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ABSTRACT Caveolae are signal transduction centers, yet their subcellular distribution and preservation in cardiac myocytes
after cell isolation are not well documented. Here, we quantify caveolae located within 100 nm of the outer cell surface mem-
brane in rabbit single-ventricular cardiomyocytes over 8 h post-isolation and relate this to the presence of caveolae in intact
tissue. Hearts from New Zealand white rabbits were either chemically fixed by coronary perfusion or enzymatically digested
to isolate ventricular myocytes, which were subsequently fixed at 0, 3, and 8 h post-isolation. In live cells, the patch-clamp tech-
nique was used to measure whole-cell plasma membrane capacitance, and in fixed cells, caveolae were quantified by transmis-
sion electron microscopy. Changes in cell-surface topology were assessed using scanning electron microscopy. In fixed
ventricular myocardium, dual-axis electron tomography was used for three-dimensional reconstruction and analysis of caveolae
in situ. The presence and distribution of surface-sarcolemmal caveolae in freshly isolated cells matches that of intact myocar-
dium. With time, the number of surface-sarcolemmal caveolae decreases in isolated cardiomyocytes. This is associated with a
gradual increase in whole-cell membrane capacitance. Concurrently, there is a significant increase in area, diameter, and circu-
larity of sub-sarcolemmal mitochondria, indicative of swelling. In addition, electron tomography data from intact heart illustrate
the regular presence of caveolae not only at the surface sarcolemma, but also on transverse-tubular membranes in ventricular
myocardium. Thus, caveolae are dynamic structures, present both at surface-sarcolemmal and transverse-tubular membranes.
After cell isolation, the number of surface-sarcolemmal caveolae decreases significantly within a time frame relevant for single-
cell research. The concurrent increase in cell capacitance suggests that membrane incorporation of surface-sarcolemmal cav-
eolae underlies this, but internalization and/or micro-vesicle loss to the extracellular space may also contribute. Given that much
of the research into cardiac caveolae-dependent signaling utilizes isolated cells, and since caveolae-dependent pathways mat-
ter for a wide range of other study targets, analysis of isolated cell data should take the time post-isolation into account.
INTRODUCTION
Caveolae (Latin for ‘‘little caves’’), cholesterol- and sphin-
golipid-rich spheroid plasma membrane domains of
50–100 nm diameter, are found in close proximity to the sur-
face sarcolemma of cells, usually linked to it via a ‘‘bottle-
neck’’-like connection (1,2). Caveolae are present in many
cell types, including those of the cardiovascular system
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(cardiomyocytes, endothelial cells, fibroblasts, smooth mus-
cle cells) (3). A defining feature of caveolae is the presence
of specialized scaffolding proteins—caveolins and cavins
(4–6). Caveolins (Cav-1–Cav-3) are responsible in part for
the spheroid morphology of caveolae, through their asym-
metrical membrane insertion and their tendency to form
oligomers that promote local concave membrane invagina-
tion (7). Cav-3 is a muscle-specific isoform (8,9), whereas
Cav-1 is widely expressed in many cell types, including
adipocytes, endothelial cells, pneumocytes, and fibroblasts
(9–11). The muscle-specific Cav-3 is essential for caveolae
formation in cardiomyocytes, and Cav-3-deficient mice
develop cardiomyopathies (12–16).
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Since their discovery in the 1950s, caveolae have been
shown to play essential roles in a wide range of cellular
processes, including signal transduction (17–19), macromo-
lecular complex trafficking (20,21), and—owing to the
presence of several ion-channel and exchanger proteins in
caveolar membranes—electrophysiology (22–26). It is
thought that caveolae thus segregate and integrate certain
signaling pathways in microdomains of the plasma
membrane.

Their shape and composition enable surface sarcolemmal
caveolae in skeletal (27) and cardiac muscle (28) to act as
‘‘spare’’ plasma membrane, which can be recruited during
mechanical perturbations, such as stretch. Indeed, mechan-
ical stretch or osmotic swelling can lead to sarcolemmal
membrane incorporation of surface-sarcolemmal caveolae,
preventing excessive sarcolemmal membrane tension
(27–33). The dynamic recruitment of surface-sarcolemmal
caveolae into the surface membrane increases membrane
capacitance (29) and affects the density and distribution of
sarcolemmal ion channels (18). Depletion of surface-sarco-
lemmal caveolae in turn prevents the stretch-induced
increase in membrane capacitance and inhibits the slowing
of conduction otherwise seen upon mechanical distension
of the intact heart (29). Surface-sarcolemmal caveolae are
therefore one of the mechano-sensors/-transducers of cardi-
omyocytes (23,28,34,35).

In cardiac and skeletal muscle, Cav-3 is distributed
throughout the sarcolemma, including external surface
and transverse-tubular (T-tub) membranes, as visualized
by immunofluorescence (24,36). Nonetheless, caveolae are
traditionally thought to be structures associated with the
‘‘outermost’’ surface sarcolemma only, despite reports
(37–39) suggesting the presence of caveolae in T-tub mem-
branes. However, the presence and relevance of T-tub caveo-
lae have remained controversial (37,40,41). Here, we
describe in detail the three-dimensional (3D) organization
of caveolae at surface sarcolemmal and T-tub membranes
in rabbit ventricular myocardium.

