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Supporting Information (SI) 1

SI.I Model description 2

The full model, as depicted in Fig 1 of the main manuscript, consists of four sub-populations and 3

six processes for each cell type (wildtype and mutant/donor). The number of host or wildtype 4

cells located in the bone marrow (BM) is n1, while s1 is the number of cells of this type in the 5

peripheral blood (PB). Likewise, n2 and s2 are the number of mutant/donor cells in the BM and 6

PB, respectively. The BM has a maximum capacity of N cells, representing the finite niche space 7

in an organism. The cell numbers are affected by birth, death, detachment from the BM, and 8

attachment to the BM. The effect of these events and the rate at which they happen are given by 9

the following reactions: 10

Reproduction into PB: (ni, si)
[1− ρi(n)]βini−−−−−−−−−−−−→ (ni, si + 1), (SI.1a)

Reproduction into BM: (ni, si)
ρi(n)βini−−−−−−−−−−−−→ (ni + 1, si), (SI.1b)

Death in PB: (ni, si)
δisi−−−−−−−−−−−−→ (ni, si − 1), (SI.1c)

Death in BM: (ni, si)
δ′ini−−−−−−−−−−−−→ (ni − 1, si), (SI.1d)

Detachment: (ni, si)
dini−−−−−−−−−−−−→ (ni − 1, si + 1), (SI.1e)

Attachment: (ni, si)
aisi(N − n)/N
−−−−−−−−−−−−→ (ni + 1, si − 1), (SI.1f)

where n =
∑
i ni, and (N − n)/N is the fraction of unoccupied niches. The function ρi(n) 11

represents the probability for the new daughter cell following a reproduction event to attach 12

directly to the BM, rather than entering the PB. This function should satisfy 0 ≤ ρi(n) ≤ 1, as 13

well as ρi(N) = 0. For simplicity we choose a binary function such that 14

ρi(n) =

%i if n < N,

0 otherwise.
(SI.2)

We express the death rate in the BM, δ′i, in terms of the original death rate δi, such that 15

δ′i = αδi. With this parametrisation, setting α = 0 prevents death from occurring within the BM, 16
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and α = 1 makes HSC death independent of the environment. As the BM is a more favourable 17

environment for the HSCs, we expect 0 ≤ α ≤ 1. As α is effectively a property of the 18

environment, we assume it is identical for both host and mutant/donor cells. We note here that 19

there are no direct interaction terms between host cells and mutant/donor cells (no switching 20

from type 1 to type 2 etc.). We use the following parametrisation for the reaction parameters: 21

β1 = β, β2 = (1 + εγβ)β, (SI.3a)

δ1 = δ, δ2 = (1 + εγδ)δ, (SI.3b)

δ′1 = αδ1 δ′2 = αδ2, (SI.3c)

d1 = d, d2 = (1 + εγd)d, (SI.3d)

a1 = a, a2 = (1 + εγa)a, (SI.3e)

%1 = % %2 = (1 + εγ%)%. (SI.3f)

Here ε represents the strength of selection. For analysis purposes discussed below, we assume 22

0 ≤ ε� 1. For ε = 0, we have the so-called neutral model. The parameters γj (j ∈ {β, δ, d, a, %}) 23

satisfy γj = O(1). They allow the parameters to be varied independently. In the main 24

manuscript we restrict these parameters to γβ = 1 and γδ = γd = γa = γ% = 0, along with 25

α = % = 0, but we carry out the analysis in general here. 26

Considering a steady-state system in the absence of the mutant/donor cells (n2 = s2 = 0), the 27

deterministic dynamics of the system are described by ordinary differential equations (ODEs): 28

dn1

dt
= (%β − d− αδ)n1 + as1

N − n1

N
, (SI.4a)

ds1

dt
= [d+ (1− %)β]n1 −

(
δ + a

N − n1

N

)
s1. (SI.4b)

From these ODEs we can obtain expressions for the equilibrium size of the BM and PB 29

compartments, n∗ and s∗, respectively. These are given by 30

n∗ = N

(
1− δ(d+ αδ − %β)

a(β − αδ)

)
, (SI.5a)

s∗ =
(β − αδ)

δ
n∗. (SI.5b)
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Table SI.1. Deduced parameter value ranges (units are per day). Here we have fixed ` = 3
minutes and % = 0.

