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Reviewers' comments:  

 
 
Reviewer #1 (Remarks to the Author):  
 
The authors present a model of the binding/unbinding of a protein fragment with a peptide 
inhibitor. Impressively, their model captures seconds timescales by exploiting a new multi-
ensemble MSM method recently introduced by the authors. The model provides interesting 
insights, such as the existence of multiple bound poses. I expect this paper to have significant 
impact since it is the first demonstration of the power of this new method and provides 
interesting biophysical insights. It would benefit from clarifying a number of points, raised 
below.  
 
- The authors claim that the pharmaceutical industry has shifted its focus to optimizing drug-
target kinetics. I think it would be more accurate to say that there is growing interest in the 
potential relevance of this kinetics and methods like those the authors present could be useful for 
achieving this end. There still seems to be significant controversy over the importance of 
kinetics.  
- I expected a larger experimental component to the paper based on the abstract, but really 
there’s only one new parameter measured. I recommend saying something like “We tested our 
model against existing mutagenesis data and our own experimental measurements of the 
unbinding rate.”  
- Presumably there’s a chance the model wouldn’t work, so it would be more accurate to talk 
about “testing” the model instead of “validating” it. The model is only validated if the test is 
successful.  
- It would be more accurate to cite Voelz et al. JACS 2010 for being able to reach the 
millisecond timescale with distributed computing than the Shirts et al. paper.  
- Its worth mentioning the simulation method and total aggregate simulation timescale for the 
Zwier et al. work as a reference point for judging how much of an improvement the authors 
obtained with their own approach.  
- Please run spell-check, there are many typos, such as “using using the MBAR estimator” 
(duplicates “using”).  
- “Hamilton” replica exchange should be “Hamiltonian” replica exchange.  
- Why do you only observe 11 binding events (5 from unbiased simulations and 6 from the 
biased ones) but almost 60 unbinding events if binding is so much faster? How is the MSM 
arriving at such large binding rates?  
- Its not clear when you’re using your MSM and when you’re using more ad hoc analyses of the 



raw simulation data. For example, I assumed you got the binding free energy from your MSM, 
but then it sounds like you just used a distance cutoff between the two peptides to define bound 
and unbound states. It also sounds like you called things bound if any pair of heavy atoms from 
the two peptides is within 1 nM. That sounds like an unrealistically generous definition of what it 
means to be bound. Please clarify whether you used an MSM or something else for each of the 
main results in the paper. If you’re using a distance cutoff, it would also help to give some 
analysis of how much the results change as you vary the cutoff. If you’re using a distance cutoff 
instead of the MSM, I’d also like to know why?  
- Why are you satisfied with your dissociation constant being off by a factor of ten?  
- I’m a bit alarmed that you switch force fields and water models for your perturbation analysis. 
It also sounds like you used a distance cutoff to define the bound state. Why not use the 
definition of states from your MSM?  
- In the caption of Fig. 2, please explain what the axes of panels a-d are. In panel a, does 50% 
mean half of the unbiased data and half of the biased data? In panel c, are you using all of the 
unbiased data and varying how much of the biased data you use? Or are you using a fixed 
amount of simulation but varying how much of that simulation data comes from biased/unbiased 
simulations?  
- You claim that your association rate is similar to those for other peptides but don’t give enough 
information for the reader to evaluate that claim. Please discuss how those peptides differ from 
the one you simulated and what their association kinetics are.  
- How was the MEMM coarse-grained? I thought you used PCCA, but then it sounded like you 
defined the unbound state based on a cutoff. How did you test the coarse-grained model was 
reasonable (I’m not sure which model Fig. S7 is for)? Using 14 states isn’t an obvious choice 
from the implied timescales and its not clear how you chose 83 substates for state 13.  
- The conformation you show for state 12 doesn’t look folded, assuming state A is representative 
of the folded state.  
- Why do you make a point of saying PMI mostly has an RMSD less than 1 nM? That’s a huge 
RMSD, so I don’t know what you’re trying to convey.  
- What does “resolving the stability changes of alanine mutations by state” mean?  
- In the paragraph on the substates of state 13, it would be good to tell the reader why you 
discuss these specific residues (Tyr6, Trp7, Phe3).  
- Are the state labels in Fig. 3 the same as Fig. 1? It kind of sounds like you used a distance 
cutoff to define the crystal-like state again, which lead to some confusion over what your state 
definitions are.  
- For adaptive sampling, it would also make sense to cite the related method from Zimmerman 
and Bowman. JCTC 2015.  
 
 
 
 



 
Reviewer #2 (Remarks to the Author):  
 
The manuscript by Paul, Wehmeyer et al is a thorough application of new ideas from markov 
state model (MSM) and related approaches applied to a complex problem. Apart from the 
obvious biological importance, another feature which in my view make this paper worthy of 
publication in Nature Communications, is that it demonstrates cleanly how to mix two popular 
classes of methods, enhanced sampling and MSM.  
 
However before I recommend publication I have some concerns which I would like to see 
addressed.  
 