The rabbit model was chosen because it represents a
species that mimics human cardiac physiology surprisingly
well. The characteristics of the rabbit heart resemble those
of the human heart in terms of structure (42,43), regional
contractile and diastolic properties (44), and responses to
pathophysiological stimuli (such as ischemia (43,45)). Key
electrical features (such as action potential properties) and
responses to relevant pharmacological interventions also
show pronounced similarities between the two species
(46–48). Additionally, rabbit cardiomyocyte ultrastructure
(for example, of the T-tub system) is closely reminiscent
of that in human cells (49). As a consequence, there is a
growing appreciation for the utility of rabbit models to study
basic electrophysiological concepts, human heritable dis-
eases (50), and for preclinical cardiac safety testing (51).

Isolated ventricular cardiomyocytes are an important
model system in molecular and cellular cardiology, and
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they are used in many studies of caveolar signaling. At the
same time, the extent to which structural and functional
in vivo properties of caveolae are preserved in vitro is
unknown. What is known is that isolated myocytes, even
if optimally isolated and maintained, gradually change
shape, structure, and function post-isolation, towards a
less in-vivo-like state (52). This includes a progressive
reduction in T-tub density, by �40% within 24 h in rabbit
(53,54) and by �60–100% within 72 h in rat (55). These
structural changes have marked effects on cell physiology,
including excitation-contraction coupling. Here, we docu-
ment a dynamic reduction in the presence of near-surface
caveolae in rabbit ventricular cardiomyocytes within the
first 8 h post-isolation—a time course that is directly rele-
vant for research on acutely isolated cells.
MATERIALS AND METHODS

All investigations conformed to the United KingdomHome Office guidance

on the Operation of Animals (Scientific Procedures) Act of 1986.
Heart and cell isolation

New Zealand white rabbit hearts (n ¼ 6 for intact tissue studies) were

swiftly excised after Schedule 1 killing, Langendorff perfused with normal

Krebs-Henseleit solution (containing 118 mM NaCl, 4.75 mM KCl,

2.5 mM CaCl2, 24.8 mM NaHCO3, 1.2 mM MgSO4, 1.2 mM KH2PO4,

11 mM glucose, and 10 U/L insulin (pH 7.4)) and then cardioplegically

arrested using high Kþ (25 mM). For tissue fixation, cardioplegically

arrested hearts were fixed by coronary perfusion with iso-osmotic Karnov-

sky’s reagent (56) (2.4% sodium cacodylate, 0.75% paraformaldehyde, and

0.75% glutaraldehyde).

For cell isolation, hearts isolated as above (n ¼ 3 for imaging, n ¼ 10 for

patch-clamp recordings) were Langendorff perfused with normal Tyrode

solution (containing 140 mM NaCl, 5.4 mM KCl, 5 mM HEPES,

1.8 mM CaCl2, 1 mM MgCl2, and 11 mM glucose (pH 7.4)). The myocar-

dium was enzymatically digested with collagenase and ventricular cardio-

myocytes were isolated. After isolation, cells were held in a storage solution

(containing 140 mM NaCl, 5.4 mM KCl, 1 mM MgCl2, 5 mM HEPES,

11 mM glucose, 1.8 mM CaCl2, 0.17 g/L trypsin inhibitor, and 1 g/L bovine

serum albumin (pH adjusted to 7.4 with NaOH)) at room temperature until

recording/fixation. This solution was refreshed every 2 h.

All solutions were controlled for iso-osmolality (295–305 mOsm).
Electron tomography of ventricular myocardium

Fixed tissue was washed with 0.1 M sodium cacodylate, post-fixed in 1%

OsO4 for 1 h, dehydrated in graded acetone, and embedded in Epon-Aral-

dite resin. Thick sections (275 nm) were cut, transferred onto copper slot

grids, and post-stained with 2% aqueous aranyl acetate, followed by

Reynolds’ lead citrate. Colloidal gold particles (15 nm) were added to

both surfaces of the sections to serve as fiducial markers for post-processing

tilt series alignment.

Preparations were imaged at the Boulder Laboratory for 3D Electron

Microscopy of Cells (University of Colorado at Boulder, Boulder, CO)

using an intermediate-voltage electron microscope (Tecnai F30; FEI-Com-

pany, Eindhoven, the Netherlands) operating at 300 kV, with images captured

on a charge-coupled device camera (UltraScan; Gatan, Pleasanton, CA), at a

pixel size of (1.206 nm)2. For dual-axis tomography, a series of tilted views

was collected from þ60� to �60� at 1� increments. After the first tilt series

was acquired, the specimen was rotated by 90� in the horizontal plane and
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another þ60� to �60� tilt series was taken. The images from each tilt series

were aligned by fiducial marker tracking and back projected to generate two

single full-thickness reconstructed volumes (tomograms), which were then

combined to generate a high-resolution 3D reconstruction of the original par-

tial cell volume (57–59). All tomograms were processed and analyzed using

the IMOD software, which was also used to generate 3D models of the rele-

vant structures of interest (60). Models were smoothed and meshed to obtain

the final 3D representation, in which spatial relationships of surface sarco-

lemma, T-tub, and caveolae were visualized.
Transmission electron microscopy of isolated
cardiomyocytes

Cells were fixed (at 0, 3, and 8 h post-isolation) using iso-osmotic Karnov-

sky’s reagent (57), embedded in LR white (Agar Scientific, Stansted,

United Kingdom), and sectioned at 80 nm thickness (Reichert-Jung Ultra-

cut; Ametek Reichert Technologies, Depew, NY). Sections were

post-stained with 2% aqueous uranyl acetate, followed by Reynolds’ lead

citrate. Cells were imaged by transmission electron microscopy (TEM)

(1200EX II; JEOL, Tokyo, Japan).
Scanning electron microscopy of isolated
cardiomyocytes

Cells were fixed as above, treated with 1% osmium tetroxide for 1 h,

washed in phosphate-buffered saline, dehydrated in ethanol, and subjected

to HMDS (hexamethyldisilazane) treatment. The protocol involved the

following steps: transfer of cells on to a coverslip, ethanol dehydration

series, drying for 3 min with HMDS, transfer onto a scanning electron

microscopy (SEM) stub, coating with gold in a sputter coater, and imaging

using SEM (JEOL JSM-5510; for details, see (61)).

