1 Supplementary Methods

2 Maoto extract

- 3 Maoto is an extracted mixture of Ephedrae Herba (EH), Armeniacae Semen
- 4 (AS), Cinnamomi Cortex (CC), and Glycyrrhizae Radix (GR), combined in a ratio
- 5 of 10 (32.3%) : 10 (32.3%) : 8 (25.8%) : 3 (9.6%). The dry powdered extracts of
- 6 maoto (Lot No.331010700/ 341115500), its constituent herbs (Lot No. EH,
- 7 2091037010; CC, 2121003010; AS, 2141046010; GR, 2131013010), and maoto
- 8 analog, a mixture of three constituent herbs of maoto (CC, AS and GR) without
- 9 EH (termed EH(-)-maoto (2160027030)) produced by spray-drying, were
- 10 supplied by Tsumura & CO. (Tokyo, Japan).

11 Animals

- 12 Male Sprague–Dawley (SD) rats were purchased from Japan SLC, Inc.
- 13 (Shizuoka, Japan) at 7 weeks of age, and used from 8 weeks of age after
- 14 habituation. Rats were housed individually in a cage with paper chips, and
- 15 permitted free access to food and water. The rearing conditions were kept at a
- room temperature of 23°C, relative humidity of 60%, and 12 h light-dark cycle

1	(7:00-19:00). Rats were maintained and used for the experiments in accordance
2	with the Guidelines for the Care and Use of Laboratory Animals of Tsumura &
3	CO. All experimental procedures were carried out upon approval from the
4	Laboratory Animal Committee of Tsumura & CO.
5	Non-targeted and targeted analysis of maoto compounds
6	Blood sampling
7	Maoto (1, 2, and 4 g/10 mL/kg) (dissolved in distilled water) was orally
8	administered to 16-h fasted rats (n=3). Rats were anesthetized with isoflurane
9	(AbbVie GK, Tokyo, Japan) before blood sampling, and whole blood was
10	withdrawn through the abdominal inferior vena cava with a heparinized syringe
11	at 0.25, 0.5, 1, 2, 4, 6, 8, 10, and 24 h after maoto/vehicle administration. Plasma
12	was obtained by centrifugation at 1,700 x g for 15 min at 4° C and stored at -80°C
13	until use.
14	Non-targeted analysis by LC-Orbitrap Mass Spectometry (MS)
15	One hundred microliters of plasma sample or 1 mg of maoto extract powder
16	were extracted with 300 μL of methanol or 1 mL of 75% MeOH (aq). For

1	non-targeted metabolome analysis, LC–MS was performed using an Agilent
2	1200 HPLC system (Agilent Technologies, Santa Clara, CA) coupled to an LTQ
3	Orbitrap XL–MS system (Thermo Fisher Scientific Inc., San Jose, CA), equipped
4	with an electrospray source operating in positive-ion mode. The spray voltage
5	and capillary temperature were 4 kV and 300°C, respectively. The analysis
6	consisted of two scan events. Scan Event 1 was a full mass type (Analyzer,
7	FTMS; Resolution, 60,000). Scan Event 2 was a MS/MS type (Analyzer, Ion
8	Trap MS; Act Type, collision-induced dissociation; Normalized Collision Energy,
9	35.0%). An aliquot of the extracted sample (5 μ l) was injected into a TSKgel
10	ODS-100V reversed-phase column (column size, 3.0 × 50 mm; particle size, 5.0
11	μ m; TOSOH Corporation, Tokyo, Japan). The column temperature was set at
12	40°C. Mobile phases A (0.1% formic acid) and B (acetonitrile including 0.1%
13	formic acid) were used with a gradient of 3% to 97% B from 0 to 15 min, 97% B
14	from 15 to 20 min, 97% to 3% B from 20 to 20.1 min, and 3% B for 4.9 min
15	before the next injection, at a flow rate of 0.4 μ L/min.
16	The data were acquired with X-Calibur software (Thermo Fisher Scientific Inc.,

1	San Jose, CA) and were exported in text files using MSGet software
2	(http://www.kazusa.or.jp/komics/software/MSGet; Kazusa DNA Research
3	Institute, Chiba, Japan). LC–MS data were analyzed with PowerGet software
4	(http://www.kazusa.or.jp/komics/software/PowerGet/ja/; Kazusa DNA Research
5	Institute) by using previously described methods. ¹ Briefly, PowerGet is a Java
6	software package for detection, alignment, and annotation of metabolite features
7	from data obtained using LC/high-resolution MS. These data were used to
8	calculate changes relative to the control group. Differences between groups
9	were compared using the Welch's t-test.
10	To identify compounds and metabolites that were specifically detected
11	in the plasma of maoto-administered rat, we extracted peaks that were not
12	present in control plasma from naïve rats. Chemical formulae were estimated
13	from the accurate mass of the detected peak measured by mass analysis,
14	coupled with database collation (KEGG (http://www.kegg.jp), KNApSAcK
15	(http://kanaya.naist.jp/KNApSAcK_Family/), LipidMAPS
16	(http://www.lipidmaps.org), Flavonoid Viewer

1	(http://webs2.kazusa.or.jp/mfsearcher/flavonoidviewer/), and Human
2	metabolome database (http://www.hmdb.ca) using MF Searcher software
3	(Kazusa DNA Research Institute). ¹ A list of identified chemical formulae was
4	prepared, and the chemical names were predicted from MS/MS information and
5	the Tsumura crude drug database.
6	To clarify the distribution of the compounds detected in rat plasma after
7	oral maoto administration (2 g/kg), the peaks of chemical
8	composition-determined (CCD) compounds in non-targeted analysis were
9	arranged in descending order of peak intensity. The compounds detected in
10	plasma by targeted analysis were also arranged in descending order of
11	concentration.
12	Analysis of the PK properties of major maoto compounds by LC-MS/MS
13	Pharmacokinetic properties of compounds in maoto after its administration (1, 2
14	and 4 g/10mL/kg) were determined by LC-MS/MS. Based on a literature search,
15	21 compounds were selected for analysis as major constituents of maoto:
16	amygdalin, prunasin, scopoletin, <i>l</i> -ephedrine, <i>d</i> -pseudoephedrine,

 $\mathbf{5}$

1	dl-methylephedrine, (+)-catechin, epicatechin, epigallocatechin, (E)-cinnamic
2	acid, procyanidin B2, procyanidin C1, 7-hydroxycoumarin, 18β-glycyrrhetinic
3	acid, liquiritin, liquiritigenin, liquiritin apioside, isoliquiritin, isoliquiritigenin,
4	isoliquiritin apioside, and glycycoumarin. 18β -Glycyrrhetinic acid was purchased
5	from Sigma-Aidrich (St. Louis, MO, USA); the other compounds were supplied
6	by Tsumura & CO.
7	For quantification of <i>I</i> -ephedrine, <i>d</i> -pseudoephedrine, and
8	dl-methylephedrine, 25 μL of standard solution and 25 μL of internal standard
9	solution were mixed with 200 μL of diluted plasma sample. Ethyl acetate (250
10	μ L) was then added to the solution, followed by mixing and centrifugation (7,000
11	g, 5 min). The supernatant was collected and dried at 40° C under a stream of
12	nitrogen gas. The dried residue was dissolved in 50 μL of the HPLC mobile
13	phase used for each analytical method, and a 10- μ L aliquot was injected into the
14	LC-MS/MS systems. The quantification of amygdalin, prunasin, (E)-cinnamic
15	acid, glycyrrhetic acid, liquiritin, liquiritin apioside, liquiritigenin, isoliquiritin,
16	isoliquiritin apioside, and isoliquiritigenin was carried out by the same procedure

except that methanol (750 µL) was used as the extraction solution instead of
 ethyl acetate.

3	An Agilent 1100 HPLC system (Agilent Technologies) coupled to an
4	API4000 triple quadrupole mass spectrometer fitted with a Turbo IonSpray
5	electrospray ionization instrument (AB Sciex, Tokyo, Japan) was used for mass
6	spectrometry and detection of 18β -glycyrrhetinic acid, liquiritin, liquiritin apioside,
7	liquiritigenin, isoliquiritin, isoliquiritin apioside, isoliquiritigenin, and
8	glycycoumarin. Analyst Software, Ver.1.6.2 (AB Sciex) was used for data
9	acquisition. Ten microliters of extracted sample was injected into the HPLC
10	system. An Inertsil Ph-3 column (column size, 2.1 × 100 mm; particle size, 3.0
11	$\mu m;$ GL sciences, Tokyo, Japan) was used to separate each analyte at 40°C.
12	The mobile phase consisted of solution A (10 mM ammonium acetate) and
13	solution B (acetonitrile) with a gradient of solution B (20%, 0 min; 20%, 1 min;
14	65%, 13 min; 20%, 13.01 min; and 20 %, 18 min) at a flow rate of 0.3 mL/min.
15	The mass spectrometer was operated in negative ion mode. The high-purity
16	nitrogen gas comprised ion source gas 1 (GAS1), ion source gas 2 (GAS2),

 $\mathbf{7}$

1	curtain gas (CUR) and collision-activated dissociation gas (CAD) at pressures of
2	50, 50, 20, and 9 psi, respectively. The optimized Turbo IonSpray voltage (IS)
3	and temperature (TEM) were set at -4500 V and 600 $^\circ$ C, respectively. Each
4	analyte was quantified by the multiple reaction monitoring (MRM) transition of
5	<i>m</i> / <i>z</i> (Q1, Q3; 18β-glycyrrhetinic acid, 469.2, 425.3; liquiritin, 417.0, 254.8;
6	liquiritin apioside, 549.2, 135.0; liquiritigenin, 254.9, 118.9; isoliquiritin, 417.0,
7	255.0; isoliquiritin apioside, 549.2, 254.9; isoliquiritigenin, 254.9, 119.0; and
8	glycycoumarin, 367.0, 308.7) in a single analytical run.
9	An Agilent 1290 HPLC system (Agilent Technologies) coupled to a
10	TripleQuad6500 triple quadrupole mass spectrometer fitted with a Turbo
11	IonSpray electrospray ionization instrument (AB Sciex) was used for mass
12	spectrometry and detection of (+)-catechin, epicatechin, epigallocatechin,
13	procyanidin B2, procyanidin C1, and 7-hydroxycoumarin. Analyst Software,
14	Ver.1.6.2 (AB Sciex) was used for data acquisition. Ten microliters of extracted
15	sample was injected into the HPLC system. An Ascentis ExpressRP-amide
16	column (column size, 2.1 × 100 mm; particle size, 2.7 μm; Supelco analytical

1	Inc., Tokyo, Japan) was used to separate each analyte at 40°C. The mobile
2	phase consisted of solution A (0.2% ammonium acetate) and solution B
3	(acetonitrile containing 0.2% ammonium acetate) with a gradient of solution B
4	(12%, 0 min; 12%, 5 min; 88%, 13 min; 12%, 13.01 min; and 12%, 18 min) at a
5	flow rate of 0.25 mL/min. The mass spectrometer was operated in positive ion
6	mode. The high-purity nitrogen gas comprised GAS1, GAS2, CUR, and CAD at
7	pressures of 50, 20, 30, and 8 psi, respectively. The optimized Turbo IS and
8	TEM were set at 5500 V and 500°C, respectively. Each analyte was quantified
9	by the MRM transition of <i>m</i> / <i>z</i> (Q1, Q2; (+)-catechin, 291.0, 139.0; epicatechin,
10	291.0, 139.0; epigallocatechin, 307.1, 139.1; procyanidin B2, 579.1, 291.0;
11	procyanidin C1, 867.2, 579.0; and 7-hydroxycoumarin, 163.1, 77.0) in a single
12	analytical run.
13	An Agilent 1290 HPLC system (Agilent Technologies) coupled to a
14	TripleQuad6500 triple quadrupole mass spectrometer fitted with a Turbo
15	IonSpray electrospray ionization instrument (AB Sciex) was used for mass
16	spectrometry and detection of amygdalin, prunasin, scopoletin, and €-cinnamic

1	acid. Analyst Software, Ver.1.6.2 (AB Sciex) was used for data acquisition. Ten
2	microliters of extracted sample was injected into the HPLC system. An Ascentis
3	ExpressRP-amide column (column size, 2.1 × 100 mm; particle size, 2.7 μ m;
4	Supelco analytical Inc., Tokyo, Japan) was used to separate each analyte at
5	40°C. The mobile phase consisted of solution A (0.2% ammonium acetate) and
6	solution B (acetonitrile containing 0.2% ammonium acetate) with a gradient of
7	solution B (12%, 0 min; 12%, 10 min; 95%, 10.1 min; 95%, 15 min; 12%, 15.1
8	min; and 12%, 20 min) at a flow rate of 0.25 mL/min. The mass spectrometer
9	was operated in positive and negative ion mode. The high-purity nitrogen gas
10	comprised GAS1, GAS2, CUR, and CAD at pressures of 50–60, 60–80, 10–30,
11	and 7–10 psi, respectively. The optimized Turbo IS and TEM were set at -4000–
12	5500 V and 500–700°C, respectively. Each analyte was quantified by the MRM
13	transition of <i>m</i> / <i>z</i> (Q1, Q3; amygdalin, 456.1, 323.1; prunasin, 294.0, 161.0;
14	scopoletin, 193.1, 133.0; and (<i>E</i>)-cinnamic acid, 146.9, 103.0) in a single
15	analytical run.