(1) Fig. 2 is of profound importance to the simulation community. On one hand it gives immense 
credibility to this work (to a partial extent even addressing my concern #2). On the other hand it 
makes me very worried about the innumerable papers published over the years using 
straightforward MSM. From what the authors show here, without mixing information from 
enhanced sampling, MSM can be completely misleading for systems with rare events, with error 
bars spread across several orders of magnitudes. I find this disturbing for the many vanilla-MSM 
papers out there estimating kinetics for rare event systems, including drug binding. I would 
request the authors to critically address this issue.  
 
(2) The protocol here, of doing replica exchange with protein-ligand interactions tuned will give 
accurate rate matrices and rates *if and only if* the replica exchange scheme has actually 
sampled states per the equilibrium distribution. This in turn will be true if ligand-protein 
interactions are the only slow degree of freedom, or if all other slow degrees of freedom are 
sufficiently coupled to this particular degree of freedom. But that might not be true, and thus 
contrary to what authors claim in the introduction and in the conclusion, they still have a 
collective variable problem. If the drug binding is actually limited by some other degree of 
freedom - say protein conformational transitions or solvation of binding pocket/some other 
residues, I fail to see why the MSM constructed on the basis of the simple replica exchange 
scheme these authors do, would be accurate. Fig 2 might actually be indirect evidence, necessary 
but still not sufficient, that for this system that the authors got lucky with just using protein-
ligand interactions. In summary, I think the authors should re-examine their claim of not needing 
knowledge of collective variables. I don’t think its true. Replica exchange if not done carefully 
suffers from poor sampling issues, and this is the reason for existence of methods like OSRW by 
Wei Yang and co-workers, and REST by Berne and co-workers.  
 
(3) In the abstract and elsewhere the authors mention that the binding comes from interchange 
between different conformations with different hydrophobic surfaces. Were all these 
conformations visited in the original 300 or 500 microsecond MD? Would there have been more 



conformations if the original MD was run 5000 microseconds, or 50,000 microseconds? How 
can the authors be sure about the sensitivity to this parameter? realize the authors compare the 
statistics from using 300 and 500 microsec runs, but if there are unvisited conformations even in 
500 micro sec, this might not be sufficient. It would be nice to see a brief discussion on this 
point.  
 
(4) What can the authors say about the unbinding mechanism instead of the binding mechanism, 
which (the former) is often of great pharmacological relevance? With how much confidence can 
they say this?  
 
(5) How much wall clock time did the original 500 microsecond MD take? Please mention this in 
the main text as I think this is an important aspect for practical applications.  
 
In summary, I am happy with the paper but would like to see these few concerns alleviated 
before I can recommend publication.  
 
 



Reviewer #1
Comments: The authors present a model of the binding/unbinding of a protein fragment
with a peptide inhibitor. Impressively, their model captures seconds timescales by exploiting
a new multi-ensemble MSM method recently introduced by the authors. The model provides
interesting insights, such as the existence of multiple bound poses. I expect this paper to
have significant impact since it is the first demonstration of the power of this new method
and provides interesting biophysical insights. It would benefit from clarifying a number of
points, raised below.

We thank the referee for the supporting assessment.

• The authors claim that the pharmaceutical industry has shifted its focus to optimizing drug-target
kinetics. I think it would be more accurate to say that there is growing interest in the potential
relevance of this kinetics and methods like those the authors present could be useful for achieving
this end. There still seems to be significant controversy over the importance of kinetics.

We agree and have adapted the abstract and introduction in the revised manuscript accordingly.

• I expected a larger experimental component to the paper based on the abstract, but really there’s
only one new parameter measured. I recommend saying something like "We tested our model
against existing mutagenesis data and our own experimental measurements of the unbinding
rate."

Thank you for this suggestion. We have adapted the abstract to make this more explicit. Moreover
we now have extended the experimental component of the paper to also include measurements of the
association rate constant.

• Presumably there’s a chance the model wouldn’t work, so it would be more accurate to talk about
"testing" the model instead of "validating" it. The model is only validated if the test is successful.

We have replaced "validate" by "test" where appropriate in the revised manuscript.

• It would be more accurate to cite Voelz et al. JACS 2010 for being able to reach the millisecond
timescale with distributed computing than the Shirts et al. paper.

Thank you for pointing out this inaccuracy. We have clarified that this paragraph refers to all-atom
(explicit solvent) simulations and we have updated the references to cited papers that report notable
applications of millisecond-simulations with explicit solvent. Please let us know if we have missed
something that was published earlier.

• Its worth mentioning the simulation method and total aggregate simulation timescale for the Zwier
et al. work as a reference point for judging how much of an improvement the authors obtained
with their own approach.

We have added a corresponding sentence to the manuscript (120 µs of implicit solvent MD).

• Please run spell-check, there are many typos, such as "using using the MBAR estimator" (dupli-
cates "using").

Thank you! This has been corrected in the revised manuscript.

• "Hamilton" replica exchange should be "Hamiltonian" replica exchange.

This has been corrected in the revised manuscript.

• Why do you only observe 11 binding events (5 from unbiased simulations and 6 from the biased
ones) but almost 60 unbinding events if binding is so much faster? How is the MSM arriving at
such large binding rates?
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The large number of dissociation events can be explained by the fact that we started all replica-
exchange simulations in the crystallographic pose (this is now mentioned in the revised main text).
If the complex had dissociated in all ensembles and all repeats, this would have resulted in at least
Nrepeats ·Nensembles = 6 · 14 = 84 unbinding events. Unbinding is only a frequent event in the biased
simulations, so there is no contradiction with a large binding rate in the unbiased ensemble (whose
kinetics are described by the MSM).