For analysis of changes in area, diameter, and circularity (ratio of short to

long axis) of sub-sarcolemmal mitochondria, SEM images were analyzed

using custom-written software (available by request from G.B.). Custom

software (written in the Java programming language) allowed the operator

to outline pixels containing mitochondria. The sub-image within the user-

generated outline was auto-scaled and thresholded to select pixels corre-

sponding to the mitochondria, and dilation operations were applied to the

pixels to obtain a contiguous (filled) region that corresponded to the mito-

chondrion’s shape. The area of each mitochondrion is calculated by sum-

ming pixels in the contiguous region. The operator then uses an on-screen

ruler to find the long and short axis of the mitochondria, and circularity is

calculated from their ratio. The software generates an intensity profile for

the ruler’s path by summing pixel intensity values for three pixels perpendic-

ularly on either side of the path along its entire length. Peaks in the intensity

profile are used to measure distances between features in the image (62).

Cells were randomly distributed relative to the observation angle of SEM

image acquisition. Although this increases the standard deviation of

measurements (due to the cosine error), it does so in equal measure for

all time points.
FIGURE 1 Whole-cell plasma membrane capacitance recordings of

rabbit ventricular myocytes, showing a gradual increase over time post-

isolation. Data were analyzed using one-way analysis of variance, with

significance indicated for the overall effect of time; n ¼ 8 (0–3 h),

n ¼ 40 (4–5 h), n ¼ 48 (6–8 h) cells.
Membrane capacitance measurements

The patch-clamp technique (Axopatch 200B; Axon Instruments, Union

City, CA) was used to record plasma membrane capacitance in whole-

cell mode. Cells were allowed to rest after isolation for 2 h. To match struc-

tural observations, patch-clamp data were binned into 0–3, 4–5, and 6–8 h

post-isolation (although the first group effectively contains data collected

during the third hour only; it is accordingly a smaller sample). Data were

analyzed using pClamp10 from a standard pulse protocol (5 mVamplitude,

10 ms duration) to determine the value of cell capacitance. Capacitance was

recorded immediately after membrane rupture; recordings with access

resistance over 10 MU were rejected.
Statistics

All values are expressed as the mean5 SE, and statistical significance was

assessed by one-way analysis of variance.
RESULTS

Dynamic changes in cardiomyocyte plasma membrane
surface area were monitored by whole-cell membrane
capacitance measurement (63) using the patch-clamp tech-
nique. Cell capacitance gradually increased over an 8 h
period post-isolation (Fig. 1).
Surface-sarcolemmal caveolae numbers in
ventricular cardiomyocytes post-isolation

The ultrastructure of the surface membrane and the distribu-
tion of surface-sarcolemmal caveolae were studied over
time after isolation using TEM. Surface-sarcolemmal
caveolae were defined as either visibly connected to the sur-
face sarcolemma or separate from the plasma membrane by
%100 nm (measured from the surface-sarcolemmal caveola
center) in a given TEM image. There was a significant
decrease over time post-isolation (by 34% at 3 h and by
49% at 8 h post-isolation, when compared to 0 h) in the
overall number of surface-sarcolemmal caveolae per mem-
brane segment spanning two neighboring Z-lines (hence-
forth referred to as ‘‘per sarcomere’’; Fig. 2; Table 1).
Additionally, we observed an overall reduction in total
cellular Cav-3 protein after 8 h post-isolation (Fig. S1).
Changes in surface topology of ventricular
cardiomyocytes post-isolation

SEM revealed an increase in area, diameter, and circularity
of sub-sarcolemmal membrane protrusions, commonly
associated with sites of mitochondria (Fig. 3). Protrusions
Biophysical Journal 113, 1047–1059, September 5, 2017 1049



FIGURE 2 TEM images showing changes in the

distribution of caveolae (surface-sarcolemmal cav-

eolae, examples indicated by arrows) in rabbit ven-

tricular myocytes at 0, 3, and 8 h post-isolation.

The number of surface-sarcolemmal caveolae is

scaled per membrane spanning two neighboring

Z-lines (‘‘per sarcomere’’). This number declined

with time after cell isolation. Surface-sarcolemmal

caveolae were quantified for 9–12 sarcomeres per

cell, in six myocytes at each time point. Data

were analyzed using one-way analysis of variance,

with significance indicated for overall effect

of time. M, mitochondria. Scale bars represent

0.2 mm.
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typically correspond to a single mitochondrion (e.g., Fig. 2,
0 h). Observed changes in size and shape are indicative of
mitochondrial swelling.
Intracellular caveolae distribution in ventricular
tissue and isolated cells

Using electron tomography (ET), we quantified the presence
of caveolae in intact left ventricular rabbit tissue (Fig. 4;
Movie S1). Surface-sarcolemmal caveolae were found at a
frequency of 6.22 5 0.64 caveolae/sarcomere (per 80-nm-
wide strip connecting two Z-lines), similar to the value
seen in freshly isolated cardiomyocytes (Table 1).