Value (per day)
Parameter Expression s∗: 1 cell 100 cells

α: 0 10−4 10−2 1 0 10−4 10−2 1

δ βn∗

s∗+αn∗ 250 130 2.5 0.026 —– 2.5 —– 1.3 0.025

d s∗

`n∗ − β ———— 0.022 ———— ———— 4.8 ————

a
(

1
` −

βn∗

s∗+αn∗

)
N

N−n∗ 23,000 35,000 — 48,000 — ——— 48,000 ———

From Eq (SI.5b), the death rate δ can be expressed in terms of β, s∗, n∗, and the variable 31

parameter α. Furthermore, a cell in the PB compartment (in equilibrium) can either die with 32

rate δ or attach to an unoccupied niche with rate a(N − n∗)/N . Hence the expected lifetime of a 33

cell in the PB is ` = [δ + a(N − n∗)/N ]−1. From this we can obtain and expression for the 34

attachment rate a. Finally, d is found from Eq (SI.4a). Thus for the non-valued parameters δ, d, 35

and a, we have 36

δ =
βn∗

s∗ + αn∗
, (SI.6a)

d =
s∗

`n∗
− (1− %)β, (SI.6b)

a =

(
1

`
− βn∗

s∗ + αn∗

)
N

N − n∗
(SI.6c)

These expressions, and the possible range of values, are given in Table 2 of the main manuscript 37

for α = % = 0. A further example is provided in Table SI.1 of this document for α 6= 0. By 38

introducing death in the niche, we affect the balance of cells leaving and entering each 39

compartment. The total number of cells produced (βn∗) must be matched by the total number 40

of cells that die. As we have increased the number of cells that are susceptible to death, we must 41

decrease the death rate δ. Hence, δ is a decreasing function of α. To replace the cells that die 42

within the BM, we need to increase the flux of cells from the PB to the BM. In other words, 43

death in the BM must be compensated by an increased rate of migration between the PB and 44

BM compartments. Hence, we have that a is an increasing function of α. The detachment rate d 45

is independent of α, but is an increasing function of % to ensure enough cells migrate to the PB. 46

For completeness, the deterministic dynamics of the two-species system are described by the 47
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ODEs: 48

dn1

dt
= (%β − d− αδ)n1 + as1

N − n
N

, (SI.7a)

dn2

dt
= (%2β2 − d2 − αδ2)n2 + a2s2

N − n
N

, (SI.7b)

ds1

dt
= [d+ (1− %)β]n1 −

(
δ + a

N − n
N

)
s1, (SI.7c)

ds2

dt
= [d2 + (1− %2)β2]n2 −

(
δ2 + a2

N − n
N

)
s2, (SI.7d)

with n = n1 + n2. 49

SI.II Initial dynamics and chimerism 50

In the scenario of donor cell transplantation, the PB compartment initially contains more cells 51

than the equilibrium value in the neutral model (s1 + s2 > s∗). This leads to a net flux of cells 52

attaching to the BM, and hence n1 + n2 > n∗. The continuing attachment–detachment dynamics 53

allows the donor cells to replace the host cells in the BM. Meanwhile, surplus cells in the PB are 54

dying off and the population relaxes to its equilibrium size (n1 + n2 = n∗ and s1 + s2 = s∗). The 55

host cells in the BM are effectively displaced by the new donor HSCs. Once the equilibrium is 56

reached the initial dynamics end. We find that the effect of selection, ε, only acts on a long 57

timescale, and has little influence on the outcome of initial dynamics. Therefore we treat the 58

donor cells as neutral until the long-term noise-driven dynamics (discussed below) take over. 59

For small doses of donor HSCs, and especially the case of S = 1 when a de novo mutant is 60

generated, the number of additional cells in the BM (n1 + n2 − n∗) is small. We can neglect this 61

expansion of the BM pool and approximate the number of occupied niches as a constant, n∗. By 62

considering only first-order reactions of the donor HSCs (i.e. the injected cells either die or 63

attach to the BM, there is no reproduction or detachment), we can predict the number of donor 64