However, the number 58 might be misleading, since we exclude the first 50 ns of the biased simula-
tions from the subsequent analysis. The rest of biased data (t ≥ 50 ns) still contains 26 full unbinding
events and 6 full binding events (from completely dissociated to the crystallographically bound pose).
The revised text now reports these numbers.

• Its not clear when you’re using your MSM and when you’re using more ad hoc analyses of the
raw simulation data. For example, I assumed you got the binding free energy from your MSM,
but then it sounds like you just used a distance cutoff between the two peptides to define bound
and unbound states...

In this manuscript, there is only one instance of ad hoc-analysis and it is reported in the sentence:
“Inspection of the MD trajectories shows that during the fast transition from state E to the crystal-like
state, the Tyr6 side-chain leaves the binding cleft first and is then replaced by the Trp7 side chain all
while Phe3 remains anchored to the cleft.” All other analyses are based either on the MSM that was
estimated from all simulation data or on the biased simulation data alone (in which case the analysis
was done with MBAR).

We have revised the manuscript to clarify when raw data analyses and MSM analyses were used,
and to clarify the definition of the states (see methods section “Multi-ensemble Markov model for
Mdm2-PMI” and supplementary section “Coarse-graining and TPT analysis”). The dissociated state
is consistently defined in the MSM and in all other analysis as the set of conformations with a minimal
heavy-atom distance larger than 1 nm between PMI and Mdm2.

• ... It also sounds like you called things bound if any pair of heavy atoms from the two peptides
is within 1 nM. That sounds like an unrealistically generous definition of what it means to be
bound. Please clarify whether you used an MSM or something else for each of the main results
in the paper...

We agree that a 1 nm cutoff is too generous to define the bound state from a chemical standpoint. In
the original manuscript, we had used the term “bound” to include all states that are not dissociated
(including non-natively associated states), as our fluorescence experiments are not able to distinguish
between different associated substates. To avoid confusion we are now calling these states “associated”
in the revised manuscript. This state is consistently defined as the set of conformations with a minimal
heavy-atom distance less of equal than 1 nm between PMI and Mdm2 for all analyses (MSM or raw
data). Otherwise we speak of natively or crystal-like bound and non-native bound structures, where
appropriate.

• ... If you’re using a distance cutoff, it would also help to give some analysis of how much the
results change as you vary the cutoff...

To address this request, we now test the influence of the distance cutoff d that defines the dissociated
state upon our estimates of the free energy of binding and for the residence time – see Supplementary
Figure 10. We find that the results depend on the choice of the cutoff but all variation is within the
range of the statistical errors of the numbers that are reported in the main text.

• ... If you’re using a distance cutoff instead of the MSM, I’d also like to know why?

Note that the dissociated state is still treated as an MSM state, so it is not used instead of an
MSM. The reason to define the dissociated state explicitly instead of just relying on the results of
data clustering is that the dissociated state in the given simulation box has a very low metastability.
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Thus, within the simulated system, the binding process is not a slow process. This prevents the
TICA method from finding independent components (i. e. order parameters) that describe the full
association/dissociation process of the binding partners, and a blind clustering on that space would
not result in a cleanly separated dissociated state. In order to resolve the binding/unbinding process
in the MEMM, we thus chose this cutoff as a help to the clustering method. A similar procedure was
applied in an earlier work [Plattner and Noé, Nat. Commun. 6, 7653 (2015)].

• Why are you satisfied with your dissociation constant being off by a factor of ten?

When comparing two sets of probabilities or rates, an order-of-magnitude agreement corresponds to
about 2.3 kT or 1.4 kcal/mol accuracy in energies, and is what can be expected on average when
comparing current force-fields with each other and force-fields with experiments. Similar limitations
to accuracy can sometimes also be found between different experimental setups. Although better
agreement can occur coincidentally, there is evidence for the order-of-magnitude agreement hypothesis:

Works by Best et al. [J. Chem. Theory Comput. 10, 5113 (2014)] indicate that current force fields
overestimate the binding between proteins. In [Petrov, Zagrovic, Plos Comput. Biol. 10, e1003638
(2014)] this effect is also seen for the amberSB99-ILDN force field that we use in our work. Best
et al. report a Kd value for Villin HP36 that is at least 10 times underestimated, so a factor of 10
might actually be what to expect. However this is further complicated by the fact that current force
fields might not correctly represent the unbound structure of PMI [Rauscher et al., J. Chem. Theory
Comput. 11, 5513 (2015)] which could lead to an erroneous entropic contribution to the free energy
of binding.

A comparable work about protein-peptide binding might be [Do et al., J. Chem. Theory Comput.
12, 395 (2016)], a 6µs metadynamics study of protein-IDP (intrinsically disordered protein) binding.
The authors find deviations of 2.6 to 3.8 kcal/mol between experiment and simulation which however
might also be due to lack of sampling, which would correspond to a factor of 75 to 560 in probabilities.
Also in [Yuwen et al., Biochemistry, 53, 6473 (2014)], the authors find a hundredfold deviation of Kd

between experiment and simulation.
We have added references to current works on force field validation to the discussion section in the

manuscript.