Additionally, we observed the regular presence of T-tub
caveolae in intact myocardial tissue (Fig. 4; Movie S2).
T-tub caveolae were seen in 133 (63%) of 209 T-tub seg-
ments analyzed (average segment length: 275 nm) and in
every cell tested. The density of T-tub caveolae was lower
than that of surface-sarcolemmal caveolae (3.23 5 0.3 vs.
12.32 5 1.26, respectively, per 1 mm2 membrane area).
These structures were different from the T-tub folds
described previously in murine myocytes (64).
TABLE 1 Surface-Sarcolemmal Caveolae: Presence in Intact Tissu

Time Point

Surface-Sarcolemmal

Caveolae/Sarcomere (Mean 5 SE)

Reference: intact tissue (ET) 6.22 5 0.64

0 h post-isolation 6.41 5 0.35

3 h post-isolation 4.24 5 0.31

8 h post-isolation 3.27 5 0.19

Data for intact tissue are from ET and those for isolated cardiomyocytes are fro

80-nm-wide sarcolemmal strip, connecting two Z-lines, mimicking the section
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There was no significant difference between surface area,
volume, and major axis diameter of caveolae from the
different sub-cellular locations (Table 2).

With our knowledge of the presence of T-tub caveolae in
rabbit ventricular cardiomyocytes, re-examination of TEM
images revealed T-tub caveolae-like structures in 2D micro-
graphs of isolated cells (Fig. 5). However, given the small
radius of T-tub membrane curvature compared to the sarco-
lemmal surface, the nature and interrelation of probable
T-tub caveolae with the T-tub surface membrane cannot be
established with certainty in 2D sections (see Fig. 6).
Presence of surface-sarcolemmal and T-tub
caveolae in TEM images: spatial density
considerations

The relatively abundant presence of T-tub caveolae in the
3D EM data runs counter to general perception, based on de-
cades of experience with TEM. Howmight this come about?

Based on experiments with cell capacitance recordings
before and after de-tubulation, one can conclude that
between one-third and two-thirds of the total cell surface
e and in Isolated Cardiomyocytes over Time Post-isolation

Sarcomere/Cells

Analyzed

Fractional Change

(versus Intact Tissue)

26 sarcomeres/21 cells 1.00

54 sarcomeres/6 cells 1.03

59 sarcomeres/6 cells 0.68 (0.66 vs. 0 h)

60 sarcomeres/6 cells 0.53 (0.51 vs. 0 h)

m TEM. Surface-sarcolemmal caveolae/sarcomere in ET data includes an

thickness of TEM.



FIGURE 3 (A) SEM images of cardiomyocyte surface topology at 0, 3, and 8 h post-isolation, with protrusions of the sarcolemmal membrane (arrows

labeled M) increasingly prominent. (B–D) Area (B), diameter (C), and circularity (D) of membrane protrusions increased with time (3 cells per time point;

mitochondria n ¼ 40 (0 h), n ¼ 27 (3 h), and n ¼ 39 (8 h)). Significance is indicated for the overall effect of time. Scale bars represent 2 mm.
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membrane is contained in T-tub (53). If, for ball-park
estimation, one assumes a 50:50 split, and considers the
1:4 difference in T-tub caveolae density per unit of mem-
brane compared to surface-sarcolemmal caveolae, there
should be four times more surface-sarcolemmal caveolae
in a single cell than T-tub caveolae. This difference alone
does not explain the hitherto rare detection of T-tub caveolae
in ventricular myocyte TEM work.

Fig. 7 A illustrates the spatial relations between a typical
TEM section (thickness �0.1 mm) and a cardiac myocyte
FIGURE 4 Representative ET images of surface-sarcolemmal caveolae (top r

ETwas used to image, reconstruct, and model surface-sarcolemmal and T-tub cav

and z-depth was 275 nm; host membrane surfaces are indicated in green and ca
(approximate dimensions H� W� L¼ 10� 20� 150 mm).
The total cell surface is made up of 2A þ 2B þ 2C. Given
the high aspect ratio of the cell, areas A/B/C are
proportional to 15:30:2, so that for the most part, the contri-
bution fromC can be ignored. Therefore, considering a TEM
section through the long axis of the cell (as illustrated in
Fig. 7 A), the relevant contributions to the presence of
surface-sarcolemmal caveolae will come from intersections
of the TEM sample with the two A-surfaces. These surfaces
will contain a fraction of the total surface-sarcolemmal
ow) and T-tub caveolae (bottom row) in rabbit ventricular tissue. Dual-axis

eolae and their host membranes in 3D. Isotropic voxel size was (1.206 nm)3

veolae in blue.
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TABLE 2 Surface-Sarcolemmal and T-Tub Caveolar Dimensions in Intact Ventricular Tissue

Caveolae Type Longest Axis Length (nm) Volume (nm3) Surface (nm2)

Surface-sarcolemmal caveolae (n ¼ 45) 77.4 5 2.42 (276 5 19) � 103 (20.32 5 0.02) � 103

T-tub caveolae (n ¼ 64) 73.9 5 2.38 (n.s.) (244 5 19) � 103 (n.s.) (19.75 5 0.01) � 103 (n.s.)

Data are from reconstructions. n.s., no significant difference between surface-sarcolemmal and T-tub caveolae.