HSCs that attach to the BM. We find 65

n2 =
a(N − n∗)/N

δ + a(N − n∗)/N
S =

(
1− `βn∗

s∗ + αn∗

)
S. (SI.8)

Hence for small doses the chimerism achieved is directly proportional to the dose size. The 66
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simplified process that led to Eq (SI.8) (only first-order dynamics) predicts s2 = 0 after the 67

initial dynamics, which is incorrect. However, we know the relation between si and ni in 68

equilibrium [Eq (SI.5b)], which tells us that s2 = (β − αδ)n2/δ. 69

If the dose of donor HSCs is large enough, all niches become occupied and the BM 70

compartment is saturated. In this case a niche that has been vacated (either by detachment or 71

death) is immediately filled, either by a cell from the PB or from a reproduction event. For 72

example, if an n1 cell detaches from the BM or dies within the BM, then it can be immediately 73

replaced by an s2 cell from the PB, or by an n2 cell following reproduction with attachment. 74

Here we consider these combined detachment–attachment dynamics. As the vacant niche is 75

immediately occupied, we approximate the rate of the coupled detachment–attachment reaction 76

as a single exponential step determined by the rate at which the niche becomes available (either 77

d or αδ). 78

For s1 – the number of wildtype cells in the PB – we have an increase due to reproduction 79

with rate βn1 (niches are saturated so the new daughter cell enters the PB with certainty), and a 80

decrease due to death at rate δs1. Furthermore, s1 will increase if an s2 attaches to the BM 81

following the detachment of an n1 cell; this process occurs at rate dn1s2/s, where s = s1 + s2 and 82

s2/s is the probability that an s2 cell attaches rather than s1. Also, s1 can decrease if it attaches 83

to a niche vacated by n2 cell. Finally, an s1 cell can attach to a niche that opens due to the death 84

of the occupant, which happens with rate αδNs1/s (here we assume n1 + n2 = N). Similar 85

dynamics follow for s2. Hence, for the PB cells we have the following simplified equations 86

ds1

dt
= βn1 − δs1 + d

(
n1
s2

s
− n2

s1

s

)
− αδN s1

s(t)
, (SI.9a)

ds2

dt
= βn2 − δs2 + d

(
n2
s1

s
− n1

s2

s

)
− αδN s2

s(t)
. (SI.9b)

The size of the PB pool follows the linear equation and solution 87

ds

dt
= (β − αδ)N − δs

⇒ s(t) =

(
s(0)− (β − αδ)N

δ

)
e−δt +

(β − αδ)N
δ

. (SI.10)

Here we assume the N − n∗ unoccupied niches are immediately filled after injection, such that 88
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s(0) = s∗ + S − (N − n∗) and n(t ≥ 0) = N . 89

For the cells in the BM, we construct the coupled dynamics in a similar way; a niche is 90

cleared at rate (d+ αδ)N , and the cell is replaced immediately by one from the PB, or by 91

reproduction within the niche. Wildtype BM cells can increase following the detachment/death 92

of an n2 cell with rate (d+αδ)n2[(s1/s) + (n1/N)]. Here s1/s represents the attachment of an s1 93

cell (as opposed to s2), and n1/N the reproduction within the niche of an n1 cell. The decrease 94

of n1 follows analogously, and occurs with rate (d+ αδ)n1[(s2/s) + (n2/N)]. Hence, we can now 95

write down the approximate ODEs for this scenario: 96

dn1

dt
= (d+ αδ)

(
n2
s1

s
− n1

s2

s

)
, (SI.11a)

dn2

dt
= (d+ αδ)

(
n1
s2

s
− n2

s1

s

)
, (SI.11b)

where the terms due to reproduction have cancelled out. Although not obvious from above, 97