16 An Agilent 1290 HPLC system (Agilent Technologies) coupled to a

1	TripleQuad6500 triple quadrupole mass spectrometer fitted with a Turbo
2	IonSpray electrospray ionization instrument (AB Sciex) was used for mass
3	spectrometry and detection of <i>I</i> -ephedrine, <i>d</i> -pseudoephedrine, and
4	dl-methylephedrine. Analyst Software, Ver.1.6.2 (AB Sciex) was used for the
5	data acquisition. Ten microliters of extracted sample was injected into the HPLC
6	system. An Inertsil Ph-3 column (column size, 2.1 × 100 mm; particle size, 3.0
7	$\mu m;$ GL Sciences) was used to separate each analyte at 40°C. The mobile
8	phase consisted of solution A (0.2% formic acid) and solution B (acetonitrile)
9	with a gradient of solution B (2%, 0 min; 2%, 9 min; 90%, 13 min; 2%, 13.01 min;
10	and 2%, 18 min) at a flow rate of 0.3 mL/min. The mass spectrometer was
11	operated in positive ion mode. The high-purity nitrogen gas comprised GAS1,
12	GAS2, CUR, and CAD at pressures of 50, 40, 30, and 8 psi, respectively. The
13	optimized Turbo IS and TEM were set at 4500 V and 600°C, respectively. Each
14	analyte was quantified by the MRM transition of <i>m</i> / <i>z</i> (Q1, Q3; <i>l</i> -ephedrine, 166.2,
15	133.1; <i>d</i> -pseudoephedrine, 1662, 133.1; and <i>dl</i> -methylephedrine, 180.1, 162.1)
16	in a single analytical run.

1	Plasma PK data were analyzed by noncompartmental modeling using
2	Phoenix WinNonlin (version 6.3, Certara L.P., St. Louis, MO, USA) to determine
3	various PK constants including C_{max} , t_{max} , $t_{1/2}$, and AUC _{0-last} . The $t_{1/2}$ was divided
4	by $log_e 2/k_e$, where k_e is the rate constant of terminal elimination (at least three
5	data points on the descending linear limb).
6	
7	Pharmacological study of maoto
8	Administration of maoto, constituent herbs and polyI:C
9	PolyI:C sodium salt (Sigma-Aldrich) (6 mg/10 mL/kg) was dissolved in saline
10	(Otsuka Pharmaceutical Co, Tokyo, Japan) and administered by intraperitoneal
11	injection. Maoto (0.25, 0.5, 1 and 2 g/10 mL/kg) and its constituent herbs EH
12	(645 mg/kg), AS (645 mg/kg), CC (516 mg/kg) and GR (194 mg/kg) (amounts
13	equivalent to those in 2 g/kg of maoto) were dissolved in distilled water, and
14	orally administered concurrently with intraperitoneal injection of polyI:C
15	(dissolved in saline) to rats. Distilled water and saline, respectively, were
16	administered as vehicle to rats in each control group.

1	To evaluate the effects of EH(-)-maoto, polyI:C supplied by InvivoGene,
2	(PolyI:C(HMW), San Diego, CA, USA) (3 mg/10 mL/kg) was dissolved in saline
3	and administered by intraperitoneal injection with oral administration of
4	EH(-)-maoto (1355 mg/kg) as described above.
5	Measurement of locomotor activity, body weight, and rectal temperature
6	Nocturnal spontaneous activity of rats was measured in home-cages by using an
7	infrared sensor NS-AS01 (Neuroscience, Tokyo, Japan) as an index of activity
8	during the active phase of rats. After drug administration during the light phase,
9	the sensor counts were measured during the nocturnal phase from 19:00 on the
10	treatment day to 07:00 on the following day. The activity score after treatment
11	was reported as the percentage change from the score immediately before the
12	treatment. Changes in body weight and food intake were assessed one day after
13	treatment. The temperature of the rats was measured from 1 h to 6 h after
14	treatment by inserting a temperature sensing probe (BWT-100A/HS-2, Bio
15	Research Center, Nagoya, Japan) into the rectum to a depth of 2.0 cm. To
16	validate our experimental paradigm, we first measured sickness phenotypes in a

1	polyl:C model and confirmed that significant changes were induced by polyl:C
2	as compared with a control; we then used this experimental model to evaluate
3	the effects of maoto on sickness phenotypes. If any outliers in the data set were
4	determined to be due to artifacts, they were excluded from the analysis. Data are
5	presented as mean \pm SEM. Statistical significance of the data was determined
6	by Welch's t-test with Bonferroni correction or ANOVA with Bonferroni's multiple
7	comparisons test. The significance level in each statistical analysis was set at
8	P<0.05.
9	Blood sampling
10	Treated rats were anesthetized with isoflurane (AbbVie GK), and blood was
11	collected from the inferior vena cava with EDTA \cdot 2K (Wako Pure Chemical
12	Industries, Osaka, Japan). Blood samples were obtained at 1, 2, 4, 6 and 20 h
13	after treatment, and centrifuged at 1,200 x g at 4° C for 30 min to prepare plasma
14	samples, which were then stored at -80°C until use.

16 and multiplex immunoassay

1	The concentrations of TNF- α and IL-6 in plasma samples were evaluated by
2	ELISA (R&D Systems, Minneapolis, MN, USA). Multiplex immunoassays
3	(Milliplex, Merck KGaA, Darmstadt, Germany) were performed to quantify the
4	concentrations of IL-1 β , IL-10 and INF- γ . Assays were performed according to
5	the manufacturer's protocol. To validate our experimental paradigm, we first
6	measured cytokine concentrations in a polyI:C model and confirmed that
7	significant changes in concentrations were induced by polyI:C as compared with
8	the control; we then used this experimental model to evaluate the effects of
9	maoto on cytokine expression. If any outliers in the data set were determined to
10	be due to artifacts, they were excluded from the analysis. Data are presented as
11	mean ± SEM. Statistical significance of the data was determined by Welch's
12	t-test with Bonferroni correction. The significance level in each statistical
13	analysis was set at P<0.05.
14	Analysis of metabolites by GC-MS/MS
15	Plasma samples obtained at 1, 2, 6 and 20 h after treatment were used for
16	analysis. To extract low molecular weight metabolites for GC-MS/MS analysis,

1	50 μ L of plasma was mixed with 260 μ L of a solvent mixture (MeOH:H2O:CHCl3
2	= 2.5:1:1) containing 10 μL of 0.5 mg/mL 2-isopropylmalic acid (Sigma-Aldrich)
3	dissolved in distilled water; the solution was shaken at 1,400 rpm for 30 minutes
4	at 37°C before centrifugation at 19,000 × g for 3 minutes at 4°C. Next, 150 μL of
5	the resulting supernatant was transferred to a clean tube and 140 μL of distilled
6	water was added. After mixing, the solution was centrifuged at 19,000 \times g for 3
7	minutes at 4°C, and 180 μL of the supernatant was transferred to a clean tube
8	and lyophilized by using a freeze dryer. For oximation, 80 μL of 20 mg/mL
9	methoxyamine hydrochloride (Sigma-Aldrich) dissolved in pyridine was mixed
10	with the lyophilized sample before sonication for 20 min in a water bath sonicator.
11	The samples were then shaken at 1,200 rpm for 90 minutes at 30°C. Next, 40 μL
12	of N-methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA) (GL Science) was
13	added for derivatization, and the mixture was incubated at 1,200 rpm for 30
14	minutes at 37° C. The mixture was then centrifuged at $19,000 \times g$ for 3 minutes
15	and the resulting supernatant was applied to GC-MS/MS.
16	GC-MS/MS was performed using a GCMS-TQ8040 instrument

1	(Shimadzu, Kyoto, Japan) with a fused silica capillary column (DB-5; inner
2	diameter, 30 m × 0.25 μ m; film thickness, 1 μ m; Agilent Technologies).
3	Chromatogram acquisition, detection of mass spectral peaks, and their
4	waveform processing were performed using Shimadzu GCMSsolution software.
5	Identification of low molecular weight metabolites was performed by using the
6	Smart Metabolites Database (Shimadzu), which contains a mass spectral library,
7	method files specifying the above-described analytical conditions, and data
8	analysis parameters for 475 compounds such as amino acids, fatty acids, and
9	organic acids. The peak intensity of each quantified ion was calculated and
10	normalized to that of 2-isopropylmalic acid, which was used as an internal
11	standard.
12	Analysis of lipid mediators by LC-MS/MS
13	Lipid mediators were measured in plasma sampled at 2 h and 4 h after treatment.
14	To extract low molecular weight metabolites for LC/MS analysis, 1 ml of
15	methanol with an internal standard mixture (standards obtained from Cayman
16	Chemical, Ann Arbor, MI, USA) was mixed with 100 μ l of plasma sample for 5

1	min at room temperature and then centrifuged at 15,000 x g for 3 min. The
2	supernatant was diluted with 4 ml of 0.1% formic acid in water and gently mixed.
3	The mixture was loaded onto a preconditioned solid-phase extraction cartridge
4	(STRATA-X, 10 mg/1 ml, Phenomenex, Torrance, CA, USA), which was then
5	washed with 1 ml each of 0.1% formic acid and 15% ethanol. The lipids were
6	eluted with 250 μl of 0.1% formic acid in methanol, and the eluent was
7	evaporated by vacuum evaporator and reconstituted in 20 μl of methanol. Five
8	microliters of sample was injected for analysis. The LC/MS system consisted of
9	two LC-30AD pumps, an SIL-30AC auto-sampler, a CTO-20A column oven, a
10	CBM-20A system controller, and a triple quadrupole mass spectrometer
11	LCMS-8050 (Shimadzu). A reversed-phase column (Kinetex C8, 2.1 x 150 mm,
12	2.6 µm, Phenomenex) was used for chromatographic separation.
13	Chromatogram acquisition, detection of mass spectral peaks, and their
14	waveform processing were performed by using LCMSsolution software and
15	LC-MS/MS Method Package for Lipid Mediators Ver.2 (Shimadzu), which
16	contains a mass spectral library, method files specifying the analytical conditions,

1	and data analysis parameters for 158 lipid mediators derived from arachidonic
2	acid, eicosapentaenoic acid or docosahexaenoic acid, and so on. The peak area
3	of each quantified ion was calculated and normalized to those of the internal
4	standard mixture containing 0.5 ng/µL each of tetranor-PGEM-d6, TXB2-d4,
5	PGE2-d4, PGD2-d4, LTC4-d5, LTB4-d4, 5-HETE-d8 and 15-HETE-d8, 0.25
6	ng/µL of oleoylethanolamide (OEA)-d4, and 10 ng/µL of AA-d8 in methanol.
7	Processing, analysis and visualization of metabolomics data
8	Processing of metabolomics data was performed with MetaboAnalyst 3.0
9	software (http://www.metaboanalyst.ca). Missing values in the raw data were
10	replaced by half of the minimum positive value, and these data were used for
11	subsequent statistical analysis. Pathway maps of lipid mediators were created
12	with CellDesigner 4.4 software (http://www.celldesigner.org) and referenced
13	public pathway databases, including KEGG, PANTHER
14	(http://pantherdb.org/about.jsp), LIPID MAPS, and the Human Metabolome
15	database, as well as publications such as Harkewicz et al, Buczynski et al.,
16	Dennis et al., Tam et al., and Yamada et al. ^{2,3,4,5,6} Metabolomics data were

1 mapped to visualize the relationship between each metabolite. If outliers in the 2data set were determined to be due to artifacts, they were excluded from the analysis. 3 Effect of polyI:C/maoto treatment on metabolic pathway of lipid mediators 4 $\mathbf{5}$ We evaluated whether lipid mediators categorized by the COX, CYP and LOX 6 pathways were specifically affected by maoto treatment by using Fisher's exact 7test. Metabolites that significantly decreased or increased relative to the control 8 group (P<0.05 by Welch's t-test), and all mediators metabolized in the COX, 9 CYP and LOX pathways that were detected 2 h after treatment were included in 10 the analysis. Metabolites detected in each metabolic pathway that significantly 11 increased or decreased are shown in Supplementary Information of Figure 6d. 12Effect of polyI:C/maoto on proinflammatory and anti-inflammatory indices 13The proinflammatory and anti-inflammatory indices were calculated and categorized as described by Tam et al.⁷ with modification, as shown in 14Supplementary information of Figure 6e and 6f. 15

1	The fold change in each lipid mediator was calculated relative to the
2	median of control rats. Mediators with values of 2 or higher were included in the
3	analysis. The fold changes in each mediator were normalized to the maximum
4	value across all samples. The maximum value of each lipid mediator was
5	normalized to one. We added the value of each sample within the
6	proinflammatory and anti-inflammatory groups to obtain the total activity. To
7	generate the index at each time point, the percentage of proinflammatory and
8	anti-inflammatory mediator activity was calculated by dividing the measured
9	activity by the maximum possible activity in each group. The score of each group
10	was normalized to the score of its own control group. Data are presented as
11	mean ± SEM. Statistical significance of the data was determined by Welch's
12	t-test with Bonferroni correction. The significance level in each statistical
13	analysis was set at P<0.05.
14	