Burton et al.
caveolae, equivalent to 2A/(2A þ 2B), or—using the above
ratio of surface areas—1/3 of all surface-sarcolemmal cav-
eolae in that cell. Any 0.1 mm TEM section cutting through
this 10-mm-high cell will therefore contain 0.01 � 1/3 of all
surface-sarcolemmal caveolae. By comparison, as the sec-
tions will cut through the entire volume of the cell, a single
section will contain 0.01 of all T-tub caveolae. Combining
this with the relative host-surface densities (four times
higher density for surface-sarcolemmal caveolae than
T-tub caveolae), the difference in the numbers of surface-
sarcolemmal caveolae and T-tub caveolae contained in
any given TEM section is small (surface-sarcolemmal
caveolae_TEM ¼ (4/3) � T-tub caveolae_TEM). This makes
it even more surprising that T-tub caveolae have not been
reported more regularly in previous TEM studies.
Identifiability of surface-sarcolemmal and T-tub
caveolae in TEM images

If there is a similar net presence of surface-sarcolemmal and
T-tub caveolae per whole-cell TEM section, the question
arises as to why T-tub caveolae may still end up being un-
der-detected. To identify caveolae beyond doubt, a TEM
section should run through the lumen of the ‘‘bottle-neck’’
connecting the circular caveola structure to the host mem-
brane. In Fig. 7 B, the caveola-centric line, running parallel
to the axis of the neck, illustrates the orientation of an
ideally angled and positioned TEM section. Shown in
gray and at an angle a to this line is the case for a TEM
sectioning plane that runs through the lumen of the caveola
FIGURE 5 T-tub-caveola-compatible structures (arrows) identified in 2D

(thin section) TEM images of freshly isolated (0 h) rabbit ventricular cardi-

omyocytes. Scale bars represent 500 nm.
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connection at a non-ideal angle. If a exceeds a critical level
(aC), the presence of a caveolar structure will not be
confirmed even if the cut runs through the center of the
neck area. If, in addition, the TEM sectioning plane is offset
laterally (not running through the neck), one would see a
caveola-sized circular structure whose connection to the
host membrane cannot be confirmed, so one would not be
able to positively identify this, for example, as T-tub caveo-
lae, based on 2D TEM imaging data alone (see Fig. 6 B).

The likelihood that any TEM section plane will run
through the neck region of randomly distributed surface-
sarcolemmal and T-tub caveolae may be assumed to be
identical. However, the likelihood of a favorable angular
orientation of surface-sarcolemmal or T-tub caveolae with
TEM sectioning differs. This is illustrated in Fig. 7 C. While
surface-sarcolemmal caveolae will generally be orientated
roughly orthogonal to the outer cell surface, T-tub caveolae
may be aligned in any direction, depending on the orienta-
tion of the host T-tub (which, in rabbit, includes spoke-
like transversal and additional cell-axis parallel segments
(65)). From these, T-tub caveolae can protrude radially in
all surface-orthogonal directions. The question then is
what fraction of caveolae, cut at an optimal level—i.e.,
through the center of the neck region—will be positively
identifiable as caveolae in TEM images.

The angle, aC, defines a cone that contains all TEM
imaging planes that will yield an identifiable image of
caveolae. The volume fraction of this cone, relative to a
half-sphere, equals 1 � cos aC. An estimate of aC has
been obtained by simulating TEM sections in the 3D ET
data, with estimates for the value of aC varying between
8� and 20� and the average value being 13� (see example
in Fig. 6 B). This correlates to a fraction of possible TEM
sectioning planes relative to caveolar orientation that permit
positive identification of �2.5% (at aC ¼13�; ranging from
1.0% at 8� to 6.0% at 20�).

If one assumes, therefore, that T-tub caveolae can be
randomly distributed and oriented in the cell (Fig. 7 C),
one should expect to be able to identify no more than a
few percent of those that are present in a TEM section
and cut favorably (i.e., through the lumen of the neck re-
gion). In contrast, for surface-sarcolemmal caveolae, identi-
fiability—if cut through the neck-region—will be close to
100% for two reasons. First, they are aligned nearly perpen-
dicular to the cell surface membrane. Second, TEM imaging
of densely populated cardiac myocytes is user biased toward
alignment of sectioning planes with either the long or the
short axis of the cell’s contractile lattice structures—and



FIGURE 6 Illustration of technical challenges

associated with identifying T-tub caveolae in 2D

sections. A tomographic slice containing a repre-

sentative T-tub caveola is virtually sectioned along

different planes to simulate TEM-like data with

arbitrary sectioning planes relative to structures

of interest. Both the level (A) and the angle (B)

of the cutting plane (shaded area illustrating the

thickness of a typical TEM slice) relative to the

imaged structure affect the likelihood of positively

identifying T-tub caveolae in non-3D data sets.

Scale bars represent 200 nm.
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hence more or less perpendicular to the sarcolemma—the
host membrane of surface-sarcolemmal caveolae.

As an aside, reliable identification of caveolae by defini-
tion also includes recognition of the host membrane, which
FIGURE 7 (A) Model cardiomyocyte (red) showing approximate interre-

lations of surfaces A–C with a TEM cutting plane (gray). (B) Cutaway

through a model caveola showing approximate dimensions. The TEM

section is oriented at an angle a relative to the caveola-centric orientation

that would be optimal for identification. (C) Illustration showing the

different likelihood of imaging caveolae on the sarcolemma (left) at an

angle amenable for identification compared to that of imaging randomly

oriented caveolae on a T-tub.
is usually much more straightforward for surface sarco-
lemma, compared to less regular and variably orientated
intracellular membrane systems. If one further takes into
account the ‘‘best-case scenario’’ of histologically
convincing identification, i.e., a cut that not only captures
T-tub caveolae favorably (right level and orientation) but
also runs either longitudinally through a suitably long sec-
tion of a T-tub to allow caveola identification beyond doubt
(as shown in Fig. 5) or perpendicularly through a clearly
identifiable T-tub (as, for example, in Fig. 5 C of (65)),
the fraction of identifiable T-tub caveolae is further reduced
by about one order of magnitude, i.e., well below 1%.