Eq (SI.9) and Eq (SI.11) are actually linear in the ni and si. Writing n1 = N − n2 and 98

s1 = s− s2 we have 99

dn2

dt
= −(d+ αδ)n2 +

(d+ αδ)N

s
s2, (SI.12a)

ds2

dt
= (β + d)n2 −

(
δ +

(d+ αδ)N

s

)
s2, (SI.12b)

along with n2(0) = N − n∗ and s2(0) = S − (N − n∗). Using these equations we can predict the 100

value of n2 once the PB has returned to its equilibrium size. 101

SI.III Clonal dominance 102

SI.III.1 General approach and the neutral scenario 103

Once the mutant/donor cells have established themselves within the BM compartment, we want 104

to know if and how quickly this clone expands. To this end we use the projection method of 105

Constable et al. [41, 42]. This analysis is more intuitive when the mutant/donor cells have no 106

selective advantage, so we first discuss the neutral scenario. In this case once the BM and PB 107

compartments return to their equilibrium size (n1 + n2 = n∗ and s1 + s2 = s∗) there is no 108
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deterministic dynamics; as the mutant/donor cells are neutral when compared to the host, we 109

have effectively returned to a healthy and stable host. However, the stochastic dynamics of the 110

individual-based model continue. Cells are continually migrating between the BM and PB 111

compartments, and reproduction and death events go on. If cell numbers increase [decrease] then 112

the flux of cells leaving the system increases [decreases] until the equilibrium is restored. 113

Therefore the deterministic dynamics constrains cell numbers to n1 + n2 = n∗ and s1 + s2 = s∗. 114

Cell number fluctuations, however, change the balance between host and mutant/donor cells over 115

time, and we observe diffusion along the equilibrium line. Eventually, this diffusion leads to the 116

extinction of either the host or the mutant/donor population of HSCs. 117

We first move from the master equation – the exact probabilistic description of the stochastic 118

dynamics – to a set of stochastic differential equations (SDEs) [43]. To this end we introduce the 119

variables x = (s1, s2, n1, n2)T/N and expand the master equation in powers of 1/N , using the 120

fact that N is a large parameter. The evolution of x is determined by the set of SDEs 121

dxi
dt

= Ai(x) +
1√
N
ηi(t), (SI.13)

where the Ai are the drift terms representing the deterministic dynamics, and the ηi are Gaussian 122

noise terms which describe the diffusion. The ηi have zero expectation value and correlator 123

〈ηi(t)ηj(t′)〉 = δ(t− t′)Bij(x). (SI.14)

Here 〈·〉 represents the expectation value over many realisations of the noise. The exact forms of 124
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the drift vector A and diffusion matrix B (valid for n < N) are 125

A(x) =



[d+ (1− %)β]x3 − (δ + ay)x1

[d+ (1− %)β]x4 − (δ + ay)x2

(%β − d− αδ)x3 + ayx1

(%β − d− αδ)x4 + ayx2


, (SI.15a)

B(x) =



[d+ (1− %)β]x3 + (δ + ay)x1 0 −dx3 − ayx1 0

0 [d+ (1− %)β]x4 + (δ + ay)x2 0 −dx4 − ayx2

−dx3 − ayx1 0 (%β + d+ αδ)x3 + ayx1 0

0 −dx4 − ayx2 0 (%β + d+ αδ)x4 + ayx2


,

(SI.15b)

where we have used the shorthand y = 1− x3 − x4, which is the fraction of unoccupied niches. 126

Eq (SI.13) is an approximate description of the full stochastic dynamics. If we neglect the noise 127

term, we recover the ODEs Eq (SI.7). 128

The set of points at which the drift vector A is zero is known in dynamical systems theory as 129

the slow manifold. Our slow manifold, x∗, satisfies the conditions x∗1 + x∗2 = s∗/N and 130

x∗3 + x∗4 = n∗/N , as well as x∗1 = [(β − αδ)/δ]x∗3 and x∗2 = [(β − αδ)/δ]x∗4. The first two 131

conditions describe the equilibrium size of the PB and BM compartments, and the latter 132

conditions describe the balance between reproduction and cell death. These four conditions can 133

be satisfied parametrically by 134

x∗(z) =

(
β − αδ
δ

(ξ − z), β − αδ
δ

z, ξ − z, z
)T

, (SI.16)

where ξ = n∗/N and z ∈ [0, ξ]. Hence, our slow manifold is a line through the 4-dimensional 135

state-space. In other words, if we were to measure the number of donor cells in the BM then we 136

could infer the number of host cells from the system-size constraint. These numbers, along with 137

knowledge of the reproduction and death rates, can be used to infer cell numbers in the PB. 138