1 Supplementary References

2	1.	Sakurai, N. et al. Tools and databases of the KOMICS web portal for
3		preprocessing, mining, and dissemination of metabolomics data. Biomed.
4		<i>Res. Int.</i> 2014 , 194812 (2014).
5	2.	Harkewicz, R., Fahy, E., Andreyev, A. & Dennis, E. A. Arachidonate-derived
6		dihomoprostaglandin production observed in endotoxin-stimulated
7		macrophage-like cells. J. Biol. Chem. 282, 2899-2910 (2007).
8	3.	Buczynski, M. W., Dumlao, D. S. & Dennis, E. A. Thematic Review Series:
9		Proteomics. An integrated omics analysis of eicosanoid biology. J. Lipid. Res.
10		50 , 1015-1038 (2009).
11	4.	Dennis, E. A. et al. A mouse macrophage lipidome. J. Biol. Chem. 285:
12		39976-39985 (2010).
13	5.	Tam, V. C. Lipidomic profiling of bioactive lipids by mass spectrometry during
14		microbial infections. Semin. Immunol. 25, 240-248 (2013).
15	6.	Yamada, M. et al. A comprehensive quantification method for eicosanoids
16		and related compounds by using liquid chromatography/mass spectrometry

1		with high speed continuous ionization polarity switching. J. Chromatogr. B
2		Analyt. Technol. Biomed. Life. Sci. 995-996, 74-84 (2015).
3	7.	Tam, V. C., Quehenberger, O., Oshansky, C. M., Suen, R., Armando, A. M. &
4		Treuting, P. M. Lipidomic profiling of influenza infection identifies mediators
5		that induce and resolve inflammation. Cell 154 , 213-227 (2013).
6	8.	Drasar, B. S. & Hill, M. J., Human Intestinal Flora, 63, p. 61, (Academic press,

7 London, 1974).

1	Supp	lementary	Figure	1
T	oupp	ionioniai y	iguic	

4	Overview of the maoto study.
3	Overview of the comprehensive analysis and profiling of compounds and
4	metabolites in rat plasma after maoto administration, and pharmacological
5	profiling of the effect of maoto on flu-like symptoms are summarized. An
6	integrated hypothesis of the mode of action of maoto is also shown.
7	
8	Supplementary Figure 2
9	Profiles of metabolites detected in rat plasma at 1 h and 8 h after
9 10	Profiles of metabolites detected in rat plasma at 1 h and 8 h after administration of maoto (2 g/kg). Categorization of the chemical formulae of
9 10 11	Profiles of metabolites detected in rat plasma at 1 h and 8 h after administration of maoto (2 g/kg). Categorization of the chemical formulae of (a) maoto-original and maoto-derived metabolites, (b) endogenous metabolites,
9 10 11 12	Profiles of metabolites detected in rat plasma at 1 h and 8 h after administration of maoto (2 g/kg). Categorization of the chemical formulae of (a) maoto-original and maoto-derived metabolites, (b) endogenous metabolites, and (c) undetermined metabolites, corresponding to the pie chart in Figure 2a is
9 10 11 12 13	Profiles of metabolites detected in rat plasma at 1 h and 8 h after administration of maoto (2 g/kg). Categorization of the chemical formulae of (a) maoto-original and maoto-derived metabolites, (b) endogenous metabolites, and (c) undetermined metabolites, corresponding to the pie chart in Figure 2a is shown.
9 10 11 12 13 14	Profiles of metabolites detected in rat plasma at 1 h and 8 h after administration of maoto (2 g/kg). Categorization of the chemical formulae of (a) maoto-original and maoto-derived metabolites, (b) endogenous metabolites, and (c) undetermined metabolites, corresponding to the pie chart in Figure 2a is shown.

16 Pharmacokinetic properties of major maoto compounds in rat plasma

1	after administration	of maoto	(2 g/kg).
_			(- 33/.

2	The PK properties of 19 major maoto compounds are shown;
3	7-hydroxycoumarin and procyanidin C1 were not detected after maoto
4	administration (2 g/kg). Compounds derived from Ephedrae Herba (EH),
5	Armeniacae Semen (AS), Cinnamomi Cortex (CC) and Glycyrrhizae Radix (GR)
6	are marked in red, blue, green and grey, respectively. Data represent mean \pm
7	SD (n=3 for each time point).
8	
9	Supplementary Figure 4
9 10	Supplementary Figure 4 Metabolic reactions of maoto-derived metabolites.
9 10 11	Supplementary Figure 4 Metabolic reactions of maoto-derived metabolites. The major metabolic reactions of maoto-derived compounds detected by
9 10 11 12	Supplementary Figure 4 Metabolic reactions of maoto-derived metabolites. The major metabolic reactions of maoto-derived compounds detected by non-targeted and targeted analysis are summarized. Glycosides including
 9 10 11 12 13 	Supplementary Figure 4 Metabolic reactions of maoto-derived metabolites. The major metabolic reactions of maoto-derived compounds detected by non-targeted and targeted analysis are summarized. Glycosides including glycyrrhizin, liquiritin, isoliquiritin and amygdalin are metabolized to their aglycon
 9 10 11 12 13 14 	Supplementary Figure 4 Metabolic reactions of maoto-derived metabolites. The major metabolic reactions of maoto-derived compounds detected by non-targeted and targeted analysis are summarized. Glycosides including glycyrrhizin, liquiritin, isoliquiritin and amygdalin are metabolized to their aglycon forms as gycyrrhetinic acid, liquiritigenin, isoliquiritigenin, and mandelonitrile,
 9 10 11 12 13 14 15 	Supplementary Figure 4 Metabolic reactions of maoto-derived metabolites. The major metabolic reactions of maoto-derived compounds detected by non-targeted and targeted analysis are summarized. Glycosides including glycyrrhizin, liquiritin, isoliquiritin and amygdalin are metabolized to their aglycon forms as gycyrrhetinic acid, liquiritigenin, isoliquiritigenin, and mandelonitrile, respectively. Glycyrrhizin is metabolized by α-glucuronidase, while liquiritin,

1	detected in maoto extract, rat plasma at 1 h, and rat plasma at 8 h after maoto
2	administration (2 g/kg) are shown as salmon pink, light blue and mint green,
3	respectively.
4	
5	Supplementary Figure 5
6	Effects of maoto in naïve rats.
7	(a) Percentage change in the locomotor activity of each group compared with
8	activity immediately before administration, and (b) changes in body weight, and
9	(c) food intake 1 day after treatment. Maoto was administered at a dose of 2 g/kg,
10	and saline was intraperitoneally administered. Data represent mean \pm SEM.
11	Control (n=10), Maoto (n=9). * P<0.05 versus control group by Welch's t-test.
12	
13	Supplementary Figure 6
14	Effects of a mixture of three constituent herbs of maoto other than
15	Ephedrae Herba (EH) on the polyI:C (PIC)-induced decrease in locomotor
16	activity and body weight.

1	Effects of a mixture of three constituent herbs of maoto other than EH on polyI:C
2	(PIC)-induced decrease in locomotor activity and body weight.
3	(a) Percentage change in locomotor activity, (b) change in body weight, (c)
4	normalized data of changes in locomotor activity induced by PIC treatment in the
5	control group (experiment 1 and experiment 2 are data from figure 3a and
6	supplementary figure 6a, respectively), and (d) normalized data of body weight
7	changes induced by PIC treatment in the control group (experiment 1,
8	experiment 2, experiment 3 and experiment 4 are data from figure 3a,
9	supplementary figure 6a, figure 3b and supplementary figure 6b, respectively).
10	The score of each group is shown relative to the score immediately before
11	administration. PIC was administered at a dose of 3 mg/kg. Maoto (MT) was
12	administered at a dose of 2 g/kg, and maoto analog (EH(-)-maoto) was
13	administered at a dose equivalent to the respective content of the three herbs in
14	2 g/kg of maoto (1355 mg/kg). Data represent mean \pm SEM. For a and b, the
15	following measurements were made: Control (n=5), PIC (n=6 for locomotor
16	activity, and n=7 for body weight), PIC+MT (n=7), PIC+(EH(-)-maoto) (n=5); **

1	P<0.01, * P<0.05 versus control group; ⁺⁺ P<0.01, ⁺ P<0.05 versus PIC group;
2	## P<0.01 versus PIC+Maoto group by ANOVA with Bonferroni's multiple
3	comparisons test.
4	
5	Supplementary Figure 7
6	Effect of maoto on polyl:C-induced cytokine response.
7	(a) TNF- α and (b) IL-10. PolyI:C and maoto were administered at doses of 6
8	mg/kg and 0.25, 0.5, and 1 g/kg, respectively. The concentrations of individual
9	cytokines in rat plasma obtained from blood samples at 2 h after treatment were
10	analyzed. Data represent mean ± SEM (n=10). ** P<0.01, * P<0.05 versus
11	control group; $^{++}$ P< 0.01, $^+$ P<0.05 versus polyI:C group by Welch's t-test with
12	Bonferroni correction.
13	
14	Supplementary Figure 8
15	Heat map of changes in lipid mediator levels in polyl:C- and/or
16	maoto-treated rats.

 $\mathbf{5}$

1	Heat map showing the fold change of fatty acids and lipid mediators in plasma
2	from polyI:C-treated control (P/C), maoto-treated control (M/C), and
3	maoto-treated polyI:C-treated (PM/P) rats. Fatty acids and lipid mediators
4	categorized in accord with the pathway maps in Figure 5 are colored in gray.
5	Magenta indicates an increase in metabolite fold number or upregulation; green
6	indicates downregulation of a specific metabolite versus the control. The
7	following measurements were made: at 2 h, Control (n=18), Maoto (n=17), PIC
8	(n=17), PIC+Maoto (n=17); at 4 h, n=10.

Compounds	Herb		1 g	J/kg				2 g	J/kg			4 g	g/kg	
		${\cal C}_{\max}$	$T_{\rm max}$	t _{1/2}	AUC _{last}	C	2 _{max}	${T}_{\max}$	t _{1/2}	AUC _{last}	${\cal C}_{\max}$	$T_{\rm max}$	t _{1/2}	AUC _{last}
		(ng/mL)	(h)	(h)	(ng h/mL)	(ทรู	g/mL)	(h)	(h)	(ng h/mL)	(ng/mL)	(h)	(h)	(ng h/mL)
/-Ephedrine	EH	311	0.250	1.35	730	3	377	1.00	1.44	1560	545	0.250	4.19	2850
d-Pseudoephedrine		136	0.250	5.82	183		163	0.250	6.58	559	253	0.250	3.86	1180
dl-Methylephedrine		16.6	0.250	5.96	18.7	2	2.5	0.250	1.99	46.0	37.0	0.250	11.5	94.9
(+)-Catechin		BQL	-	-	BQL	0.	.443	1.00	-	0.111	3.75	0.250	-	1.71
Epicatechin		1.82	0.500	5.05	4.24	1	.95	0.250	2.03	2.78	8.34	0.250	3.49	6.92
Epigallocatechin		0.197	0.500	5.23	0.457	0.	.103	0.500	3.16	0.260	0.456	0.250	0.834	0.286
Cinnamic acid	CC	1060	0.250	-	624	1	280	0.250	1.30	2060	2120	0.250	1.64	5750
Procyanidin B2		BQL	-	-	BQL	0.	.687	1.00	-	0.172	4.64	0.250	-	2.06
Procyanidin C1		BQL	-	-	BQL	E	BQL	-	-	BQL	3.90	0.250	-	1.69
7-hydroxycoumarin		BQL	-	-	BQL	E	BQL	-	-	BQL	BQL	-	-	BQL
Amygdalin	AS	101	0.250	1.31	346	e	653	1.00	0.937	1520	5250	0.250	2.47	7610
Prunasin		2020	0.500	0.891	5520	2	240	0.500	2.45	11900	3250	2.00	3.21	32000
Scopoletin		0.216	0.250	-	0.0700	0.	.425	0.250	2.39	0.428	0.237	0.250	5.44	0.591
Glycyrrhetinic acid	GR	234	8.00	-	2240		373	10.0	-	4510	301	8.00	-	3950
Glycycoumarin		0.0836	0.250	-	0.0105	0.0	0906	1.00	-	0.0227	0.0753	0.250	-	0.0580
Liquiritin		3.04	0.250	1.95	8.90	7	.23	1.00	2.23	22.4	71.7	0.250	4.34	61.4
Liquiritigenin		18.0	0.250	11.9	17.4	1	5.1	1.00	-	35.0	16.1	0.250	3.06	84.4
Liquiritin apioside		3.07	2.00	3.96	12.9	7	.24	1.00	2.62	31.7	169	0.250	3.85	130
Isoliquiritin		1.60	0.250	2.30	2.09	3	8.60	1.00	-	6.03	8.71	0.250	3.14	12.6
Isoliquiritigenin		10.4	0.250	3.42	19.8	1	0.1	0.250	11.1	31.0	7.59	0.250	3.61	58.9
Isoliquiritin apioside		0.355	0.250	-	0.113	1	.49	1.00	-	3.16	9.08	0.250	0.891	8.10

Supplementary Table 1 Plasma pharmacokinetic parameters of compounds in maoto after oral administration of maoto at doses of 1, 2, and 4 g/kg

BQL; below quantifiable limit
-: not determined

	Maoto	Plasma a	fter oral	
	extract	administ	tration*	
		1h	8h	
Compound peak	552	208 (18)	56 (10)	
CCD compounds	352	89 (13)	36 (9)	
CSD compounds	88	22 (7)	9 (3)	

Supplementary Table 2 Number of compounds detected by non-targeted analysis in maoto extract and rat plasma after oral administration of maoto (2 g/kg)

*Number of compound specifically detected in the plasma a:er maoto administration against the blank plasma are shown in the table.