• I’m a bit alarmed that you switch force fields and water models for your perturbation analysis. It
also sounds like you used a distance cutoff to define the bound state. Why not use the definition
of states from your MSM?

We have to switch force field for technical reasons. The mutations to alanine are modeled by replacing
the corresponding side-chain of the amino acid by a hydrogen in the MD trajectories. The removal
of the side chain would leave an energetically unfavorable “hole” in explicit-solvent models. For this
reason explicit-solvent “perturbations” would only be feasible if we reran simulations for the mutants,
which is computationally unfeasible. In the implicit solvent model the void introduced by the removed
side chain is modeled automatically as “water” (i. e. as a region of high dielectric constant), therefore
a perturbation analysis makes sense when combining an ensemble of wild-type solute structures with
an implicit solvent model.

The implicit solvent force field that we use has been shown to be accurate for structure prediction of
folded proteins. A validation study by Zeller and Zacharias [J. Phys. Chem. B 118, 7467 (2016)] shows
that implicit solvent force fields can perform comparably to explicit solvent force fields in predicting
binding free energies, however we only predict changes in binding free energy, which is a simpler task.
We have added this explanation to the revised SI (section “Mutation model”).

We in fact use the same definition of the bound state (“associated state” in the current manuscript)
in the MSM and in the perturbation analysis. The dissociated macro-state is consistently defined
as all conformations with d > 1.0 nm in all analyses (See also SI section “Coarse-graining and TPT
analysis”).

• In the caption of Fig. 2, please explain what the axes of panels a-d are. In panel a, does 50%
mean half of the unbiased data and half of the biased data? In panel c, are you using all of
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the unbiased data and varying how much of the biased data you use? Or are you using a fixed
amount of simulation but varying how much of that simulation data comes from biased/unbiased
simulations?

We have extended the caption of Fig. 2 to clarify these points. Indeed in panels a,b 50% means 50%
of biased and 50% of unbiased data. In panels c,d we are varying the amount of biased data between
0% and 100% of all biased data. The amount of unbiased data is varied too, such that every estimate
is computed from exactly 502µs of data (biased + unbiased).

• You claim that your association rate is similar to those for other peptides but don’t give enough
information for the reader to evaluate that claim. Please discuss how those peptides differ from
the one you simulated and what their association kinetics are.

For the revised version of the manuscript we have conducted stopped flow experiments to measure
the association rate of PMI to the Mdm2 fragment that was used in the simulation. We find kexp

on =
5.27 · 108 M−1s−1 that is within an order-of-magnitude agreement with the simulation result ksim

on =
3 · 109 M−1s−1 (see main text of the manuscript for error estimates and discussion).

Our claim that the association rate is similar to those for other peptides is actually not justified
by the literature reference that we gave in the unrevised version of the manuscript. We have corrected
this error in the manuscript. The literature data for the experimentally measured association rates
of other p53-peptides to Mdm2 in [Schon et al, J. Mol. Biol. 323, 491 (2002)] refers to the whole
N-terminal domain (amino acids 2 to 125) of Mdm2 while we only simulated amino acids 25 to 109 of
Mdm2. The first 24 amino acids of Mdm2 form a lid that competes for the binding cleft [Showalter et
al., J. Am. Chem. Soc., 130, 6472 (2008)]. As expected, the association rates reported by Schon et
al. (on the order of 107 M−1s−1) are significantly lower than those to the 25−109Mdm2 fragment.

We have added a reference to the simulation study by Zwier et al. [J. Phys. Chem. Lett. 7,
3440 (2016)]. They report a rate kon = 7 · 107 M−1s−1 for association of the peptide 17−29p53 to
25−109Mdm2 which is roughly a factor ten slower than the association of PMI to 25−109Mdm2 (kexp

on =
5.27 · 108 M−1s−1).

• How was the MEMM coarse-grained? I thought you used PCCA, but then it sounded like you
defined the unbound state based on a cutoff. How did you test the coarse-grained model was
reasonable (I’m not sure which model Fig. S7 is for)? Using 14 states isn’t an obvious choice
from the implied timescales and its not clear how you chose 83 substates for state 13.

Please let us clarify first that all quantities except for the transition rates in main text Fig. 1 are
computed from the full MSM with 1056 microstates. This includes ∆G, koff and the TPT fluxes in
main text Fig. 3. The coarse-grained transition matrix is solely used for visualization of the transition
network and is never used to extrapolate to long lag times (τ > 150 ns). The 1056-state MEMM was
validated by the Chapman-Kolmogorov test shown in Suppl. Figure 6.

All macro-states except for the unbound macro-state were determined with the PCCA algorithm
(see SI “Coarse-graining and TPT analysis”). The unbound macro-state (called “dissociated macro-
state” in the revised manuscript) is defined as the set of all dissociated microstates (minimal PMI-
Mdm2-distance larger than 1 nm). We have added an explanation of how and why the dissociated
macro-state is defined to the SI (section “Coarse-graining and TPT analysis”).

Since the coarse-grained MSM is never used to compute association or dissociation rates, the number
of macro-states is arbitrary. Judging from the implied time scale estimates of the full MEMM, 13 is
the number macro-states that interconvert on the 10µs timescale (and slower) and 83 is the number
of states that interconvert on the microsecond time scale (and slower).