Thus, to successfully identify caveolae from a TEM
image, caveolae must 1) be present (expectation here: sur-
face-sarcolemmal and T-tub caveolae may be relatively
evenly matched per whole-cell section), 2) be cut at the right
location (center of neck region, also with the expectation
that this may occur equally frequently for surface-sarco-
lemmal and T-tub caveolae), and 3) be cut at an amenable
angle (which is likely to occur with a two to three orders
of magnitude higher probability for surface-sarcolemmal
caveolae compared to T-tub caveolae). This is before taking
into consideration that user-‘‘optimization’’ of cardiac cell
TEM data will also optimize surface-sarcolemmal caveolae
detection (given the surface-normal orientation of surface-
sarcolemmal caveolae: if you see one, you see all that are
contained in a section and its serially cut neighbors, some-
thing that cannot be done for T-tub caveolae, even if it
was desired). See appendix (Figs. 8 and 9) for more details.
DISCUSSION

Caveolae are centers of cardiac signal transduction,
frequently studied in isolated cells. Although changes in
cardiomyocyte structure (such as shape) and ultrastructure
Biophysical Journal 113, 1047–1059, September 5, 2017 1053



FIGURE 8 Shown is the elemental area, dP, which is directly propor-

tional to the probability of the cylinder axis having orientation angle 4.
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(e.g., T-tub integrity (53)) have been reported after cell
isolation (though generally thought to become relevant
over days, not hours) (28,66), little is known about caveolae
preservation in isolated myocytes. Here, we report signifi-
cant changes in surface-sarcolemmal caveolae distribution
within hours of cell isolation, with reductions in surface-
sarcolemmal caveolae numbers by one-third within 3 h,
and down to half by 8 h. This marked change has a poten-
tially significant impact on functional studies conducted
on isolated cells over matching time periods. Among the
types of studies potentially affected by changing caveolae
distribution over time are electrophysiological investiga-
tions (e.g., via caveolar effects on calcium-induced calcium
release (67)), studies of intracellular signaling (e.g., via
G-protein coupled receptors (68,69), adrenergic and nitric-
oxide-mediated pathways (70,71), platelet-derived growth
factor and epidermal growth factor receptor (72)), and
experimental research into mechano-sensing (23). Addition-
ally, one should keep in mind the potential impact of
changes in caveolae distribution on cytoskeletal function
(21,73–75).

There are several potential functional implications of the
result of our study. Caveolae can act as a membrane reserve
that buffers membrane tension and protects the membrane
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from rupture. Loss of 75% of caveolae from the cardiac my-
ocyte membrane by methyl-b-cyclodextrin has been shown
to enhance mechanotransductive processes and cell lysis in
response to cell swelling (76). In addition, the same degree
of caveolar disruption enhances the contractile response to
b2-adrenergic stimulation in cardiac cells, through the loss
of normal compartmentalization of signal transduction com-
ponents concentrated within the caveolar microdomain (77).
The profound effect of a 75% reduction of caveolae on car-
diac myocyte function suggests that the 50% loss of caveo-
lae we report here will have functional consequences.

Reduction in surface-sarcolemmal caveolae could be
occurring by internalization, loss to the extracellular space,
or via incorporation of caveolae into the surface sarco-
lemma. In support of the latter scenario, we observed an
increase in cell capacitance in the first 8 h after isolation,
suggesting an increase in the total surface membrane area.
The increased membrane capacitance and altered membrane
surface-to-volume relationship could lead to changes in the
charge required to depolarize the membrane, reduced
upstroke velocity, and slowing of conduction (29). This
should be taken into account in research targeted at, or
affected by, caveolae structure and function.

Since cardiomyocytes swell after isolation (78), even in
iso-osmotic conditions (attributed predominantly to oncotic
pressure gradients), it is possible that associated mechanical
factors contribute to the destabilization of caveolar struc-
tures, with membrane incorporation (‘‘flattening’’) of caveo-
lae, as reported previously in rabbit ventricular tissue
subjected to volume overload (stretching cells) or hypo-
smotic perfusion (swelling cells) (28,30,33). This is in keep-
ing with indications of mitochondrial swelling, observed in
SEM images of cell surface topology. As sub-sarcolemmal
mitochondria are constrained from centripetal movement
by the contractile filament lattice (79), their swelling could
enhance local stretch of the cell membrane, perhaps aiding
incorporation of surface-sarcolemmal caveolae into the
sarcolemma.

In addition to surface-sarcolemmal caveolae, we docu-
ment the regular presence of T-tub caveolae in T-tub mem-
branes. Diameter and volume of T-tub caveolae are
indistinguishable from those of surface-sarcolemmal
FIGURE 9 (A) Model of the intersection area, A,

of a cylindrical structure (T-tub) of radius r and a

slab (TEM image section) of width W and thick-

ness t. The cylinder axis makes an angle 4 with

the plane of the slab and the cylinder is shown ori-

ented at the critical angle (4 ¼ 4C). (B) The solid

line describes the variation in the interface area,

A (left axis), as a function of the inclination angle

of the cylinder, 4, as predicted by the model. The

small-dashed black line predicts the variation in

intersection area for 4 < 4C. The large-dashed

line indicates the probability distribution function

(right axis) for the cylinder orientation as a func-

tion of 4.
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caveolae, though T-tub caveolae have a roughly fourfold
lower density per host membrane area (�3 T-tub caveolae
per 1 mm2 T-tub membrane area) compared to surface-sarco-
lemmal caveolae (�12 per 1 mm2 sarcolemma). In either
case, membrane contained in caveolae represents an addi-
tional 6–24% membrane ‘‘reserve’’ (3–12 � 0.02 mm2 per
1 mm2 of host membrane), based on our rabbit ventricular
ET data.