Therefore we only need to keep track of one variable, z, to describe our system. 139

As there is no deterministic drift along our slow manifold (in the neutral scenario), the 140
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time-evolution of the parametric coordinate z satisfies 141

dz

dt
=

1√
N
η(t), (SI.17)

where η(t) is Gaussian noise with zero expectation value and correlator 142

〈η(t)η(t′)〉 = δ(t− t′)B̃11(z). (SI.18)

The expansion (or contraction) of the mutant/donor clone is completely specified by this noise 143

correlator B̃11, but it is not yet determined. To find it we must project the approximate 144

dynamics [Eq (SI.13)] onto our slow manifold x∗ [41, 42]. In this way we capture the effects of 145

the cell number fluctuations described above. To achieve this we note that the Jacobian matrix 146

of the drift vector along the slow manifold, A(x∗), has a zero eigenvalue. This corresponds to the 147

direction in which there is no deterministic motion, and hence the associated eigenvector is 148

directed along the slow manifold. Thus we use the eigenvectors of A(x∗) as a basis, onto which 149

we decompose the SDEs Eq (SI.13). Selecting only the component along the slow manifold, we 150

find the correlator 151

B̃11(z) = 2B z(ξ − z), (SI.19)

where the constant B is given by 152

B =
β[d+ (1− %)β][d+ αδ(1− %)]δ2

ξ{βδ + βd+ dδ + αδ[β − (d+ αδ)]− %β[β + δ − αδ]}2

=
βn∗N(s∗ + αn∗)[s∗ + αn∗ − n∗`(1− %)β]

[(n∗ + s∗)(s∗ + αn∗)− n∗s∗`β]2
. (SI.20)

The first line of this equation expresses the diffusion constant in terms of the reaction 153

parameters, while the second line uses Eq (SI.6) to express B in terms of the 154

experimentally-observed parameters, as well as α and %. 155

By rescaling time and the coordinate z in Eq (SI.19), it can be shown that the dynamics 156

along the slow manifold are equivalent to those of the Moran model [41, 42]. 157

We can use the standard results of Brownian motion to determine the probability that the 158

mutant/donor clone expands to a given fraction σ, and the mean time for this to happen [43]. 159
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For example, σ = 0.5 corresponds to a clone that represents 50% of all HSCs. We assume the 160

dynamics starts at a point x∗(z0) along the slow manifold. Here z0 = n2/N , where n2 is the 161

number of mutant/donor cells that make up the BM compartment at the end of the initial 162

dynamics as described in the previous section. In particular, for the case of disease spread 163

(S = 1), z0 can be found explicitly from Eq (SI.8). The probability that the mutant/donor HSCs 164

reach a fraction σ ≤ 1 is given by 165

φ(z0, σ) =
z0

σξ
. (SI.21)

The mean time for this expansion (i.e. the mean conditional time) is given by 166

Tξ(z0, σ) =
N

B

[
ξ − z0

z0
log

(
ξ

ξ − z0

)
+

1− σ
σ

log(1− σ)

]
. (SI.22)

For σ = 1, we recover the fixation probability and mean conditional fixation time of the 167

mutant/donor cells. 168

SI.III.2 With selection 169

We now repeat this analysis for the non-neutral case, i.e. the mutant/donor cells have a selective 170

(dis)advantage. For ε > 0, the drift vector in Eq (SI.13) becomes 171

A(ε)(x) =



[d+ (1− %)β]x3 − (δ + ay)x1

[d+ (1− %)β]x4 − (δ + ay)x2

(%β − d− αδ)x3 + ayx1

(%β − d− αδ)x4 + ayx2


+ε



0

[dγd + (1− %)βγβ − %βγ%]x4 − (δγδ + aγay)x2

0

[%β(γ% + γβ)− dγd − αδγδ]x4 + aγayx2


+O(ε2).