• The conformation you show for state 12 doesn’t look folded, assuming state A is representative
of the folded state.

Indeed, state 12 is not folded but only shows one helical turn from Phe 3 to Tyr 6. We have corrected
the corresponding parts of the manuscript.
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• Why do you make a point of saying PMI mostly has an RMSD less than 1 nM? That’s a huge
RMSD, so I don’t know what you’re trying to convey.

What we wanted to say is that the most probable macro-states are states 12 and A that are structurally
well defined and contribute a large fraction to the binding affinity. We have revised the corresponding
paragraph in the main text and do no longer refer to the RMSD. We have removed Suppl. Figure 5,
since we do not need it to support our argument.

• What does "resolving the stability changes of alanine mutations by state" mean?

Apologies for the confusing statement. We have clarified this sentence and added a longer explanation
to the SI. We compute the change in binding free energy upon mutation, ∆∆G, but with the free
energy of the bound state replaced by the free energy of PCCA state Si. That is, we pretend that the
only bound state of PMI and Mdm2 is the PCCA state Si and ask how then the binding free energy
would change if some PMI side chain was mutated to alanine. This is a way of measuring the effect of
mutations on the stability of the PCCA states.

• In the paragraph on the substates of state 13, it would be good to tell the reader why you discuss
these specific residues (Tyr6, Trp7, Phe3).

The amino acids Phe3, Tyr6, Trp7 and Leu10 are the most important residues important for PMI-
Mdm2 binding. The role of Phe3 of Trp7 and Leu10 in binding is rather clear because they form the
binding interface in the crystal structure (pdb ID 3eqs). Alanine scanning experiments by Li et al. [J.
Mol. Biol. 398, 200 (2010)] revealed that Tyr3Ala PMI mutant shows a similar ∆∆G to that of the
Leu10Ala PMI mutant even though the crystal structure shows no binding of Tyr6 to the inside of
the hydrophobic cleft of Mdm2. Our results indicate that the higher Kd of the Tyr6Ala PMI mutant
could possibly be explained by the destabilization of alternative bound states (e. g. macro-state 12)
that are distinct from the crystal-like state (A).

We have added this explanation to the main text of the manuscript.

• Are the state labels in Fig. 3 the same as Fig. 1? It kind of sounds like you used a distance
cutoff to define the crystal-like state again, which lead to some confusion over what your state
definitions are.

Yes, the labels are identical. We have changed the label “unbound” to “dissociated” and have changed
“crystal-like” to “crystal-like (A)” in the revised manuscript to further clarify the identity of the states.

In the unrevised manuscript we had defined the target state for transition path theory (Fig. 3) to
encompass all microstates that have a (mean) RMSD less than 0.3 nm to the crystal structure. For
simplicity, we have now replaced this definition by using state A, since it also contains the crystal-like
conformations. This change has no relevant effect on the results: the qualitative picture of the binding
mechanism stays the same. Only the relative magnitudes of the reactive fluxes change slightly. We
have adapted Fig. 3 and its discussion in the revised manuscript accordingly.

• For adaptive sampling, it would also make sense to cite the related method from Zimmerman and
Bowman. JCTC 2015.

Thank your for this suggestion, we have added the literature reference to the manuscript.
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Figure 1: Fig. 3 from the manuscript, influence of the definition of the TPT end-state on the results.
blue: original numbers form the unrevised manuscript, green: new TPT calculation where the previous
low-RMSD end-state was replaced by A.

Reviewer #2:
Comments: The manuscript by Paul, Wehmeyer et al is a thorough application of new ideas
from Markov state model (MSM) and related approaches applied to a complex problem.
Apart from the obvious biological importance, another feature which in my view make this
paper worthy of publication in Nature Communications, is that it demonstrates cleanly how
to mix two popular classes of methods, enhanced sampling and MSM.

However before I recommend publication I have some concerns which I would like to see
addressed.

1. Fig. 2 is of profound importance to the simulation community. On one hand it gives immense
credibility to this work (to a partial extent even addressing my concern #2). On the other hand
it makes me very worried about the innumerable papers published over the years using straight-
forward MSM. From what the authors show here, without mixing information from enhanced
sampling, MSM can be completely misleading for systems with rare events, with error bars spread
across several orders of magnitudes. I find this disturbing for the many vanilla-MSM papers
out there estimating kinetics for rare event systems, including drug binding. I would request the
authors to critically address this issue.

We agree with the referee that MSMs can be completely misleading if not properly analyzed, as
there are cases where the MSM appears “reversible connected”, but the underlying data has not truly
interconverted between the metastable states. In addition, we think that the problem of incorrect data
treatment is even more prevalent in vanilla enhanced sampling simulations that are often analyzed
with methods that assume global equilibrium (e.g. WHAM or MBAR), which is even more difficult
to achieve than reversible connectivity. While for both these problems, statistical indicators exist that
should be employed in a thorough analysis, these sampling problems were exactly the motivation to
develop methods such as MEMMs. To discuss this point, we have now added the following paragraph
to the Conclusion section:

“In particular, we have demonstrated that MEMMs can effectively mitigate the problem of trajec-
tories getting trapped in long-lived states. While direct estimation of MSMs requires that the visited
states are reversibly connected – a condition that is difficult to test in high-dimensional systems –
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MEMMs only require irreversible visits to metastable states if those states were sampled reversibly in
a biased simulation. On the other hand, in contrast to standard analysis methods such as WHAM or
MBAR, MEMM estimators such as TRAM or TRAMMBAR do not require the full simulation data
to be sampled from global equilibrium, thus greatly alleviating the sampling problem.”