The number in parentheses indicate the number of original compounds derived from maoto extract.

CCD compounds : Chemical composition determined compounds

CSD compounds : Chemical structure determined compounds

Supplementary Table 3 Fold changes and p values for common metabolites in poly I:C and/or maoto-treated rats

				P	/C							M	/C							PM	1/P			
	1	h	2	2h	6	õh	2	0h	1	h	2	2h	6	õh	2	0h	-	lh	2	2h	6	6h	20)h
Compound name	log_2FC	p value	log ₂ FC	p value	log_2FC	p value	log ₂ FC	p value	log ₂ FC	p value	log ₂ FC	p value	log ₂ FC	p value	log ₂ FC	p value	log ₂ FC	p value	log_2FC	p value	log ₂ FC	p value	log ₂ FC	p value
3-Phosphoglyceric acid	0.39	0.8372	1.16	0.4662	-0.24	0.6605	-0.66	0.1719	-4.04	0.3371	0.29	0.7390	-0.82	0.0684	0.12	0.8738	-1.67	0.4952	-0.33	0.8162	-0.59	0.4674	0.2803	0.5787
Pyruvic acid	0.03	0.9545	0.22	0.3542	0.26	0.6187	0.12	0.8512	0.52	0.3666	0.57 032	0.0616 0.0017	-0.47	0.3832	0.87	0.1380 0.1438	0.12	0.8229	0.58 - 0 33	0.1087 0.0351	0.14	0.7386	-0.5492	0.3819
Glucose 6-phosphate	0.00	0.2384	0.01	0.9671	0.21	0.5344	-0.47	0.0634	0.26	0.4537	-0.21	0.3791	0.09	0.6588	0.12	0.4553	-0.57	0.0700 0.0247	0.20	0.7317	-0.45	0.2118	0.1836	0.4307
Glucose	-0.02	0.8549	-1.38	0.3409	-0.09	0.1602	0.02	0.7020	0.08	0.4740	-1.04	0.4201	0.03	0.7072	0.02	0.5764	0.04	0.6017	0.17	0.2512	0.08	0.3071	0.0570	0.3503
Isocitric acid	-0.16	0.3763	0.41	0.2066	-0.03	0.8071	-0.22	0.0541	0.43	0.2338	0.29	0.0378	-0.13	0.4184	0.05	0.7109	0.22	0.2962	-0.04	0.8961	-0.05	0.7049	0.1426	0.1789
Oxalacetic acid	0.01	0.9538	0.23	0.3648	-0.15	0.4835	-0.10	0.4799	0.08	0.5323	0.26	0.2687	-0.11	0.3952	-0.01	0.9481	0.20	0.3141	-0.03	0.8794	0.05	0.7985	0.1052	0.4960
Citric acid	-0.19	0.1140	-0.07	0.6130	0.08	0.6088	-0.32	0.0245 0.0478	0.16	0.3957	0.29	0.0763	-0.09	0.5394	-0.10	0.5053	0.31	0.0711	-0.05	0.4770	-0.01	0.9546	0.2002	0.0737
Aconitic acid	-0.39	0.2324 0.0253	-0.08	0.7701	-0.33	0.0816	0.24	0.3896	0.24	0.2373	0.10 0.64	0.0000 0.0111	-0.01	0.9670	0.07	0.8046	0.10 0.41	0.00164	0.31	0.2941	0.36	0.2072	0.0761	0.7606
Fumaric acid	0.00	0.9904	-0.13	0.6249	-0.30	0.2898	-0.18	0.3672	0.55	0.1884	0.19	0.4763	-0.25	0.4478	0.35	0.2531	0.19	0.5000	0.17	0.4959	-0.03	0.9214	-0.0044	0.9808
Malic acid	0.00	0.9931	-0.13	0.7093	-0.34	0.3463	-0.57	0.1233	0.79	0.2228	0.39	0.2850	-0.31	0.4361	0.59	0.3359	0.28	0.4690	0.29	0.4341	-0.03	0.9299	-0.2605	0.2566
Succinic acid	-0.77	0.0567	-0.14	0.7920	-0.52	0.1398	-0.58	0.1586	1.05	0.3261	0.33	0.5734	-0.13	0.8354	-0.20	0.5304	1.09	0.1075	-0.14	0.8067	-0.20	0.6748	0.1439	0.5990
Ribose 5-phosphate	0.41	0.4637	0.79	0.4068	-0.14	0.6259	-0.47	0.0065 0.3167	-0.10	0.8303	0.04	0.9029	-0.04	0.8906	0.14	0.3775	-0.59	0.2797	-0.34	0.7140	-0.32	0.1401	0.2708	0.0993
Ribitol	0.11	0.3277	0.03 0.35	0.4313 0.0059	0.33	0.0980	0.68	0.0657	0.41 0.29	0.4302 0.0172	0.03 0.38	0.0074 0.0295	-0.22 0.44	0.0040 0.0124	0.10 0.79	0.0374 0.0477	-1.30 0.25	0.2242 0.0247	-0.06	0.5622	0.25	0.1520	0.2239	0.4993
Gluconic acid	-0.16	0.4745	0.14	0.4681	0.04	0.6540	-0.06	0.6704	0.59	0.0253	0.51	0.0167	0.22	0.0206	-0.09	0.3031	0.53	0.0050	0.38	0.0290	0.21	0.0831	0.1769	0.2167
Ribulose	0.24	0.2307	0.14	0.2372	0.10	0.4003	-0.04	0.8037	0.30	0.0251	0.01	0.8988	0.06	0.6112	0.08	0.5876	-0.26	0.2487	-0.26	0.0530	0.02	0.8823	0.0374	0.6854
Acetoacetic acid	0.22	0.6550	0.04	0.8125	0.27	0.2576	0.11	0.5476	0.38	0.4779	0.43	0.1112	0.50	0.0358	0.13	0.4057	-0.16	0.7430	0.04	0.8200	0.56	0.1395	0.2106	0.1477
3-Hydroxybutyric acid	-0.21	0.5008	-0.08	0.8161	-0.02	0.9060	0.06	0.8947	1.13	0.1027	0.76	0.0486	0.67	0.2457	0.02	0.9559	0.99	0.0417	0.41	0.2821	0.82	0.1171	-0.1796	0.4823
Spermidine	-0.01	0.9500	0.45	0.1440	-0.25	0.3067	0.08	0.7963	0.44	0.1039	-0.00	0.0020	0.23 _0.09	0.4255	-0.17	0.0390	-0.43	0.1259	0.53	0.1035	-0.13	0.9940	-0.0622	0.7225
Creatinine	-0.01	0.9743	-0.05	0.8783	-0.17	0.6173	0.64	0.1016	0.00	0.6884	-0.45	0.1935	0.03	0.9355	0.10	0.8677	0.05	0.8618	0.18	0.5855	-0.05	0.8865	-0.1551	0.6641
Arginine	0.02	0.9003	-0.20	0.1926	-0.05	0.5902	-0.08	0.6153	-0.53	0.0135	-0.42	0.0153	-0.33	0.0251	-0.09	0.6066	-0.50	0.0066	-0.44	0.0342	-0.47	0.0038	-0.0415	0.7124
Spermine	0.40	0.0583	0.52	0.0111	0.38	0.3746	0.25	0.6381	0.61	0.0027	0.15	0.4836	0.64	0.2330	0.97	0.1436	0.14	0.4532	-0.08	0.4538	0.57	0.3358	0.0903	0.8233
4-Aminobutyric acid	-0.20	0.3930	0.15	0.6211	1.13	0.0451	-0.05	0.9065	0.35	0.2684	0.13	0.7194	0.20	0.3998	-0.47	0.2843	0.22	0.2885	-0.01	0.9809	-0.60	0.1760	0.1398	0.7357
Putrescine	-0.23	0.0966	0.13	0.4147	0.11	0.4992	-0.02	0.9064	<i>0.32</i>	0.8185	0.16	0.4561	-0.29	0.1286	0.68	0.3736	0.46 -0.66	0.0188 0.0140	0.01 - 0.78	0.8973	-0.03	0.8369	0.0721	0.6597
Glutamic acid	-0.30	0.2853	-0.14	0.5464	-0.38	0.1013	-0.04	0.5118	-0.00	0.7026	0.10	0.6729	-0.17	0.5685	0.23	0.3611	0.26	0.3598	-0.20	0.4961	0.03	0.9120	0.0090	0.9225
Homocysteine	0.35	0.0038	0.09	0.4083	-0.18	0.4608	-0.06	0.7250	-0.01	0.8773	-0.15	0.2086	-0.25	0.0990	0.17	0.2460	-0.45	0.0010	-0.56	0.0059	-0.16	0.5330	0.2421	0.1787
Cysteine	-0.03	0.4795	0.02	0.8969	-0.15	0.2719	-0.08	0.5664	0.04	0.5372	0.07	0.5587	-0.15	0.1883	-0.13	0.3433	-0.08	0.4903	0.28	0.4815	-0.06	0.6760	-0.0506	0.5838
Methionine	0.06	0.3431	0.00	0.9491	0.13	0.1236	0.28	0.0613	-0.36	0.0001	-0.23	0.0374	-0.11	0.1459	-0.02	0.8271	-0.43	0.0003	-0.50	0.0002	-0.41	0.0015	-0.1296	0.2906
5-Methoxytryptamine	1.29	0.3905	3.17	0.3520	-0.72	0.1966	-0.90	0.2850	-0.14	0.9150	0.14	0.6132	-0.66	0.2081	0.21	0.7953	-3.19	0.1951	-2.20	0.4101	-0.01	0.9811	0.1377	0.6899
Quinolinic acid	-0.20	0.0000	0.40	0.0037	0.24	0.4101	-0.62	0.0307 0.0185	-0.19	0.4900	0.07	0.2030	-0.30	0.0007	-0.03	0.9407	-0.10	0.2003	-0.25	0.4090	-0.58	0.1907	0.0072	0.7303
Anthranilic acid	0.41	0.1529	0.12	0.7154	0.08	0.7952	-0.30	0.2532	-0.38	0.3290	-0.10	0.7367	-0.33	0.4711	0.02	0.9639	-1.05	0.0005	-0.56	0.0691	-0.59	0.0609	-0.0104	0.9421
Kynurenine	-0.05	0.6947	0.00	0.9903	0.27	0.1117	0.13	0.4258	0.07	0.6489	0.21	0.0699	0.16	0.2448	0.23	0.1977	0.00	0.9755	-0.04	0.8293	-0.23	0.2583	0.3128	0.0627
Tryptophan	-0.03	0.8160	-0.03	0.6177	-0.09	0.5838	-0.04	0.4214	-0.09	0.4685	-0.13	0.0528	-0.15	0.1385	0.01	0.9122	-0.10	0.2757	-0.29	0.0028	-0.10	0.5527	-0.0133	0.7668
Kynurenic acid	-0.27	0.0446	-0.12	0.5582	-0.11	0.6804	-0.08	0.7428	0.40	0.2715	0.01	0.9490	0.01	0.9723	0.50	0.2970	0.42	0.0786	0.06	0.7796	-0.30	0.3446	0.1516	0.5436
Donamine	-0.00	0.7606	-0.10	0.1755	-0.39 -0 14	0.0143	-0.32	0.0076	-0.37	0.1302	-0.37	0.0918	-0.30	0.2390	-0.02	0.6909	-0.20 -0.86	0.1010	-0.31 -0.80	0.0957 0.0232	-0.20 -0.26	0.2333 0 0446	0.1512	0.0557
Tyrosine	0.03	0.8297	-0.38	<i>0.0043</i>	-0.09	0.4102	-0.04	0.6836	-0.35	<i>0.0423</i>	-0.43	<i>0.0229</i>	-0.18	0.2076	0.03	0.7778	-0.42	0.0051	-0.24	0.0522	-0.03	0.8361	0.0506	0.5443
Norepinephrine	-0.28	0.6893	-0.79	0.3907	-0.75	0.1649	-2.18	0.3480	0.94	0.2492	0.03	0.9707	0.29	0.7394	-2.32	0.3371	1.42	0.0420	1.41	0.2083	0.31	0.7175	-0.0831	0.8621
Cystine	0.11	0.5684	0.08	0.5942	0.01	0.9672	-0.21	0.2746	-0.17	0.2169	0.04	0.6742	0.00	0.9832	-0.02	0.9266	-0.40	0.0979	-0.06	0.7229	0.05	0.7395	-0.0771	0.5064
Glycine	-0.03	0.5712	-0.01	0.9323	-0.02	0.7810	-0.30	0.0003	-0.06	0.5377	-0.10	0.4002	-0.14	0.1108	-0.06	0.2978	-0.12	0.0404	-0.42	0.0097	-0.02	0.7957	0.0873	0.1254
Proline	0.01	0.9418	-0.07	0.5422	-0.05	0.4144	-0.02	0.8326	-0.07 _0 19	0.0027	-0.11	0.2571	-0.03	0.7819	-0.03	0.0001	-0.15 -0.26	0.0574 0.034	-0.50 -0 53	0.0055	-0.03	0.4600	0.0435	0.5088
Alanine	-0.03	0.6714	-0.08	0.4238	0.02	0.3795	-0.02	0.7298	-0.09	0.3622	-0.05	0.6551	-0.10	0.2300	0.02	0.4726	-0.15	0.0767	-0.19	0.1515	-0.12	0.0618	-0.0797	0.1469
4-Hydroxyproline	-0.04	0.2367	-0.10	0.1202	0.02	0.7987	-0.30	0.0044	-0.26	0.0001	-0.11	0.1238	0.01	0.9402	-0.04	0.7691	-0.07	0.5933	-0.07	0.3786	-0.06	0.6446	0.0388	0.5988
Glutamine	-0.07	0.2109	-0.13	0.2390	0.15	0.4117	0.03	0.8281	-0.26	0.0001	-0.20	0.1151	0.14	0.3735	0.05	0.3954	-0.39	0.0041	-0.25	0.0915	-0.14	0.3740	0.1857	0.1586
Aspartic acid	0.14	0.4274	-0.15	0.4737	-0.23	0.0374	-0.17	0.2607	0.20	0.4543	-0.23	0.2890	-0.10	0.5508	0.07	0.6535	-0.20	0.3045	-0.33	0.0368	0.07	0.6162	-0.0604	0.3306
Asparagine	-0.02 0.02	U.8/2/ 0.7139	-0.19 -0.05	0.1850 0.6202	-U.15 0 02	0.4008 0.3220	-0.18 -0.15	0.2246	-0.46 _0.25	0.0012	-0.28 -0.25	0.1048 0.0240	-0.16 - 0.20	0.2314 0.006 4	-U.17 -0.02	0.2858	-0.60 -0.42	0.0011	-0.72 -0 70	U.UU57 0 0000	-0.36	0.0986 0 0000	-0.063/ 0.0251	0.5169
Leucine	0.02	0.5827	-0.00	0.3735	0.03	0.5967	-0.03	0.6878	-0.25 -0.20	0.0692	-0.35	0.0349	-0.20	0.1020	-0.05	0.3791	-0.45	0.00004	-0.67	0.0009	-0.23	0.0466	0.0336	0.6706
Isoleucine	0.04	0.5607	-0.13	0.2496	0.01	0.9204	-0.18	0.0763	-0.25	0.0316	-0.38	0.0282	-0.31	0.0193	-0.05	0.5451	-0.42	0.0002	-0.65	0.0023	-0.36	0.0113	0.0444	0.5304
Threonine	0.06	0.3589	0.07	0.6175	0.03	0.8018	0.02	0.8342	-0.44	0.0014	-0.23	0.0505	-0.28	0.0740	-0.18	0.1698	-0.45	0.0011	-0.70	0.0032	-0.40	0.0318	-0.1890	0.0247
Phenylalanine	0.02	0.7762	-0.02	0.8221	0.20	0.0695	0.30	0.0143	-0.17	0.1399	-0.09	0.4222	-0.03	0.7372	0.04	0.6388	-0.26	0.0105	-0.36	0.0021	-0.30	0.0423	-0.0207	0.7779
HISTIDINE	0.06	0.3980	-0.14	0.3936	0.14	0.6788	0.01	0.9519	-0.39	U.U018	-0.30	0.0961	0.02	0.9269	0.03	0.8313	-0.62	0.0004	-0.38	0.0635	-0.05	0.8747 0.5937	-0.0160	0.8703
Adenosine	0.12 0.86	0.2999 0.0444	-0.24 ೧ 46	0.1027	-0.17 1 24	0.3721	-0.04 0.09	0.0045	-0.32 0.38	0.0007	-0.34 0.06	0.0739	0.03	0.0212	-0.07	0.7232	-0.30 -0.23	0.0049 0.4681	-0.33 _0 97	0.03/3 () 1999	-0.11	0.5837 0 7491	- 0.2341 0.0876	0.8873
Homogentisic acid	-0.05	0.8898	0.24	0.5862	0.10	0.7253	0.75	0.1760	0.60	0.4397	-0.05	0.8912	0.23	0.5937	0.79	0.2748	0.68	0.0792	-0.76	0.1144	-0.18	0.6204	0.0612	0.9055
Lactic acid	0.14	0.2466	0.15	0.4441	-0.05	0.6853	-0.04	0.8327	0.41	0.1102	0.22	0.3507	-0.15	0.3829	0.46	0.2391	0.11	0.3608	0.17	0.4885	0.02	0.8568	-0.0452	0.7860