(SI.23)

We assume there is no change in the noise correlator as terms O(ε/N) are negligible; hence we 172

have B(ε)(x) ≈ B(0)(x) = B(x), as given in Eq (SI.15b). 173

As there is always some deterministic drift due to the effect of selection, by definition there is 174

no slow manifold. However, the number of cells leaving the system will still be balanced by 175

production as described above. This balance point describes a subspace around which the cell 176

numbers fluctuate. With ε > 0 there will be a tendency for the advantageous cells to replace 177

their counterparts. This induces a slow drift along the subspace. By integrating the 178
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Fig SI.1. Time course of ODEs Eq (SI.7) (solid lines) with an initial dose of S = 5, 000 donor
cells into a steady-state host. Selection strengths in this figure are ε ∈ {0, 0.1, 0.5, 1.5}
(increasing in direction of arrow). Dashed lines are the approximate slow subspaces, x̃, recovered
from the projection method. For ε = 0 the ODE time course stops once it reaches the slow
manifold. Increasing ε moves the slow subspace away from the ε = 0 slow manifold. Here we
have selection acting only on the reproduction rate (γβ = 1, γa = γδ = γd = 0), and we have
` = 3 minutes. In the left panel s∗ = 10 and in the right panel s∗ = 100. We here set α = % = 0.
Remaining parameters are as in Table 1 of the main manuscript.

ODEs Eq (SI.7) for a long time we can visualise this subspace. Examples are shown in Fig SI.1 179

for different selection strengths. In the absence of selection (ε = 0), the trajectory from the 180

ODEs Eq (SI.7) stops once the slow manifold has been reached. This is the reason why the 181

dashed line is not accompanied by a solid trajectory for ε = 0. For ε > 0, the advantageous 182

mutant/donor cells are able to maintain a higher equilibrium population size than the host. 183

Hence the slow subspaces always lie above the neutral slow manifold. 184

We can use the projection method to calculate the approximate form of the slow subspace, 185

x̃(z) [41, 42]. This takes the form x̃(z) = x∗(z) + εf(z), and again we only need one variable to 186

describe our system. These approximations are shown as dashed lines in Fig SI.1, and they 187

remain highly accurate (compared to numerical integration of the ODEs Eq (SI.7)) even for large 188

values of ε. 189

Using the same eigenbasis from the neutral model we can project the dynamics onto the slow 190
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subspace [41, 42]. The SDE describing the motion along the slow subspace is 191

dz

dt
= Ã1(z) +

1√
N
η(t),

〈η(t)〉 = 0,

〈η(t)η(t′)〉 = δ(t− t′)B̃11(z). (SI.24)

The drift along this subspace, Ã1(z), is of the form 192

Ã1(z) = εA z(ξ − z), (SI.25)

where the constant A is given by 193

A =
δ

ξ

γa(β − αδ)(d+ αδ − %β)− γdd(β − αδ) + γββ[d+ αδ(1− %)]− γδ[αδ(β − αδ)− β(%β − d− αδ)] + γ%%β(β − αδ)]
βδ + βd+ dδ + αδ(β − d− αδ)− %β[β + (1− α)δ] .

(SI.26)

By setting α = % = 0, we recover 194

A =
dβδ

ξ(dβ + dδ + βδ)
(γβ + γa − γδ − γd). (SI.27)

This expression gives an important result; it doesn’t matter in which sense the cells are 195

advantageous. A cell with an increased reproduction rate (γβ = 1; γa = γδ = γd = 0) has the 196

same advantage as a cell which attaches to the BM more quickly (γa = 1; γβ = γδ = γd = 0). All 197

that matters is the cumulative advantage, γβ + γa − γδ − γd. For this reason we only consider a 198

reproductive advantage in the presented results in the main manuscript. 199

Again using the standard results of Brownian motion [43], we find the probability for the 200

donor cells to represent a fraction σ of the population to be 201

φ(z0, σ) =
1− e−Λz0

1− e−Λσξ
, with Λ =

εNA
B

. (SI.28)