With MSMs, it is in general difficult to decide whether the trajectories that are used for estimating
the MSM are reversible connected, in other words whether there’s a path connecting all pairs of states.
This question is actually undecidable unless a single ultra-long simulation trajectory was used, because
separate trajectories will never visit the exact same points in configuration space and will thus always
separate into disconnected sets if a fine enough discretization would be used. For example, if a peptide
dissociates from the protein in one simulation and binds to it in another, this may indicate connectivity,
but do they really bind in the same conformation? This is a question of resolution. There are at least
two ways to deal with the MSM disconnectivity problem in practice: (i) one could use a variant of
adaptive sampling to start from one state A and extend MD trajectories until the other state B is
reached (see [Plattner et al., Nat. Chem. DOI: 10.1038/nchem.2785 (2017)]). Doing this both ways
guarantees connectivity of A and B. (ii) We have advocated statistical tests such as the Chapman-
Kolmogorov tests that can indicate problems with connectivity [e.g., Prinz et al., J. Chem. Phys.
134, 174105 (2011)]. Also checking the convergence of the stationary distribution as the lag time is
increased is an useful approach to spot connectivity problems (see [Nüske et al., J. Chem. Phys., 146,
094104 (2017)] and [Doerr and De Fabritiis, J. Chem. Theory Comput., 10, 2064 (2014)]).

We have added the following paragraph to the introduction section to discuss this point: “While
MSMs help with parallelizing this problem and rare events can be sampled, in particular when adaptive
sampling strategies are combined with high-throughput simulation , the sampling of very rare events
such as protein-inhibitor dissociation can still be very inefficient. In practice, this difficulty may result
in not properly connected models and underestimated or imprecisely estimated residence times. While
MSM analyses have the advantage of being able to detect these problems with carefully conducted
Markovianity tests and by computing binding free energies as a function of the MSM lag time, the
typical solution involves running more simulations, which is unpractical when computational resources
are limited.”

2. The protocol here, of doing replica exchange with protein-ligand interactions tuned will give ac-
curate rate matrices and rates *if and only if* the replica exchange scheme has actually sampled
states per the equilibrium distribution. This in turn will be true if ligand-protein interactions are
the only slow degree of freedom, or if all other slow degrees of freedom are sufficiently coupled to
this particular degree of freedom. But that might not be true, and thus contrary to what authors
claim in the introduction and in the conclusion, they still have a collective variable problem. If
the drug binding is actually limited by some other degree of freedom - say protein conformational
transitions or solvation of binding pocket/some other residues, I fail to see why the MSM con-
structed on the basis of the simple replica exchange scheme these authors do, would be accurate.
Fig 2 might actually be indirect evidence, necessary but still not sufficient, that for this system
that the authors got lucky with just using protein-ligand interactions. In summary, I think the
authors should re-examine their claim of not needing knowledge of collective variables. I don’t
think its true. Replica exchange if not done carefully suffers from poor sampling issues, and this
is the reason for existence of methods like OSRW by Wei Yang and co-workers, and REST by
Berne and co-workers.

We agree with you in the statement, that indeed we use a collective variable for the HREMD simu-
lations. However we want to convey the fact that in general the TRAM/MEMM framework does not
rely on good choices of reaction coordinates, because all variables can be treated in an MSM-way a
posteriori (application of TICA, discretization, estimation of conditional jump probabilities). If the
replica simulations had been conducted with less frequent exchanges, or even without exchanges, the
data could even have been analyzed with the original TRAM procedure [Wu et al., Proc. Natl. Acad.
Sci. USA 113, E3221 (2016)] which does not require that the biased simulations sample from the
global equilibrium distribution. In this analysis framework, the choice of collective variables used in
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the enhanced sampling only affects how efficient or helpful these are in terms of sampling the rare
events, but they will not bias the results.

We have added the following, clarifying paragraph in the results section “Multi-ensemble Markov
models reveal fast binding and slow dissociation kinetics”:

“While TRAM requires all simulations to be longer than its lag time (often on the order of tens to
hundreds of nanoseconds), this is not the case for replica-exchange simulations with rapid exchanges.
TRAMMBAR can employ such replica-exchange data, by assuming global equilibrium for that part of
the simulation, which is justified when statistical tests indicate short correlation times. The present
replica-exchange data has a correlation time of 40 ns, compared to simulation lengths of about 1 µs
(Supplementary Information).”

In order to give the referee some more insights why we believe that the current HREMD protocol
does indeed sample from global equilibrium, please consider the following arguments:

• The bias potential was chosen carefully. We tested various ways of biasing the PMI-Mdm2 in-
teraction including multiple ways of scaling the Lennard-Jones and the electrostatic interaction
energy between the binding patterns. Scaling of some terms of the Hamiltonian is very sim-
ilar to the REST1/2 methods. Despite long parameter optimization, we were not able to see
reversible binding and unbinding in the biased replica trajectories (continuous in coordinates).
Only changing the functional form of the bias from a scaled interaction potential to the boost
potential resulted in reversible binding/unbinding.