Significantly changed metabolites at P < 0.05 were shown as bold and italic.

			P	/C			Μ	/C			PN	//P	
	-	2	2h	4	lh	2	2h		lh	2	2h		4h
Compound name	Category	log₂FC	p value	log ₂ FC	p value	log₂FC	p value	log ₂ FC	p value	log ₂ FC	p value	log ₂ FC	p value
13-HpODE	LA	0.75	0.6531	0.25	0.8503	2.37	0.3994	-2.47	0.2631	-0.76	0.6059	-1.63	0.3401
9-HpODE 12 13-DiHOME	LA	0.65 0.25	0.6394 0.2970	0.35 0.12	0.7895 0.7347	2.26 0.57	0.3818 n nnn9	-2.31 -0.31	0.2671 0.3719	-0.77 0.26	0.5599 0.2751	-1.51 -0.28	0.3475 0.2750
9,10-DiHOME	LA	0.31	0.1033	-0.14	0.7070	0.50	0.0013	-0.34	0.3572	0.19	0.3309	-0.10	0.6925
13-KODE	LA	-0.08	0.8227	0.50	0.6301	0.39	0.6113	-1.68	0.2244	-0.15	0.6568	-1.45	0.2447
12,13-EpOME	LA	0.34	0.2900	0.33	0.5477	0.34	0.2241	-0.45	0.3320	-0.42	0.2139	-0.60	0.2897
9,10-EpOME	LA	0.15	0.7483	0.36	0.4425	0.14	0.9043	-0.40	0.2859	-0.11	0.3325	-0.80	0.0991
9-HODE	LA	-0.02	0.8764	0.50	0.3400	-0.05	0.7651	-0.53	0.2103	-0.13	0.4561	-0.97	0.1031
9-KODE	LA	-0.17	0.5385	0.97	0.2862	-0.09	0.7688	-0.95	0.0823	-0.03	0.9170	-1.16	0.2474
15-HEDE 15-KEDE	EDA EDA	-0.05 -0.26	0.8310 0.3891	0.71 0.83	0.1973 0.1917	0.33	0.2553 0.6161	-0.76 -0.62	0.1497 0.1001	0.14 0.21	0.6492	-1.18 -1.15	0.0592
15-HETrE	DGLA	0.20	0.4262	1.11	0.1346	0.77	0.0106	0.00	0.9928	0.25	0.3707	-0.98	0.1585
13,14-dihydro-15-keto-tetranor-PGE2	AA	2.37	0.0113	2.09	0.0092	0.05	0.9375	-0.80	0.1002	-0.40	0.4569	-2.03	0.0098
N-acetyl-L1E4 6 15-diketo-13 14-dibydro-PGE1a		2.21 1.63	0.0298	1.28	0.1276	-1.85 0.33	0.1154	-1.41	0.1760	<i>-2.45</i> -0.52	0.0250 0.2125	-0.96	0.2437
6-keto-PGF1α	AA	1.21	0.0027	0.67	0.0545	0.16	0.3939	0.08	0.6159	-0.35	0.2407	0.01	0.9842
tetranor-PGDM	AA	1.08	0.0003	1.52	0.0005	-0.07	0.8307	-0.07	0.7573	-0.55	0.0433	-1.14	0.0016
LTE4	AA	1.04	0.0282	0.58	0.0801	- 0.95	0.0058	-1.00	0.0439	-0.91	<i>0.0490</i>	-0.51	0.0661
13,14-dihydro-15-keto-tetranor-PGF18	AA AA	0.93	0.0023 0.0049	0.22	0.4496	0.22	0.3285	0.13	0.7144	-0.04 0.11	0.8872	-0.01	0.1718
TXB2	AA	0.70	0.4221	0.28	0.6194	1.36	0.3144	-0.87	0.2841	0.92	0.3859	-0.46	0.0980
13,14-dihydro-15-keto-PGD2	AA	0.70	0.1162	0.22	0.6100	-0.06	0.8652	0.46	0.4070	-0.34	0.4100	0.70	0.2454
PGE2	AA AA	0.66	0.0962	-0.33 0.59	0.0192	-0.31	0.3963	0.46	0.4879 0.5937	-0.15	0.0818	0.72	0.3451
17-HETE	AA	0.59	0.0803	0.13	0.6336	0.20	0.6332	0.07	0.8047	0.42	0.1359	0.16	0.5173
13,14-dihydro-15-keto-PGF2α	AA	0.56	0.0142	-0.30	0.6206	0.41	0.1247	-0.29	0.6132	0.05	0.8054	0.38	0.3757
5,6-DHET-lactone		0.53	0.2382	1 13	0 1147	-0.43	0.4764	-0.39	0 4209	-0.87 -0.01	0.0598	-1 45	0 0696
PGD2	AA	0.28	0.2951	0.92	0.1679	-0.26	0.4960	-0.58	0.2525	-0.01	0.7433	-1.25	0.0883
18-HETE	AA	0.25	0.2581	-0.05	0.8496	0.16	0.3714	-0.08	0.7780	-0.26	0.2852	-0.07	0.6116
PGF2α	AA	0.24	0.1821	-0.04	0.6995	0.30	0.2198	-0.20	0.0578	0.14	0.5203	-0.13	0.1732
10-HETE	AA AA	0.23	0.1620	0.38	0.3578	0.15	0.5392	-0.41	0.1778	-0.02	0.8343	-0.66 -0.94	0.1386
AA	AA	0.12	0.2034	0.14	0.3745	0.19	0.0823	-0.02	0.9304	-0.10	0.2478	-0.04	0.7424
14,15-DHET	AA	0.07	0.7143	0.40	0.0640	0.79	0.0186	0.01	0.9663	0.22	0.2042	-0.41	0.0274
8,9-DHET 20-carboxy-AA	AA AA	0.07	0.7309	0.42	0.1231 0.2132	0.82 0.40	0.0012 0.0360	-0.02 0.17	0.9249	0.16 0.28	0.4636 0.0332	<i>-0.59</i> 0.00	<i>0.0388</i> 0.9975
5-HETE	AA	-0.07	0.6520	0.39	0.3962	-0.06	0.7039	-0.47	0.1829	0.01	0.9756	-0.73	0.1454
15-HETE	AA	-0.12	0.5541	0.56	0.3217	-0.07	0.7419	-0.49	0.2419	-0.02	0.9338	-0.78	0.1921
8-HETE 8-iso-PGE2	AA AA	-0.12 -0.13	0.5009	0.39	0.3355	-0.45	0.6480	-0.40 -0.43	0.2308	-0.23	0.7846	-0.62 -0.98	0.1379 0.1384
5,6-DHET	AA	-0.14	0.5072	0.11	0.7039	0.42	0.0260	-0.54	0.0420	0.23	0.2591	-0.71	0.0484
11,12-DHET	AA	-0.15	0.5028	0.23	0.2504	0.90	0.0627	0.13	0.6332	0.19	0.2896	-0.31	0.0603
15-κετο-PGE2 8-iso-15-keto-PGF2α	AA AA	-0.15 -0.16	0.6629	0.64 1.04	0.3920	-0.28 -0.41	0.4705	-0.61 -0.68	0.2815	-0.07 -0.14	0.8620	-1.08 -0.99	0.1982
5-KETE	AA	-0.18	0.4710	0.36	0.3886	-0.29	0.2265	-0.45	0.2536	-0.02	0.9210	-0.67	0.1416
11,12-EET	AA AA	-0.22	0.3565	0.37	0.3502	- 0.50	<i>0.0258</i>	-0.33	0.3211	-0.13	0.6213	-0.59	0.1678
20-HETE	AA AA	-0.22 -0.23	0.4845	0.63	0.2478	0.51	0.8480	-0.42	0.5039	0.30 0.70	0.4270 0.0100	0.06	0.0920
5,6-EET	AA	-0.26	0.0735	0.11	0.7312	-0.22	0.2253	-0.49	0.1675	0.12	0.5228	-0.56	0.1479
8,9-EET 14 15-EET	AA AA	-0.32 -0.40	0.3709	0.06 0.01	0.8952 0.9899	-0.23 -0.23	0.5083 0.5180	-0.33 -0.59	0.4300	0.27	0.5735 0.9587	-0.66 -0.47	0.1796 0.4056
12-KETE	AA	-0.45	0.3411	0.53	0.5619	0.74	0.2589	-1.34	0.1886	0.54	0.3234	-1.45	0.1940
12-HETE	AA	-0.61	0.6200	0.37	0.2393	1.25	0.3376	-0.38	0.2834	1.33	0.3033	-0.36	0.1718
5-iPF2α-VI	AA AA	-0.73	0.0916	0.38	0.2194	-0.16	0.6688	-0.25 0.41	0.4674	0.75	0.0312	-0.41 0.16	0.2011
1a1b-dihomo-PGF2α	ADA			0.80	0.3529			<i>2.49</i>	0.2744 0.0001			1.56	0.0930
13-HOTrE	ALA	0.16	0.3917	0.11	0.8375	0.23	0.1541	-0.43	0.4332	-0.20	0.3117	-0.60	0.2371
9-HOTrE 12-HEPE	ALA EPA	0.04 -0.06	0.8999	0.61 0.02	0.3888	0.03	0.9263 0.2369	-0.77 -0.37	0.2123	-0.05 0.67	0.8295 0.4123	-1.19 -0.27	0.1378 0.2331
17,18-DiHETE	EPA	0.19	0.2825	0.32	0.2658	0.60	0.0047	-0.17	0.5911	-0.30	0.1185	-0.38	0.0834
EPA	EPA	0.28	0.0660	-0.05	0.8465	0.56	0.0003	-0.10	0.7381	0.04	0.7844	0.03	0.8922
15-HEPE 14.15-DiHETE	EPA EPA	0.28 0.14	0.2045	0.06	0.8874 0.9926	0.47 0.41	0.0273 0.0285	-0.29 -0.20	0.5127 0.6575	-0.02 -0.13	0.9196	-0.55 -0.17	0.0617
5-HEPE	EPA	0.16	0.4369	0.04	0.8958	0.39	0.0390	-0.35	0.3518	0.10	0.6496	-0.47	0.0748
18-HEPE	EPA	0.02	0.9192	0.07	0.9198	0.08	0.6537	-0.59	0.4113	-0.16	0.4555	-0.77	0.2472
PGD3	EPA	-0.19	0.3108	-0.03	0.9637	-0.03	0.000	-0.23 -0.49	0.3935	-0.44	0.0402	-0.44 -0.55	0.4377
14-HDoHE	DHA	-0.32	0.5537	0.40	0.3065	0.82	0.2414	-0.39	0.3216	0.58	0.3360	-0.58	0.1081
	DHA	0.22	0.1171	0.09	0.6708	0.46	0.0015	-0.10	0.6829	0.05	0.7165	0.03	0.8500
17-HDoHE	DHA DHA	0.05 -0.12	0.8270 0.6426	0.13	0.7422	0.35	0.1193	-0.42 -0.62	0.2230	0.03	0.8770	-0.58 -0.79	0.1971 0.0975
10-HDoHE	DHA	0.01	0.9795	0.14	0.7042	0.15	0.4008	-0.47	0.1814	-0.04	0.8516	-0.60	0.1092
4-HDoHE	DHA	-0.04	0.8549	0.33	0.5302	0.12	0.5110	-0.59	0.1935	0.03	0.8798	-0.79	0.1654
16-HDoHE	DHA	0.02 -0.12	0.9295	0.23 0.38	0.4673	0.11	0.0203 0.5803	-∪.∠o -0.60	0.3905	-0.17 0.16	0.4921	-0.39 -0.76	0.∠448 0.1515
8-HDoHE	DHA	-0.07	0.7429	0.23	0.4166	0.09	0.6202	-0.20	0.4529	-0.15	0.5244	-0.44	0.1105
13-HDoHE 20-HDoHE	DHA DHA	0.01 -0.13	0.9751 0.4868	0.18 0.44	0.6626 0.4254	0.03 -0.10	0.8458 0.5761	-0.44 -0.54	0.2388 0.3037	-0.06 0.06	0.7626 0.7400	-0.62 -0.71	0.1707 0.2086

