescein isothiocyanate, FITC-PMI), dissolved in a buffer
containing 50 mM NaCl, 10 mM Tris pH 8.0, 1 mM EDTA, 10% DMSO. Varying concentrations (0-100 nM)
of the empty Mdm2 protein were added to 10 nM (final concentration) of FITC-PMI in a final volume of
40µl. The complex was then incubated for 15 minutes at room temperature and the binding was measured
by fluorescence anisotropy. Data were fitted, and the Kd value was calculated using GraphPad Prism (Suppl.
Fig. 11).

In order to compute the dissociation kinetics, binding competition experiments were conducted, starting
with a mixture of 10 nM FITC-PMI peptide and 10 nM Mdm2 protein. Two such mixtures were prepared and
incubated for 15 min at room temperature. Then 10µM of unlabeled PMI peptide was added as competitor
to one of the mixtures, while the other one was left untreated as a control, and the fluorescence anisotropy
was simultaneously measured over time for both samples (main text Fig. 2f). The mixture with added PMI
shows a decay due to unbinding of the FITC-PMI while the control shows no decay.
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Suppl. Fig. 11: The binding curve of the empty Mdm2 protein titrated on FITC-PMI peptide.
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To determine the measured dissociation rate and uncertainties, we fitted the time trace with a single-
exponential model to find

kexp
off = 0.037 [0.030, 0.040] s−1,

The corresponding estimate for the residence time of the complex is

T exp
off = 26.7 [24.7, 34.1] s.

Suppl. Note 4.3 Stopped-flow experiments (association kinetics)
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Suppl. Fig. 12: Observed rate constants (kobs) from pseudo-first-order association binding experiments. The
association rate constant (kon) of (5.27±0.05) ·108 M−1s−1 was determined from the gradient of the straight-
line fit. The intercept represents the dissociation rate constant (koff), and was fixed to a value of 0.03 s−1, as
obtained in dissociation kinetics experiments. Error bars represent the standard error of the mean.

Biophysical buffer was 5 mM Tris, 50 mM NaCl, pH 8.0 with 10 mM 2-mercaptoethanol and 0.05 % Tween 20.
FITC-PMI and Mdm2 were rapidly mixed using an SX20 stopped-flow spectrometer (Applied Photophysics).
The temperature was maintained at 25◦C, and an excitation wavelength of 493 nm, in conjunction with
a 515 nm long-pass filter was utilized. Association experiments were performed under pseudo-first-order
conditions, such that the concentration of Mdm2 (220 nM to 560 nM) was at least 10-fold higher than
the concentration of FITC-PMI (20 nM). For each concentration of Mdm2, 10–19 traces were collected,
and data within the dead time of mixing (the first 2 ms) were removed before analysis. Individual traces
were fit to a single-exponential decay function to extract observed association rate constants (kobs), as
described previously. [33] Concentration dependent kobs were fit to a straight line to extract the association
rate constant (kon). The intercept of the line represents the dissociation rate constant (koff), and was fixed
to the koff obtained in the dissociation kinetics experiment (0.03 s−1). To ensure accurate concentrations
in experiments, protein stock concentrations were determined from amino acid analysis (Department of
Biochemistry, University of Cambridge, UK) and diluted by weight.
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