• We quantified the relaxation speed to equilibrium and sampling efficiency. We computed the
statistical inefficiency as defined in [Shirts, Chodera. J. Chem. Phys. 129, 124105 (2008)] for
the HREMD simulations. We find 39.8 ns (95% confidence interval [5.2 ns, 184.0 ns]) which is
much smaller than 7.3µs, the total simulation length per replica. This number is related to
the autocorrelation time of the system and gives the length of the time interval after which two
samples can be considered as uncorrelated. We computed this number form the time series of
the microstate indices (i. e. discrete trajectories), therefore it should be sensitive to all the slow
processes that are resolved in the MSM.

• Our HREMD simulation involves a good deal of brute force. We conducted 100µs of HREMD
simulations. This is one of the largest-scale enhanced sampling simulation in the literature.
Other large-scale simulations only use 34µs of data [Chua et al., Proteins 84, 1134 (2016)] and
38µs of data [Chamachi, Chakrabarty J. Phys. Chem. B 120, 7332 (2016)]. Our simulations
are comparable to the work done in the group of D. E. Shaw [Pan et al., J. Chem. Theory
Comput. 12, 1360 (2016)]. The rationale behind using brute force is that MD simulations are
still comparably efficient in sampling, especially if the choice of the optimal bias is unclear.

• Slow conformational changes occur in the bound state. It is very likely that slowest conformational
changes are those of the bound PMI-Mdm2 complex. However we do not have to sample these
directly in the biased simulations. Instead of sampling a change between two bound conforma-
tions A and B directly, one can follow a thermodynamic cycle where one samples the transitions
from A to loosely-bound and from loosely-bound to B. The replica exchange protocol that we
use together with the biasing in the binding/unbinding direction allows the simulation to follow
these alternatives routes along the thermodynamic cycles spontaneously.

• The system that we study is simple. We pick the protein fragment 25−109Mdm2 because it is
relatively static. The fragment lacks the flexible lid formed by amino acids 1 to 24. The binding
cleft is located on the surface of Mdm2, so there is no complicated and potentially dynamic
binding channel that PMI has to penetrate. Furthermore we see almost no conformational
changes in the Mdm2 fragment. The cleft motion that was observed in [Pantelopulos et al.,
Proteins 83, 1665 (2015)] plays no role in our simulations. The closed conformation is present
in the apo-ensemble but with a minor population that is unlikely to have an influence on the
binding kinetics. Unbound PMI changes conformation quickly.
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In future research, we aim to develop more effective protocols for carrying out biased simulations, that
involve TRAM. For instance we will explore to use HREMD-like simulations with longer contiguous
trajectories and HREMD-like simulations that do not need to comply with the Monte-Carlo rule for
swapping replicas but instead use TRAM’s built-in ability to deal with non-equilibrium data. There
the choice of a good bias will be less important.

3. In the abstract and elsewhere the authors mention that the binding comes from interchange be-
tween different conformations with different hydrophobic surfaces. Were all these conformations
visited in the original 300 or 500 microsecond MD? Would there have been more conformations
if the original MD was run 5000 microseconds, or 50,000 microseconds? How can the authors be
sure about the sensitivity to this parameter? realize the authors compare the statistics from using
300 and 500 microsec runs, but if there are unvisited conformations even in 500 micro sec, this
might not be sufficient. It would be nice to see a brief discussion on this point.

The referee is completely correct that we can not be sure that all relevant conformations have been
sampled and that the equilibrium probability might shift more and more to the bound state as new
bound structures are discovered. However this criticism would apply to almost every simulation study
except for very simple systems.

To address this concern, we have added the new Suppl. Fig. 7 where we show the fraction of
metastable states seen in the trajectories depending on the total amount of simulation data analyzed.
We find that the number of newly visited macro-states has almost reached 100%, once 60% of the
simulation data is included in the analysis. This indicates that the majority of macro-states that are
metastable on timescales of the microsecond and longer have been found in the simulation.

We have added a paragraph to the main text at the end of the section “Analysis of the full kinetic
network” that describes this result and notes that it is still possible that further non-natively bound
states exist:

“It is possible that the number of discovered non-natively bound structures, and their combined
equilibrium probability, would continue to grow if the simulations would be extended. However, almost
all metastable states found here are already visited in the first 60% of our simulation data (Suppl. Fig.
7) and the estimate for the binding free energy is converged (Fig. 2a). These indicators suggest that
the non-natively bound structures with significant probabilities have been found.”

We want to stress that the application of TRAM (or TRAMMBAR) does not solve the sampling
problem by itself. However these methods allow to connect states and to estimate transition rates in
the forward and backward directions, and they can exploit the power of efficient sampling methods
that have been developed over the years, such as metadynamics or MSM-driven adaptive sampling.

4. What can the authors say about the unbinding mechanism instead of the binding mechanism,
which (the former) is often of great pharmacological relevance? With how much confidence can
they say this?