Significantly changed metabolites at P < 0.05 were shown as bold and italic.

Supplementary figure 1

A. Comprehensive analysis / B. Profiling

1. Detection of compound and metabolite profiling after administration of maoto

Maoto-derived compounds

- Major compounds in maoto were identified.
 - Ephedrines/Prunasin/Cinnamic acid/Glycyrretinic acid
- Numerous compound peaks were detected in rat plasma.
 - Unchanged compounds in maoto
 - Maoto-derived metabolites

Endogenous compounds

- Several kinds of endogenous metabolites were increased by maoto administration
 - Lysophospholipids/Carnitins

Undetermined compounds

2. Pharmacological profiling of maoto on flu-like symptoms

Phenotype

- Maoto ameliorated the polyI:C-induced decrease in locomotor activity and body weight
- Maoto inhibited polyI:C-induced proinflammatory cytokines and enhanced anti-inflammatory cytokines
 - TNF-α/IL-1β/IL-10/IFN-γ

Metabolomics

- Maoto affected primary metabolites
 - Amino acids/ metabolites of TCA cycle / ketone bodies
- Maoto decreased polyI:C-induced inflammatory lipid mediators
 - Prostaglandins / Leukotrienes
- Maoto affected broad lipid mediators
 - Metabolites of $\omega 3 / \omega 6$ lipid mediators

C. Integrated hypothesis of mode of action

Literature knowledge / database curation

- Action of compounds detected in rat plasma
 - Direct effect of major compounds on proinflammatory cytokines
 - Interaction between maoto-derived compounds and CYPs associated with lipid mediator metabolism
 - Unknown function of undetermined compounds
- Function of maoto increased lysophospholipids
 - Effect on proinflammatory cytokines
 - Source of lipid mediators; modulated lipid mediator balance
- Function of maoto increased lipid mediators
 - Anti-inflammatory effects of ω3 fatty acid metabolites
 - Modulation of metabolic pathway of proinflammatory lipid mediators
- Changes of primary metabolites by maoto administration
 - Effect of maoto on energy metabolism

Supplementary Figure 2a

Category	Plasm 1	<u>ia (h)</u> 8	CCD (Formula)	tR (min)	Measured Mass	Theoretical Mass	Ionization	Error (ppm)	Identification	MS ₂ fragment ions
			C8H7N1O1	3.80	134.0601	134.0600	[M + H]+	0.29	Mandelonitrile	ND
			C9H11N1	3.76	134.0965	134.0964	[M + H]+	0.19	-	ND
			C10H16	6.28	137.1325	137.1325	[M + H]+	0.22	-	81 (1000), 95 (148), 146 (111)
			C7H7N1O2	0.94	138.0550	138.0550	[M + H]+	0.04	-	ND
			C7H13N1O2	1.31	144.1019	144.1019	[M + H]+	0.15	Stachydrine	ND
spu			C10H13N1	4.49	148.1121	148.1121	[M + H]+	0.14	5,6,7,8-Tetrahydrolepidine	ND
no			C8H9N1O2	3.88	152.0707	152.0706	[M + H]+	0.31	-	ND
du			C9H13N1O1	3.76	152.1070	152.1070	[M + H]+	0.25	Norephedrine	134 (1000), 134 (129)
Ō			C9H14O2	7.88	155.1067	155.1067	[M + H]+	0.28	-	ND
a			C6H9N3O2	0.96	156.0768	156.0768	[M + H]+	0.09	Histidine	ND
igir			C4H6N4O3	0.93	159.0513	159.0513	[M + H]+	0.13	Allantoin	ND
ō			C6H10O5	0.90	163.0601	163.0601	[M + H]+	0.16	-	ND
oto			C10H14N2	1.21	163.1230	163.1230	[M + H]+	0.14	-	ND
Ma			C10H15N1O1	4.47	166.1227	166.1226	[M + H]+	0.30	Ephedrine, Pseudoephedrine	148 (1000), 148 (143)
_			C11H17N1O1	4.89	180.1383	180.1383	[M + H]+	0.23	Methylephedrine	162 (1000)
			C13N2O1	5.06	201.0083	201.0083	[M + H]+	-0.21	-	ND
			C12H8O3	8.81	201.0546	201.0546	[M + H]+	0.06	-	ND
			C15H12O4	7.27	257.0808	257.0808	[M + H]+	-0.19	Liquiritigenin	ND
			C19H30O10	23.79	419.1910	419.1912	[M + H]+	-0.37	-	ND
S			C9H9N1O3	5.79	180.0656	180.0655	[M + H]+	0.22	Hippuric acid	163 (1000), 162 (444), 163 (333), 105 (222)
ed pilite			C11H17N1O2	5.59	196.1332	196.1332	[M + H]+	0.06	Methylephedrine N-oxide	ND
abo abo										425 (1000), 235 (842), 263 (737), 453 (684),
Ede			C30H46O4	14.56	471.3468	471.3469	[M + H]+	-0.21	Glycyrrhetinic acid	189 (579), 407 (526), 426 (526), 217 (474),
7										454 (421), 191 (368)
Total	15	12	22							