Caveola-like shapes have been observed in close prox-
imity to T-tubs in earlier TEM studies (37,38,80). However,
their existence has remained controversial (81). This is in
part due to the technical challenges associated with reliable
T-tub caveolae identification in typical 80 nm thin sections,
as no prior studies have assessed T-tub caveolae in 3D EM
tomography data. As an illustration, Fig. 6 documents what
one bona fide T-tub caveola, identified by ET, would look
like in a series of 2D TEM sections at different imaging
planes. This highlights that without 3D tracing it is difficult
to identify the presence of T-tub caveolae and their interre-
lation with the T-tub host membrane.

Early studies by Parton et al. (40) found that Cav-3 is
transiently associated with T-tubs during development. It
has been suggested that caveolae are required for the forma-
tion of the T-tub system via repetitive generation of
inwardly directed sarcolemmal membrane nano-bulges
(the ‘‘beaded tubules’’ theory) (40,82–84). Supporting this
theory is the fact that both T-tubs and caveolae share simi-
larities in protein and lipid composition that are consider-
ably different from those of the surface sarcolemma (41).
Furthermore, Cav-3 null mice show not only loss of caveo-
lae, but also abnormalities in T-tub system organization
(in skeletal muscle), such as dilatation and loss of transverse
orientation (12), and Cav-1/Cav-3 double-knockout mice
show complete loss of cardiac caveolae, T-tub disorganiza-
tion, and severe cardiomyopathy (12,14). In contrast, in
adult myocytes, it has been proposed that T-tub Cav-3 forms
scaffolds rather than morphologically identifiable caveolar
structures (70). Since T-tubs are an important determinant
of cardiac cell function, and changes in their structure and
protein expression occur during development and heart fail-
ure (see review in (85)), the presence of caveolae (and their
associated proteins) on the T-tub could potentially
contribute to important physiological and pathological func-
tions. Whether T-tub caveolae serve as signaling centers,
and to what extent this may involve mechano-sensitive alter-
ations in T-tub structure during the cardiac cycle (similarly
to CAVs (27–29)), remains to be elucidated; the technology
to do so exists (86,87).

EM tomography has been used in this study because it is
the only imaging method capable of resolving caveolar
arrangements in 3D, which is necessary to discover and
quantify these very small structures. Data from EM tomog-
raphy compared favorably with those of more conventional
techniques, such as TEM and SEM. To conclude, we
1) report dynamic remodeling of surface-sarcolemmal cav-
eolar structures in rabbit ventricular cardiomyocytes post-
isolation and provide functional assessment indicative of
electrophysiological consequences, 2) establish that this
occurs over a 3- to 8-h time course, which is relevant for
research using acutely isolated cells, 3) confirm the addi-
tional regular presence of caveolae on membranes of the
T-tub system, and 4) suggest an explanation for why the
latter may have been overlooked in previous ultrastructural
research. It will be important now to investigate potential
strategies to preserve caveolar integrity in isolated cells.
Given the huge parameter space for possible modifications,
a useful step would come from raising awareness of this as a
variable parameter that should be assessed when evaluating
existing cell isolation protocols by the different teams using
acutely isolated cardiac cells.
APPENDIX A: FORMULATING A DESCRIPTION OF
THE INTERSECTION AREA, A

Starting with the axis of the cylinder oriented normally to the image plane

(4 ¼ 90�) and then gradually reducing the value of 4, it can be seen that a

point is reached at which the full width of the image section is completely

contained within the cylinder. At this point, the diagonal of the image

section makes an angle, 4C (the critical angle), with the axis of the cylinder.

The variation in Awith the rotation angle 4 can then be conveniently broken

down into two regimes, first for 4 > 4C and then for 4 % 4C. For 4 > 4C,

the intersection area is labeled A1 and for 4 % 4C, the intersection area is

labeled A2.

For 4 > 4C, the image section always extends beyond the length of the

cylinder, with the intersection area reaching a minimum at 4 ¼ 90�. For
values <90�, the perimeter of the intersection area will describe an ellipse,

with minor axis a¼ r and major axis b¼ (r/sin(4)). A first approximation to

Awill therefore be given by the product of the circumference of the ellipse,

C, and the sectioning thickness, t. The parameter C can be approximated

using the expression given in Eq. 1:

Cz2p � �
0:5 � �

a2 þ b2
��1

2: (1)

Making substitutions for a and b, we therefore have

A1 ¼ C � t ¼ 2p � r � t

� �
0:5 � �

1þ ð1=sinðfÞÞ2��12: (2)

It can be seen that for 4 ¼ 90�, A ¼ 2prt, which is as expected from the

product of the cylinder circumference (2pr) and the section thickness, t.

The expression in Eq. 2 describes the regime for 4 > 4C. For 4 % 4C,

the intersection area is maximized, as the image section is completely con-

tained within the walls of the cylinder. Introducing a factor of 2 to account

for the intersection areas on both sides of the cylinder, we can approximate

the intersection area as

A2 ¼ 2 � W � t: (3)
Calculating the expectation value of A

As not all orientations of the cylinder are equally likely, we need to modu-

late the above expressions for A by the probability, dP, of the cylinder
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having angle 4, to form the expectation value for A. The first task is then to

form a probability distribution function that describes the likelihood of a

randomly oriented cylinder being inclined at angle 4 with respect to the im-

age plane. For a purely random orientation, the endpoint of a vector running

parallel to the cylinder axis (the axis vector) will describe a spherical shell

of uniformly distributed points (Fig. 8).