In this work we studied the PMI-Mdm2 system under equilibrium conditions. In equilibrium the bind-
ing pathways and the unbinding pathways are identical due to detailed balance (microscopic reversibil-
ity). So there is no additional insight that can be gained from studying the unbinding mechanism.
In vivo this is generally not true, because the steady-state concentrations of substrates and products
may be out of equilibrium, thus violating detailed balance. However, the equilibrium kinetic model
of a given protein-ligand interaction can be embedded into a larger kinetic model such as chemical
master equations or particle-based reaction-diffusion models that involve irreversible steps to study
the biological pathways (e. g. see [Boras et al., Front. Physiol. 6, 250 (2015)]). Secondly, the methods
developed here can be employed to parametrization models for multivalent binders, which are often so
strong that they can be practically considered irreversible. We have added a corresponding statement
at the end of the Conclusions section.

5. How much wall clock time did the original 500 microsecond MD take? Please mention this in
the main text as I think this is an important aspect for practical applications.
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The simulation took approx. 115 · 103 GPU hours for the unbiased MD and approx. 42 · 103 GPU
hours for the HREMD runs. We have added this information to the manuscript’s Methods section.

The simulation speed was 105 ns/day for the unbiased simulations and 57.75 ns/day for biased
simulations (single replica). The biased simulations are a bit slower because the bias potential had to
be implemented on the CPU and not on the GPU.

In summary, I am happy with the paper but would like to see these few concerns alleviated
before I can recommend publication.

We thank the referee for their supportive assessment.
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Reviewers’ Comments: 

 

Reviewer #1 (Remarks to the Author):  
 
The new draft is much improved. Congratulations to the authors. A few lingering comments:  
- I recommend replacing reference 25 (Voelz et al.) with Bowman et al. JACS 2010, which 
captures 10 millisecond timescales with explicit solvent.  
- In the paragraph that starts with path sampling, its not clear what “(B, C)”and other letters in 
parentheses refer to.  
- I didn’t have a problem with switching to implicit solvent, so much as switching between 
different variants of the amber protein force field for the simulations and free energy 
calculations. I suggest mentioning that this was done in the main text and providing a brief 
explanation as to why in the SI.  
 
 
 
Reviewer #2 (Remarks to the Author):  
 
The authors have addressed my concerns and I very gladly recommend publication of this most 
excellent manuscript.  



Reviewer #1
The new draft is much improved. Congratulations to the authors.

We thank the referee for the supporting assessment.

A few lingering comments:

• I recommend replacing reference 25 (Voelz et al.) with Bowman et al. JACS 2010, which captures
10 millisecond timescales with explicit solvent.

We thank the referee for this suggestion. We have replaced the reference 25 (now reference 20 in the
revised version of the manuscript) by [Bowman et al., Atomistic folding simulations of the five-helix
bundle protein λ6−85. J. Am. Chem. Soc. 133, 664 (2011)], presuming that the referee meant 2011
and not 2010.

• In the paragraph that starts with path sampling, its not clear what “(B, C)” and other letters in
parentheses refer to.

These letters refer to the tasks (A, B, C) introduced in the paragraph just above the one which starts
with “path sampling”. To make it clearer what the letters refer to, we have added the word “task” to
all references to tasks A–C in the revised manuscript.

• I didn’t have a problem with switching to implicit solvent, so much as switching between different
variants of the amber protein force field for the simulations and free energy calculations. I suggest
mentioning that this was done in the main text and providing a brief explanation as to why in
the SI.

The motivation to switch to the ff14SB-onlysc force field for the calculation of mutant energies was
to use the most recently developed force field from the Simmerling group in the hope that it would
give best agreement with experiment and that it would be the force field which would work optimally
together with the generalized Born implicit solvent model (GB-Neck2, igb8) that was developed in
the same group. Because we compute only potential energy differences Umut(x) − Uwt(x) from the
ff14SB-onlysc force field, energies that are not related to the removal of the side chain would cancel
anyway and therefore and assumed that a change of force field would be valid. We had not realized
that more recent research [Maffucci et al., J. Chem. Theory Comput., 12 ,714 (2016)] has shown that
the GB-Neck2 model works well together with the ff99SB-ILDN force field too.

Therefore we now have repeated the computation of differences in binding free energy upon alanine
mutation of PMI with the ff99SB-ILDN force field, that was also used for our explicit solvent simu-
lations. Results agree within statistical uncertainties and the qualitative picture and all conclusions
remain the same. We have adapted main text figure 2e and the Supplementary table 2.

Differences between the ∆∆G values computed with the two force fields are shown in the fig-
ure below. No significant changes are observed. The largest difference between the force fields are
found for the F3A mutation, where ff14SB-onlysc yields ∆∆G = 8.7 kcal/mol and ffSB99-ILDN yields
∆∆G = 5.3 kcal/mol. The new value computed with ff99SB-ILDN is closer to the experimental value
(5.5 kcal/mol, see also revised main text Fig 2e). Another change is the Y6A mutation where ff14SB-
onlysc yields ∆∆G = 1.5 kcal/mol and ffSB99-ILDN yields ∆∆G = 0.1 kcal/mol. Neither of the values
agrees with the experimental value (3.1 kcal/mol).
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Figure 1: ∆∆G upon mutation of PMI side chains to alanine computed with different force fields.
Error bars show standard deviations.

Reviewer #2:
The authors have addressed my concerns and I very gladly recommend publication of this
most excellent manuscript.

We thank the referee for their supportive assessment.
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