Supplementary Figure 2b

No Control No No C21441N02 16.14 35.3210 No H4 -0.16 Amadamide No No C21441N02 16.14 35.3210 35.3210 Size 201
No No No No C26H43N1C0 61.4 352.3210 No H
Part V C26H43N106 9.97 466.3163 M+ H+ 0.18 Giycocholic acid 448 (100), 430 (656), 374 (51), 373 (43), 412 (21) V C26H43N106 1.02 18.1387 (M+ H) -0.24 Propionylcarnitine ND V C25H45N104 1.38 426.3757 <td< td=""></td<>
No No No No No
No C25H45NL04 12.60 424.3421 (M + H) 0.22 Incelaidy carnitine, Elaidic carnitine, Elaidic carnitine, MD ND C25H47NL04 13.18 426.3577 426.3578 (M + H) 0.22 Incelaidy carnitine, Elaidic carnitine, Elaidic carnitine, MD ND C25H47NL04 13.18 426.3577 426.3578 (M + H) 0.22 Incelaidy carnitine, Elaidic carnitine, Elaidic carnitine, MD ND C25H47NL04 13.04 435.2506 435.2506 MH + H 0.17 C26(18/2)(21/2)(00) ND C21H3007P1 14.94 435.2506 MH + H 0.14 PL(16/0/01/8)(22/21/22)(00) ND C21H4AN107P1 12.94 438.2979 (M + H) 0.14 PL(16/0/01/8)(27/21/20)(0) ND C23H48N107P1 13.06 488.32978 (M + H) 0.18 PC(0-15/0/0.0), PC(1-61/0/01/8), PC(17:0/0.0) ND C23H48N107P1 13.27 488.3294 MH + 0.09 PC(0-16/0/18.1)(21/00), PC(16:161/0/0.1), PC(17:0/0.0) ND C23H48N107P1 13.27 488.3244 MA 32393 MH +
No Operation Operation Operation ND ND 12 25H43N104 13.0 428.373 428.374 428.472 428.472 428.472 428.472 428.472 428.472 428.472 428.472 428.472 428.472 428.472 428.472 438.2979 14.44 40.00/18.2(92.122), 124/000 ND ND 149.443 C21H44N106F1 13.4 468.328 489.305 14.44 412.44(52.82.112.47400) ND ND 149.443 148.423.443 148.423.443 149.423.4452.82.124.247000 ND ND 149.443 148.443.443 148.443.443 148.443.443 148.443.443 148.423.443 148.443.443
VICUUE C25H49N104 13:00 428.3733 428.3734 (H + H) -0.30 Stearoylcamtine ND VICUUE C21H3907P1 14:94 417.200 H + 17.201 H + H) -0.12 P(163.2)(25.122)/.00) ND C21H3907P1 14:94 435.2506 435.2506 H + H) -0.12 P(163.2)(25.122)/.00) ND C21H44N107P1 12:94 435.2506 435.2506 H + H) -0.12 P(16.0)(0.0), P(10.0)(16.0) ND C21H44N107P1 13:04 435.2506 435.2506 H + H) -0.14 P(16.0)(0.0), P(10.0)(16.0) ND C21H44N107P1 12:04 435.2207 H + H) -0.13 P(15.0)(0.0), P(16.15:10/0.0), P(17.0)(0.0) ND C23H44N107P1 12:02 488.3085 M + H) -0.13 P(17.15:0/0.0), P(11.3:10/2)/.00), P(1.15:10/2)/.00) ND C23H44N107P1 12:02 488.3084 H + H) -0.23 P(17.110/2)/.00), P(1.0:11:10/2)/.00), P(1.0:11:10/2)/.00) ND C23H44N107P1 12:02 488.3084 M + H) -0.29
VINC C21H370GP1 14.94 417.2401 M×1H -0.12 FP(16.0)(0.0) ND VINC C21H370F1 14.94 4157.260 435.256 M×1H -0.14 FP(10.0)(18:102,212/).00) ND VINC C21H34010F1 12.9 485.2956 M×1H -0.24 PE(1-16.0)(0.0) ND C21H34010F1 12.9 485.2956 M×1H -0.24 PE(1-16.0)(0.0) ND C21H34010F1 12.9 485.2956 M×1H -0.14 PE(0-16.0)(0.0) ND C23H48010F1 15.19 466.3292 M×HH -0.18 PE(0-15:0)(0.0), PE(0-18:0)(0.0) ND C23H48010F1 13.72 478.3292 M×HH -0.08 PE(0-0)(18:102), PE(1-18:0)(0.0) ND C23H48010F1 13.72 478.3292 M×HH -0.18 PE(0-16.0)(18:102), PE(1-8:0)(0.0) ND C23H48010F1 13.72 478.3292 M×HH -0.18 PE(0-01/18:102), PE(0-01/18:102), PE(1-10:0), PE(1-0:0), PE(1-
VINTO 14.94 435.250 14
View C21H44N10FP1 12.64 438.2978 (438.2928 (147.470)(0) ND C23H43N107P1 13.79 466.3291 (466.3291 (466.3291 (118.1112), (112.01, 00.0), PC(10.161.102.170, 00) ND ND C23H44N107P1 12.72 478.2928 (M + H) -0.22 PC(10.112.21/0.0) ND ND C23H44N107P1 13.52 480.3485 (M + H) -0.22 PC(10.112.21/0.0) ND ND C23H48N107P1 14.57 480.3449 (M + H) -0.20 PC(10.50/0.0), PC(1.40/0.1.0), PC(1.00.0.0), PC(1.00.01.81) ND C23H48N107P1 12.47 482.3420
View C21H44N107P1 12.9 454.2927 454.2928 M+ H+ -0.11 PC13:0/00.PE(16:0/0:0).PE(16:0/0:0) ND View C23H38N10CP1 15.19 466.3292 (M + H) -0.14 PC(20:0/0.PE(16:0/0:0).PE(10:0/0.0) ND View C23H48N10CP1 15.19 466.3292 (M + H) -0.15 PC(13:0/0.0).PE(10:1202/0.0).PE(10:1202/0.0) ND View C23H48N10CP1 12.72 478.2928 (M + H) -0.15 PC(13:10/0.0).PE(10:1202/0.0).PE(10:1202/0.0) ND C23H44N10CP1 13.78 478.3292 (M + H) -0.15 PC(10:10/112/0.0).PE(18:1(12)/0.0) ND C24H48N10CP1 13.78 478.3292 (M + H) -0.29 PC(10-16:1(112)/0.0) ND View C24H48N10CP1 13.78 478.3292 (M + H) -0.29 PC(10-16:1(112)/0.0) ND View C24H48N10CP1 13.78 478.3292 (M + H) -0.29 PC(10-16:1(112)/0.0) ND View C24H48N10CP1 14.80 480.3404 480.3405 M + H)
VICUUE C23H3907P1 14.80 459.2506 459.2506 (M+H) -0.14 PAC2-4(5,28,2,112,142)/0:0) ND VICUUE C23H48N106P1 15.9 466.3292 (M+H) -0.18 PC(0-15:0/0:0), PE(0-18:1(02)/0:0), PE(17:0/0:0) ND VICUUE C23H44N107P1 12.72 478.2928 (M+H) -0.15 PC(0-12:0/2:0), PC(14:0/0:0), PE(17:0/0:0) ND VICUUE C23H44N107P1 12.72 478.2928 (M+H) -0.15 PC(0-16:1(12)/0:0), PC(10:0), PC(10:
Vision C23H48N106P1 15.19 466.3291 M46.3292 M+H+ -0.18 PC(P-15:0/0:0), PE(P-18:0/0:0), PE(P-18:0/0:0) ND Vision C23H48N106P1 12.72 488.3084 466.3092 (M+H+ -0.19 PC(P-15:0/0:0), PE(P-18:0/0:0), PE(P-10:0/0:0) ND Vision C23H48N106P1 13.78 478.3291 478.3292 (M+H+ -0.29 PE(P-19:1(122/)0:0) ND Vision C23H48N106P1 13.78 478.3291 478.3292 (M+H+ -0.29 PE(P-19:1(122/)0:0) ND Vision C23H48N107P1 13.78 478.3291 MH+H -0.29 PE(P-19:1(122/)0:0) ND Vision C24H48N107P1 13.78 480.3449 (M+H+ -0.29 PC(0-16:1(12)/0:0), PC(0-16:1(9E)/0:0), PE(18:0/0:0), PE(10:0/18:0) ND Vision C23H48N107P1 14.65 482.3204 482.321 (M+H+ -0.29 PC(15:0/0:0), PC(14:0/0-16:0), PC(10:0/0-80), PE(18:0/0:0), PE(10:0/18:0) ND Vision C24H5N10F1 14.65 482.3605 (M+H+ -0.29 PC(15:0/0:0), PC(1
No C22H46N107P1 12.08 468.3085 (M + H) -0.15 PC(0-12:0/2:0), PC(14:0/0:0), PC(10:1/14:0), PE(17:0/0:0) ND ND C23H4AN107P1 12.72 78.2928 (M + H) -0.05 PC(0-12:0/2:0), PC(14:0/0:0), PC(10:1/14:0), PE(17:0/0:0) ND C23H4AN107P1 13.72 478.2928 (M + H) -0.15 PC(0-16:1(122/):0:0) ND C23H4AN107P1 13.52 480.3085 (M + H) -0.25 PE(0-16:1(122/):0:0) ND C24H4SN106P1 13.52 480.3449 (M + H) -0.25 PC(0-16:1(122/):0:0) PC(10-16:1(122/):0:0) ND C24H5N106P1 14.37 480.3449 (M + H) -0.26 PC(0-16:1(122/):0:0) PC(10-16:1(122/):0:0) PC(10-16:1(122/):0:0) PC(10-16:1(122/):0:0) ND C24H5N106P1 14.45 482.3240 482.3241 (M + H) -0.26 PC(17:1(122/):0:0) PC(10-16:1(122/):0:0) PC(10:16:1(122/):0:0) PC(10:16:1(122/):0:0) PC(10:16:1(122/):0:0) PC(10:16:1(122/):0:0) PC(10:16:1(122/):0:0) PC(10:16:1(122/):0:0) PC(10:16:1(122/):0:0) PC(10:16:1(122/):0:0)
View C23H44N107P1 12.72 478.2928 (M + H) -0.09 PE(0:0/18:2(92,122)), PE(18:2(92,122)/0:0) ND C23H46N106P1 13.78 478.3292 (M + H) -0.22 PE(P-19:1(122)/0:0) ND C23H46N106P1 13.78 478.3291 478.3292 (M + H) -0.22 PE(P-19:1(122)/0:0) ND C23H46N106P1 13.78 480.3045 (M + H) -0.11 PE(0:0/18:1(121)/0:0), PE(10:1(112)/0:0), PC(0-16:1(192)/0:0), ND C24H50N106P1 14.37 480.3447 (M + H) -0.23 PE(0-16:1(112)/0:0), PC(10-16:1(92)/0:0), ND C23H48N107P1 12.77 482.3240 482.3241 (M + H) -0.23 PC(0-16:1(02)/0:0), PC(1:0/0-8:0), PE(10:0/0:18:0) ND C24H52N106P1 14.46 482.3604 482.3605 (M + H) -0.22 PC(P-18:1(92)/0:0), PC(1:0:0/0:0) 464 (1000), 344 (105), 454 (100), 184 (13), 465 (64 440 (50) C26H52N106P1 15.75 506.3605 (M + H) -0.22 PC(P-18:1(92)/0:0), PC(1:112)/0:0), PC(0:18:1(112)/0:0), PC(0:18:1(12)/0:0), PC(0:18:1(12)/0:0), PC(0:18:1(12)/0:0), PC(0:18:1(12)/0:0), PC(0:18:1(12)/0:0), PC(0:18:1(12)/0:0), PC(0:18
No ND ND ND ND
No V C23H46N107P1 13.52 480.3084 480.3085 [M+H] -0.11 PE(0:/18:1(112)/0:0), PE(0:18:1(122)/0:0), PE(0:18:1(92)/0:0), PE(0:0/18:1(92)/0:0), PE(0:0/18:0) ND V C23H48N107P1 14.37 480.3447 480.3449 [M+H] -0.23 PC(0-16:1(112)/0:0), PC(0-16:1(92)/0:0), PE(0:0/18:0) ND V C23H48N107P1 14.55 482.3240 482.3241 [M+H] -0.20 PC(15:0/0:0), PC(14:0/0-1:0), PC(7:0/O-8:0), PE(18:0/0:0), PE(0:0/18:0) A64 (1000), 341 (398), 421 (19), 465 (14), 310 (8) V C23H48N107P1 14.46 482.3604 482.3605 [M+H] -0.20 PC(15:0/0:0), PC(14:0/0-1:0), PC(7:0/O-8:0), PE(18:0/0:0), PE(0:0/18:0) A64 (1000), 341 (398), 421 (19), 465 (14), 310 (8) V C24H52N106P1 14.46 482.3604 482.3605 [M+H] -0.20 PC(15:1(12)/0:0), PC(14:1/2)/0:0), PC(10:1(112)/0:0), PC(0-18:1(112)/0:0), PC(0-18:1(112)/0:0), PC(0-18:1(112)/0:0), PC(0-18:1(112)/0:0), PC(0-18:1(112)/0:0), PC(0-18:1(112)/0:0), PC(0-18:1(112)/0:0), PC(18:1(12)/0:0), PC(18:1(12)/0:0), PC(18:1(12)/0:0), PC(18:1(12)/0:0), PC(18:1(12)/0:0), PC(18:1(12)/0:0), PC(18:1(
No No ND ND C26H52N106P1 15.75 56.364 506.365 [M+H] -0.22 PC(P-18:1(127)/0:0), PC(0-18:1(92)/0:0), PC(0-
View C24H50N106P1 14.37 480.3447 480.3449 [M + H] -0.23 PC(0-16.1(12)/0.0) ND View C23H48N107P1 12.77 482.3240 482.3241 [M + H] -0.23 PC(0-16.1(12)/0.0) ND View C23H48N107P1 14.65 482.3240 482.3241 [M + H] -0.23 PC(0-16.1(12)/0.0) PC(15:0/0.0), PC(14:0/0-1:0), PC(7:0/0-8:0), PE(10:0/18:0) ND View C23H48N107P1 14.65 482.3240 482.3605 [M + H] -0.25 PC(0-8:0/16.0) Add (100),
ND
No C23H48N107P1 14.65 482.3240 482.3241 [M + H] -0.20 PC(15:0/0:0), PC(1:0/0-1:0), PC(7:0/0-8:0), PE(10:0/0), PE(10:0/0.0), A44 (100), A41 (398), 421 (19), 465 (14), 310 (8) ND Add (50) Add (50) Add (50) Add (50) Add (50) ND C26H52N106P1 13.37 508.3396 508.3396 [M + H] -0.25 PC(0-8:0/PC(-16:0/0:0), PE(0:1/112//0:0), PE(0:0/20:1/112//0) ND ND C26H52N106P1 13.37 508.3396 508.3396 [M + H] -0.25 PC(0-8:0/PC(-16:0/0:0), PE(0:1/112//0:0), PE(0:0/20:1/112//0) ND ND C26H54N106P1 13.37 508.3396 508.3396 [M + H] -0.25 PC(0-18:1(112//0:0), PE(0-18:1(12//0:0), PE(0-18:1(112//0:0), PE(0-18:1(12//0:0), PE(0-18:1(12//0:0), PC(0-18:1(12//0:0), PC(0-18:1(12//0:0), PC(0-18:1(12//0:0), PC(0-18:1(12//0:0), PC(0-18:1(12//0:0), PC(18:1(92//0:0), PC(18:1(92
No C24H52N106P1 14.46 482.3605 [M + H]+ -0.25 PC(0-8:0), PC(0-16:0/0:0) 341 (1000), 464 (105), 454 (100), 184 (91), 465 (6 40 (50)) ND ND ND ND ND ND C26H52N106P1 15.75 506.3605 [M + H]+ -0.28 PC(P-18:1(92)/(0:0), PC(17:1(92)/(0:0), PC(0-18:1(12)/(0:0), P
B0 C26H52N106P1 15.75 506.3604 506.3605 [M + H]+ -0.22 PC(P-18:1(92)/0:0), CerP(d18:1/8:0) ND V C25H50N107P1 13.37 508.3396 508.3398 [M + H]+ -0.28 PC(17:1(102)/0:0), PC(0-18:1(12)/0:0), PE(0:0/20:1(112)) ND V C26H54N106P1 14.82 508.3760 508.3762 [M + H]+ -0.21 PC(0-18:1(112)/0:0), PC(0-18:1(92)/0:0), PC(0-18:1(12)/0:0), PC(18:1(92)/0:0), PC(18:1(92)/0:0
Image: Construct of the state of t
C26H54N106P1 14.82 508.3556 508.3556 (M+H)+ -0.21 PC(0-18:1(112)/0:0), PC(0-18:1(92)/0:0), PC(0-18:1(12)/0:0), PC(18:1(12)/0:0), PC(18:1(12)/0:
C26H54N106P1 14.82 508.3760 508.3762 [M + H]+ -0.21 PC(D=18.1(12)/0.0), PC(D=18.1(12)
C26H48N107P1 12.48 518.3241 518.3241 (M + H)+ -0.09 PC(18:3(92,122,152)/0:0), PC(18:3(62,92,122)/0:0) ND C26H52N107P1 13.88 522.3552 522.3554 [M + H]+ -0.36 PC(18:1(62)/0:0), PC(18:1(9E)/0:0), PC(18:1(92)/0:0), PC(18:1(9
C26H52N107P1 13.88 522.3552 522.3554 [M + H]+ -0.36 PC(18:1(92)/0:0), P
C26H54N107P1 15.77 524.3710 524.3711 [M + H]+ -0.21 PC(18:0/0:0) 506 (1000), 184 (229), 507 (49), 258 (5), 185 (3), 341 (2), 508 (2), 166 (1), 185 (1), 346 (1) C27H54N107P1 14.99 536.3710 536.3711 [M + H]+ -0.18 PC(0-16:0/3:1(2E)), PC(19:1(9Z)/0:0), PE(22:1(11Z)/0:0), PE(22:1(11Z)/0:0
C27H54N107P1 14.99 536.3710 536.3711 [M + H]+ -0.18 PC(0-16:0/3:1(2E)), PC(19:1(9Z)/0:0), PE(22:1(11Z)/0:0),
C27H56N107P1 16.97 538.3866 538.3867 [M + H]+ -0.21 PC(19:0/0:0) 520 (1000), 184 (294), 521 (271), 185 (28)
C27H56N107P1 23.02 538.3867 538.3867 [M + H]+ -0.08 PC(O-16:0/3:0), PC(O-17:0/2:0), PC(0-18:0/1:0), PC(19:0/0:0),
C26H50N107P1 13.15 542.3216 542.3217 [M + Na]+ -0.28 PC(18:2(2E,4E)/0:0), PC(18:2(9Z,12Z)/0:0) ND
C28H54N107P1 14.61 548.3710 548.3711 [M + H]+ -0.19 PC(20:2(11Z,14Z)/0:0) 530 (1000), 184 (175), 531 (20), 542 (15), 543 (6), 258 (5), 501 (2), 519 (2), 527 (2), 536 (2)
C28H56N107P1 16.12 550.3866 550.3867 [M + H]+ -0.19 PC(20:1(9Z)/0:0), PC(20:1(11Z)/0:0) 532 (1000), 184 (181), 533 (25), 545 (7), 258 (3), 540 (2)
C30H54N107P1 14.23 572.3709 572.3711 [M + H]+ -0.23 PC(22:4(7Z,10Z,13Z,16Z)/0:0) ND
C30H62N107P1 16.19 580.4336 580.4337 [M + H]+ -0.04 PC(0-16:0/6:0) PC(0-18:0/4:0) PC(0-20:0/2:0) PC(22:0/0:0) ND