This solution is of the same form as that obtained for a Moran model [41, 42]. Although a 202

closed-form solution is possible for the mean conditional time to reach size σ, it is too long to 203

13/17



(�)

β�/β

���

���
���

���

���

���

���

���

�
��
�
���
�
�
��
�
�

(�)

��� ��� ��� ��� ���
�

�

��

��

��



�
�
�
�
���

�
(�
�
�
��
)

Fig SI.2. Fixation probability (a) and time (b) of donor cells in a non-preconditioned host. On
the horizontal axis we plot the initial dose of donor HSCs, S ∈ {1, 2, 4, 8, . . . , 8192}. Symbols are
results from 103 simulations of the stochastic model (with associated standard deviations). Lines
are predictions from Eq (SI.28) and Eq (SI.29). The shaded region in (b) is the standard
deviation calculated from the second moment, Eq (SI.30). Here we have s∗ = 100 cells, and ` = 3
minutes, along with α = % = 0. Remaining parameters are as in Table 1 of the main manuscript.

display here. Instead we use an algebraic software package to solve the second-order differential 204

equation 205

Tξ(z0, σ) =
θ(z0, σ)

φ(z0, σ)
,

∂2θ(z0, σ)

∂z2
0

+ Λ
∂θ(z0, σ)

∂z0
= −N

B
φ(z0, σ)

z0(ξ − z0)
, θ(0) = θ(σξ) = 0.

(SI.29)

Example results from Eq (SI.28) and Eq (SI.29) are shown in Fig SI.2. 206

Furthermore, we can write down a set of equations for the second moment of the conditional 207

time for the mutant/donor clone to reach size σ [44]. The second moment, 〈T 2
ξ (z0, σ)〉, is 208

dependent on the first moment of the conditional time, and hence we must solve the coupled 209

equations: 210

∂2θ1(z0, σ)

∂z2
0

+ Λ
∂θ1(z0, σ)

∂z0
= −N

B
φ(z0, σ)

z0(ξ − z0)
, θ1(0) = θ1(σξ) = 0, (SI.30a)

∂2θ2(z0, σ)

∂z2
0

+ Λ
∂θ2(z0, σ)

∂z0
= −2

N

B
θ1(z0, σ)

z0(ξ − z0)
, θ2(0) = θ2(σξ) = 0, (SI.30b)

〈T 2
ξ (z0, σ)〉 =

θ2(z0, σ)

φ(z0, σ)
, (SI.30c)
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where the first equation is for the first moment [identical to Eq (SI.29)], and the second equation 211

is for the second moment. The predicted deviation calculated from this second moment is shown 212

in Fig SI.2(b). 213

Full details of all these calculations are found in the accompanying Mathematica notebook 214

file, which can be found at https://github.com/ashcroftp/clonal-hematopoiesis-2017. 215

SI.III.3 Further neutral-model calculations 216

The expansion of neutral clones deserves some further attention, as this process could provide 217

valuable insight into human hematopoiesis. Firstly, we look at the case α = % = 0 and ask how 218

does the mean conditional time to σ-level clonality vary depending on the choice of model 219

parameters. Using Eq (SI.8), along with S = 1, we have an expression for our initial level of 220

clonality: 221

z0 =
1

N

s∗ − n∗β`
s∗

. (SI.31)

From Eq (SI.20), we also have the diffusion constant 222

B =
βN

s∗

s∗

n∗ − β`(
1 + s∗

n∗ − β`
)2 . (SI.32)

Therefore, our mean time [Eq (SI.22)] satisfies 223

〈Tξ(z0, σ)〉 =
s∗

β

(
1 + s∗

n∗ − β`
)2

s∗

n∗ − β`

[(
n∗s∗

s∗ − n∗β`
− 1

)
log

(
1

1− s∗−n∗β`
n∗s∗

)
+

1− σ
σ

log(1− σ)

]
.