The probability of a given angle, 4, will therefore be proportional to the

area, dP, on the sphere which is given by

dP ¼ 2p � cosðfÞ � df: (4)
We now have sufficient information to calculate the expectation value

for the intersection area:
hAi ¼ hA1i þ hA2i

¼ 2

4p
�

2
64
Zp=2

4C

A1 � dPþ
Z4C

0

A2 � dP

3
75: (5)
In Eq. 5, we have normalized by 4p to ensure that the total probability
sums to unity. The first expression for A1 can be written as

hA1i ¼ 2

4p
�

2
64
Zp=2

fC

2prt
�
0:5 � �

1þ ð1=sinðfÞÞ2��12

� cosðfÞdf

3
75: (6)
It is possible to simplify this expression by setting x ¼ sin(4):
hA1i ¼ rtffiffiffi
2

p �
Z1

sinðfCÞ

�
1þ ð1=xÞ2�12 � dx: (7)
Equation 7 describes an elliptical integral that can be represented as
hA1i ¼ 2p � rtffiffiffi
2

p �
2
4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1=xÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 1
p

�log
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p �
þ logðxÞ

�35
1

sinðfCÞ

: (8)
Evaluating this function for the experimental value of 4 ¼ 6.6�, we get
hA1i ¼ 10:6 � rt ¼ 1:28 � 105 nm2: (9)
We can now calculate the expectation value of A2, which is much more

straightforward:
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hA2i ¼
ZfC

0

2Wt � cosðfÞdf ¼ 2Wt � sinðfCÞ

¼ 4:8 � 104 nm2: (10)

Combining the results from Eqs. 9 and 10 we have a total expectation

value of

hAi ¼ 1:75 � 105 nm2: (11)

Modeling the likelihood of detecting T-tub
caveolae

Using a simplistic model, one can estimate the probability of detecting a

caveola by pure chance in a cylindrical structure (e.g., a T-tub), which

has a radius, r, and a length that extends beyond the field of view of the

TEM image. In this model, it is assumed that T-tub caveolae (abbreviated

CAVT in equations) will be imaged if they lie within an area described

by the intersection of the cylinder and a rectangular slab of width w and

thickness t, corresponding to the TEM image section (see Fig. 9 A).

Assuming that T-tub caveolae can be randomly distributed across the sur-

face area of the cylindrical structures, the likelihood of seeing the caveolae

in close proximity to the T-tub varies in direct proportion with the size of the

intersection area, A. This model determines how A varies with the relative

orientation of the cylindrical structure and the image section. In principle,

the orientation of either the cylinder or the image section can be changed. In

this description, it is the cylinder that is reoriented, forming an angle 4 be-

tween the cylinder axis and the plane of the image section (Fig. 9 A).

A plot of A(4) can be seen in Fig. 9 B. Here, we have substituted exper-

imental values for t, r, andW (80, 150, and 2600 nm, respectively). It can be

seen that the model of A(4) has been split into two parts, A1 and A2, depend-

ing upon whether the inclination angle of the cylinder is above or below the

critical angle (demonstrated in Fig. 9 A) at which 4 ¼ sin�1(2r/W). The

mismatch between the models for A1 and A2 at 4 ¼ 4C is a consequence

of the simplicity of the model for A2, which underestimates A for 4 > 0.

A more sophisticated model would appear like the small-dashed line in

Fig. 9 B, although, as is clear from the figure, this does not significantly

change the result.

The function describing A(4) can be multiplied by a probability distribu-

tion, which determines the likelihood of a randomly oriented cylinder hav-

ing an orientation of 4 (Fig. 9 B, large-dashed line). Integrating this product

over all possible values of 4 delivers the expectation value of A, which is to

say the statistical average value of the intersection area. For the parameter

values applicable to the above experiment, the expectation value for a single

T-tub was calculated to be (see Appendix for full details)

hATi ¼ 0:175 mm2: (12)

From the measured surface density value of 3.23 T-tub caveolae per mm2

of T-tub outer surface it is possible to calculate the expectation value for the

number of T-tub caveolae seen in an average TEM image of a randomly ori-

ented T-tub:

hCAVTi ¼ 0:175 mm2 � 3:23 CAVT

	
mm2

¼ 0:57 CAVT: (13)

This tells us that for a randomly oriented T-tub, we would on average

expect to image around one T-tub caveola every two TEM images. This

calculation assumes only a single T-tub within the 2.6 � 2.6 mm field of

view of each TEM image, which is likely to be different in most cases,
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depending on the deviation of the cutting plane from a cut perpendicular to

T-tub orientation. Nonetheless, this simplified analysis implies that T-tub

caveolae should be a common feature in TEM images. This issue is further

explored in the section Presence of Surface-Sarcolemmal Caveolae and

T-Tub Caveolae in TEM Images: Spatial Density Considerations.
SUPPORTING MATERIAL

One figure and two movies are available at http://www.biophysj.org/

biophysj/supplemental/S0006-3495(17)30851-2.
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Supplementary Material 

 

Supplementary Figure S1.  Whole cell Cav-3 protein levels are reduced after 8h, as shown 
by Western blot of isolated cell extracts (left, n = 3 cell isolations; data analysed using 
ANOVA, significance indicated for the overall effect of time) and measurements of 
fluorescence intensity in isolated cells (right, n = 18 cells from 3 isolations for each time 
point; data analysed using ANCOVA, # p=0.002 vs 0h; scale bar = 20 µm). 

Whether this is indicative of internalisation and protein degradation, or loss to the 
extracellular space, requires further elucidation.  
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