Supplementary Figure 2c

Category	Plasm 1	<u>na (hr)</u> 8	CCD (Formula)	tR (min)	Measured Mass	Theoretical Mass	Ionization	Error (ppm)
			C6H15N1	14.39	102.1277	102.1277	[M + H]+	0.16
			C6H15N1	18.92	102.1277	102.1277	[M + H]+	0.20
			C5H13N1O1	13.13	104.1070	104.1070	[M + H]+	0.00
			C5H13N1O1	15.76	104.1070	104.1070	[M + H]+	0.09
			C7H4O1	5.79	105.0335	105.0335	[M + H]+	0.21
			C5H9N1O2	7.22	116.0706	116.0706	[M + H]+	0.30
			C8H11N1	12.40	122.0964	122.0964	[M + H]+	0.16
			C10H16	7.14	137.1325	137.1325	[M + H]+	0.18
			C10H16	5.29	137.1325	137.1325	[M + H]+	0.22
			C9H14O1	3.56	139.1118	139.1117	[M + H]+	0.33
			C8H14O2	4.69	143.1067	143.1067	[M + H]+	0.27
			C8H6O3	1.12	151.0390	151.0390	[M + H]+	0.36
			C6H14O4	10.01	151.0965	151.0965	[M + H]+	0.23
			C6H14O4	5.44	151.0965	151.0965	[M + H]+	0.23
			C3H8N2O3S1	18 16	153 0328	153 0328	[M + H]+	-0.13
			C7H11N3O2	0.86	170 0924	170 0924	[M + H]+	0.17
			C12H11N1	13.40	170.0924	170.0924	[M + H]+	0.27
			C/H120252	12.54	172 0202	172 0201	[N1 + H]+	0.22
			C7H5N10152	22.34	192 0995	192 0995	[N + H]	-0.2
				23.13	200 9502	200 9504		-0.2
				1.20	200.8592	200.8594		-0.7
			C0H10N235	0.26	207.0080	207.0079		0.55
s				9.20	219.1743	219.1743	[IVI + H]+	-0.0
D U			C7H904P1S1	0.95	221.0032	221.0032	[IVI + H]+	0.12
n			C/H1304P1S1	0.86	225.0345	225.0345	[IVI + H]+	0.06
ă			C6H2N4S3	0.79	226.9515	226.9514	[IVI + H]+	0.10
E			C12H18O4	7.18	227.1278	227.1278	[IVI + H]+	-0.0
8			C13H25N102	17.39	228.1958	228.1958	[IVI + H]+	0.17
ned			C12H12N2O3	6.76	233.0921	233.0921	[M + H]+	-0.02
			C11H18N6	21.02	235.1664	235.1666	[M + H]+	-0.6
IJ			C8H22N6S1	12.15	235.1698	235.1699	[M + H]+	-0.6
eu			C9H20N4O4	0.91	249.1557	249.1557	[M + H]+	-0.1
et			C12H26O5	8.30	251.1853	251.1853	[M + H]+	-0.1
р			C20H28	16.44	269.2263	269.2264	[M + H]+	-0.1
5			C8H17N9O1S1	13.16	288.1348	288.1350	[M + H]+	-0.4
			C10H21N7O1S1	13.77	288.1602	288.1601	[M + H]+	0.47
			C8H19N9O1S1	15.77	290.1505	290.1506	[M + H]+	-0.3
			C12H15N1O4S2	6.28	302.0514	302.0515	[M + H]+	-0.28
			C8H9N3O6S2	11.14	308.0006	308.0006	[M + H]+	0.03
			C12H19N7O3	15.36	310.1621	310.1622	[M + H]+	-0.50
			C20H38O1S1	13.54	327.2713	327.2716	[M + H]+	-0.9
			C14H24N4O6	0.94	345.1768	345.1769	[M + H]+	-0.24
			C24H47N1O1	20.63	366.3730	366.3730	[M + H]+	-0.0
			C22H42O4	10.90	371.3156	371.3156	[M + H]+	-0.04
			C24H38O4	4.73	391.2842	391.2843	[M + H]+	-0.16
			C18H41N5S2	15.10	392.2876	392.2876	[M + H]+	-0.13
			C27H42O4	13.66	431.3155	431.3156	[M + H]+	-0.22
			C27H42O5	14.70	447.3104	447.3105	[M + H]+	-0.19
			C26H41N1O6	9.49	464.3006	464.3007	[M + H]+	-0.14
			C20H44N6O2S2	9.49	465.3039	465.3040	[M + H]+	-0.20
			C19H53N5O5S2	13.66	496.3559	496.3561	[M + H]+	-0.42
			C20H50N4O6S2	13.78	506.3168	506.3172	[M]	-0.73
			C33H38N2O9	14.06	607.2649	607.2650	[M + H]+	-0.15
			C52H95N1O1	13.09	749.7409	749.7414	[M]	-0.57
			C23H11O25P1S2	15.76	781.8774	781.8768	[M]	0.69
			C43H62O16	9.61	835.4104	835.4111	[M + H]+	-0.79
			C58H98O29	9.70	1259.6257	1259.6267	[M + H]+	-0.7

Metabolic reactions of detected metabolites

Supplementary Figure5

Supplementary Figure 7

а

				P/C		M/C		PM/P	
		Compound name	Category	2h	4h	2h	4h	2h	4h
		13-HpODE 9-HpODE 12,13-DiHOME 9,10-DiHOME 13-KODE 12,13-EpOME 13-HODE 9,10-EpOME 9-HODE 9-KODE	LA						
		15-HEDE	EDA						
		15-HETrE	DGLA						
ω-6 FA metabolites	V DGLA←EDA V AA V ADA	13,14-dihydro-15-keto-letranor-PGE2 N-acetyl-LTE4 6,15-dikto-13,14-dihydro-PGF10 6-keto-PGF10 tetranor-PGDM LTE4 13,14-dihydro-15-keto-PGE2 13,14-dihydro-15-keto-PGE2 13,14-dihydro-15-keto-PGD2 19-HETE PGE2 17-HETE 13-4-dihydro-15-keto-PGD2 19-HETE PGE2 17-HETE 13-4-dihydro-15-keto-PGF20 5-0-PGE1-alactone 12-HHT PGD3 11-HETE PGF20 13-H-Gop- 18-HETE PGF20 14-HT PGD3 18-HETE PGF20 5-0HET 10-HETE 8-9DHET 20-carboxy-AA 5-HETE 8-iso-15-keto-PGE2 8-iso-15-keto-PGE3 9-HETE 9-HETE 9-HETE 9-HETE 9-HETE 9-HETE 9-HETE 9-HETE <t< td=""><td>AA</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	AA						

	ALA V EPA V DHA	13-HOTrE 9-HOTrE	ALA			
w-3 FA metabolites		12-HEPE 17,18-DIHETE EPA 15-HEPE 14,15-DIHETE 5-HEPE 18-HEPE 5,6-DIHETE PGD3	EPA			
		14-HDoHE DHA 11-HDoHE 17-HDoHE 10-HDoHE 4-HDoHE 7-HDoHE 16-HDoHE 8-HDoHE 13-HDoHE 20-HDoHE	DHA			

<-2 0 2<

Supplementary information of Figure 6a, b and c

Abbreviation list	
5-iPF2a-VI	5-iso-prostaglandinF2α-VI
6-kPGF1a	6-keto-prostaglandinF1α
6,15-dk-13,14-dhPGF1a	6,15-diketo-13,14-dihydro-prostaglandinF1α
8-iPGE2	8-iso-prostaglandinE2
8-i-15-kPGF2a	8-iso-15-keto-prostaglandinF2α
13,14-dh-15-kPGD2	13,14-dihydro-15-keto-prostaglandinD2
13,14-dh-15-kPGE2	3,14-dihydro-15-keto-prostaglandinE2
13,14-dh-15-ktPGE2	13,14-dihydro-15-keto-tetranor-prostaglandinE2
	13,14-dihydro-15-keto-tetranor-
13,14-dh-15-ktPGF1b	prostaglandinF1β
	13,14-dihydro-15-keto-tetranor-
13,14-dh-15-ktPGF2a	prostaglandinF2α
AA	arachidonicacid
cAA	carboxyarachidonicacid
COX	cyclooxygenase
CYP	cytochromeP450
DGLA	dihomo-γ-linolenicacid
DHA	docosahexaenoicacid
DHET	dihydroxy-eicosatrienoicacid
DIHETE	dihydroxy-eicosatetraenoicacid
DiHOME	dihydroxy-octadecenoicacid
EET	epoxy-eicosatrienoicacid
EPA	eicosapentaenoicacid
EpOME	epoxy-octadecenoicacid
HDoHE	hydroxy-docosahexaenoicacid
HETrE	hydroxy-eicosatrienoicacid
HEPE	hydroxy-eicosapentaenoicacid
HETE	hydroxy-eicosatetraenoicacid
ННТ	hydroxyheptadecatrienoicacid
HpODE	hydroperoxy-linoleicacid
KETE	oxo-eicosatetraenoicacid
KODE	oxo-octadecadienoicacid
LA	linoleicacid
LOX	lipoxygenase
LTA4	leukotrieneA4
LTC4	leukotrieneC4
LTD4	leukotrieneD4
LTE4	leukotrieneE4
PGD2	prostaglandinD2
PGE2	prostaglandinE2
PGH2	prostaglandinH2
PGI2	prostaglandinl2
tPGDM	tetranor-prostaglandinD metabolite
TXB2	thromboxaneB2

Supplementary information of Figure 6d

Pathway	Metabolites	P/C	M/C	PM/P
	6-keto-PGF1α			
	6,15-diketo-13,14-dihydro-PGF1α			
	11-HETE			
	12-HHT			
	13,14-dihydro-15-keto-PGD2			
	13.14-dihydro-15-keto-PGE2			
	13.14-dihydro-15-keto-PGF2a			
cox	13.14-dihvdro-15-keto-tetranor-PGE2			
	13,14-dihydro-15-keto-tetranor-PGF1β			
	15-keto-PGE2			
	PGD2			
	PGE2			
	PGF2α			
	tetranor-PGDM			
	TXB2			
	5,6-DHET			
	5,6-DHET-lactone			
	5,6-EET			
	8,9-DHET			
	8,9-EET			
	9,10-DiHOME			
	9,10-EpOME			
	11,12-DHET			
	11,12-EET			
	12,13-DiHOME			
CYP	12,13-EpOME			
	14,15-DHET			
	14,15-DiHETE			
	14,15-EET			
	16-HETE			
	17-HETE			
	17,18-DiHETE			
	18-HETE			
	19-HETE			
	20-carboxy-AA			
	20-HETE			
	4-HDoHE			
	5-HEPE			
	5-HETE			
	5-KETE			
	5,6-DiHETE			
	7-HDoHE			
	8-HDoHE			
	8-HETE			
	9-HODE			
	9-HpODE			
	9-KODE			
	10-HDoHE			
LOX	11-HDoHE			
	12-HEPE			
	12-HETE			
	12-KETE			
	13-HDoHE			
	13-HODE			
	13-KODE			
	IN-acetyi-LIE4		40	
		9	13	6

Supplementary information of Figure 6e and f

Proinflammatory lipid mediators	Anti-inflammatory lipid mediators
5-HETE	4-HDoHE
6-keto-PGF1α	5,6-EET
6,15-diketo-13,14-dihydro-PGF1α	7-HDoHE
9-HODE	8-HDoHE
9,10-DiHOME	8-HETE
9,10-EpOME	10-HDoHE
12,13-DiHOME	11,12-DHET
12,13-EpOME	12-HEPE
13,14-dihydro-15-keto-PGD2	12-HETE
13,14-dihydro-15-keto-PGE2	13-HDoHE
15-keto-PGE2	13-HODE
LTE4	13-HOTrE
PGD2	14-HDoHE
PGE2	14,15-DHET
PGF2α	14,15-EET
	15-HEPE
	15-HETE
	15-HETrE
	16-HDoHE
	16-HETE
	17-HDoHE
	20-HDoHE