(SI.33)

Now assuming that terms O(N) are much larger than terms O(1), that s∗/n∗ � 1 (blood 224

compartment much smaller than bone marrow in equilibrium) and β`� 1 (migration dynamics 225

are faster than reproduction), and that σ � 1, we can approximate our mean time as 226

〈Tξ(z0, σ)〉 ≈ 1

β

σ

2

n∗s∗

s∗ − n∗β`
. (SI.34)

Note that we are also constrained to s∗ − n∗β` > 0, which comes from the fact that our 227

attachment and detachment parameters a and d must be positive. If s∗ � n∗β`, then we have 228
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〈Tξ(z0, σ)〉 ≈ σn∗/(2β), which is independent of ` and s∗. As expected, the reproduction rate β 229

is the dominant parameter determining the time to clonality. 230

When considering the case of α 6= 0 and ρ 6= 0, we turn to a graphical representation to 231

highlight the parameter dependence. These results are shown in supplementary figures S1 and S2. 232

We find that allowing equal death in both compartments (α = 1) or daughter cells to enter the 233

niche directly (% = 1) has little to no effect on the time to clonality. 234

Finally, we can obtain a closed-form solution of the second moment equation [Eq (SI.30)] in 235

the absence of selection. We find 236

〈T 2
ξ (z0, σ)〉 =

2N

B

[
〈Tξ(z0, σ)〉

(
1− σ
σ

log(1− σ)− 1

)
+
N

B

(
Li2(σ)− Li2

(
z0

ξ

))]
, (SI.35)

where Li2(z) is the second-order polylogarithmic function. 237

SI.IV Engraftment into a preconditioned host 238

Even if the BM compartment is empty, in the stochastic model there is a finite probability that 239

all donor cells die before they engraft. We write ψ = Pr(n+ s = 0, t→∞) for the extinction 240

probability of a single cell. Therefore, the probability that a single donor HSC will reconstitute 241

the preconditioned host is ϕ = 1− ψ = Pr(n+ s > 0, t→∞). For doses of size S, the 242

reconstitution probability is ϕ = 1− ψS . For a first-approximation of this probability, we assume 243

that the donor cells can only either attach to the BM niches or die. The probability that a single 244

HSC in the PB compartment dies is ψ = δ/(δ + a). Thus the approximate reconstitution 245

probability is 246

ϕ = 1−
(

δ

δ + a

)S
. (SI.36)

Here we have assumed that all niches are unoccupied, such that the attachment rate per cell is 247

a(N − 0)/N = a. 248

We can also consider multiple attachments and detachments, which could occur before a cell 249

establishes a sustainable population or dies. As above, the probability that a single HSC in the 250

PB compartment dies is δ/(δ + a). Alternatively, the HSC can attach to the niche with 251

probability a/(δ+a). The probability that the cell then detaches from the niche is d/(d+β+αδ), 252
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the probability of dying within the niche is αδ/(d+ β + αδ), and the probability of reproducing 253

is β/(d+ β + αδ). Again we have assumed that the number of occupied niches is negligible. 254

Under these processes, the probability that a single donor HSC becomes extinct is given by 255

ψ =
δ

δ + a
+

a

δ + a
f(ψ), (SI.37)

where f(ψ) represents the processes that occur once the cell has entered the BM compartment. 256

It is given by 257

f(ψ) =
αδ

d+ β + αδ
+

d

d+ β + αδ
ψ +

β

d+ β + αδ

[
(1− %)ψf(ψ) + %f2(ψ)

]
. (SI.38)

Here the first term is the death of the cell within the BM compartment. The second term 258

represents detachment and the cell is back where it started, so this is multiplied by ψ. The third 259

term represents reproduction: either one offspring is ejected to the PB (hence ψ) and the other 260

remains in the niche [f(ψ)], or both offspring remain in the BM [f2(ψ)]. Solving Eq (SI.38) for 261

f(ψ), and then using this to solve Eq (SI.37), we find the extinction probability of a single cell. 262

For % = 0, this is simply 263

ψ =
δ

δ + a

d+ β + α(δ + a)

β
, (SI.39)

and hence the reconstitution probability given a dose of S donor HSCs is 264

ϕ = 1−
(

δ

δ + a

d+ β + α(δ + a)

β

)S
. (SI.40)
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