- **Control number:** AAC01443-17
- 2 Manuscript title: Vaborbactam: Spectrum of Beta-Lactamase Inhibition and Impact of Resistance Mechanisms on Activity in Enterobacteriaceae

- 5 Table S1. Primer sequences used in cloning various beta-lactamase genes and in reverse transcription-quantitative PCR (RT-qPCR)

Cloning of beta-lactamase genes					
Source strain	Cloned beta- lactamase Primer name Primer sequence (5' to 3')		Restriction site added		
KP1004	KPC-2	KPC-2-own-F	ACACGAATTC CAAGGAATATCGTTGATGTCACTGTATCGCCGTC	<i>Eco</i> RI	
		KPC-2-R1	ACACAAGCTT TACTGCCCGTTGACGCCCAA	HindIII	
EC1007	KPC-3	KPC-2-own-F	ACACGAATTC CAAGGAATATCGTTGATGTCACTGTATCGCCGTC	EcoRI	
		KPC-2-R1	ACACAAGCTT TACTGCCCGTTGACGCCCAA	HindIII	
SM1000	SME-2	SME-2-F1	ACAC <u>GGATCC</u> AGGAGGTTAATTCTGATGTCAAACAAAG	BamHI	
		SME-2-R1	ACACAAGCTT TTAATCAATTGCCTGAATTG	HindIII	
ECL1004	NMC-A	NMC-A-F2	ACGC <u>GAATTC</u> ATATAAGGTAAAACCATGTCACTTAATGTAAAGC	EcoRI	
		NMC-A-R1	ACAC <u>GGATCC</u> TTATTTAAGGTTATCAATTGC	BamHI	
ECM6625	SHV-5	SHV-12-F2	ACGC <u>GAATTC</u> GGATGTATTGTGGTTATGCGTTATATTCGCCTGTG	EcoRI	

	SHV-12-R1	ACAC <u>AAGCTT</u> TTAGCGTTGCCAGTGCTCGA	HindIII
SHV-12	SHV-12-F2	ACGC <u>GAATTC</u> GGATGTATTGTGGTTATGCGTTATATTCGCCTGTG	EcoRI
	SHV-12-R1	ACACAAGCTT TTAGCGTTGCCAGTGCTCGA	HindIII
SHV-18	SHV-12-F2	ACGC <u>GAATTC</u> GGATGTATTGTGGTTATGCGTTATATTCGCCTGTG	EcoRI
	SHV-12-R1	ACACAAGCTT TTAGCGTTGCCAGTGCTCGA	HindIII
TEM-10	TEM-26-F1	ACGC <u>GAATTC</u> GAAAAAGGAAGAGTATGAGTATTCAACATTTCCG	EcoRI
	TEM-26-R1	ACACAAGCTT TACCAATGCTTAATCAGTGAGGC	HindIII
TEM-26	TEM-26-F1	ACGC <u>GAATTC</u> GAAAAAGGAAGAGTATGAGTATTCAACATTTCCG	EcoRI
	TEM-26-R1	ACACAAGCTT TACCAATGCTTAATCAGTGAGGC	HindIII
CTX-M-3	CTX-M-3-F2	ACGC <u>GAATTC</u> AGAATAAGGAATCCCATGGTTAAAAAATCACTGCG	EcoRI
	CTX-M-3-R1	ACACAAGCTT TTACAAACCGTCGGTGACG	HindIII
CTX-M-14	CTX-M-14-F1	ACGC <u>GAATTC</u> AGGAGGTTAATTCTGATGGTGACAAAGAGAGTGCA	EcoRI
	CTX-M-14-R1	ACACAAGCTT TTACAGCCCTTCGGCGATG	HindIII
CTX-M-15	CTX-M-15-F1	ACAC <u>GAATTC</u> AGGAGGTTATCGTTGATGGTTAAAAAATCACTGCG	EcoRI
	CTX-M-15-R1	ACACAAGCTT TTACAAACCGTTGGTGACGA	HindIII
DHA-1	DHA-1-F1	ACGC <u>GAATTC</u> GGAAGGTTAATTCTGATGAAAAAATCGTTATCTGC	EcoRI
	DHA-1-R1	ACACAAGCTT TTATTCCAGTGCACTCAAAATAG	HindIII
FOX-5	FOX-5-F2	ACGC <u>GAATTC</u> CACGAGAATAGCCATATGCAACAACGGCGTGCG	EcoRI
	FOX-5-R1	ACAC <u>AAGCTT</u> TCACTCGGCCAACTGACTCA	HindIII
	SHV-12 SHV-18 TEM-10 TEM-26 CTX-M-3 CTX-M-14 CTX-M-14 DHA-1 FOX-5	SHV-12 SHV-12-R1 SHV-12 SHV-12-F2 SHV-12-R1 SHV-12-R1 SHV-12-R1 SHV-12-R1 TEM-10 TEM-26-F1 TEM-26-R1 TEM-26-R1 TEM-26-R1 TEM-26-R1 CTX-M-3 CTX-M-3-F2 CTX-M-3 CTX-M-3-F2 CTX-M-14 CTX-M-14-F1 CTX-M-14-F1 CTX-M-14-F1 CTX-M-15-F1 CTX-M-15-F1 DHA-1 DHA-1-F1 FOX-5 FOX-5-F2 FOX-5-R1 FOX-5-R1	SHV-12-R1ACACAAGCTT TTAGCGTTGCCAGTGCTCGASHV-12SHV-12-F2ACGCGAATTC GGATGTATTGTGGTTATGCGTTATATTCGCCTGTGSHV-12SHV-12-R1ACACAAGCTT TTAGCGTTGCCAGTGCTCGASHV-18SHV-12-F2ACGCGAATTC GGATGTATTGTGGTTATGCGTTATATTCGCCTGTGSHV-19TEM-26-F1ACGCGAATTC GAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTEM-26TEM-26-F1ACGCGAATTC GAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTEM-26TEM-26-F1ACGCGAATTC GAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTEM-26TEM-26-F1ACGCGAATTC GAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTEM-26-R1ACACAAGCTT TACCAATGCTTAATCAGTGAGGCCTX-M-3-F2ACGCGAATTC AGAATAAGGAATCCCATGGTTAAAAAAATCACTGCGCTX-M-3-R1ACACAAGCTT TTACAATGCTTGATGGTGACAAAAGAGAGTGCACTX-M-14-F1ACGCGAATTC AGGAGGTTAATTCTGATGGTGACAAAAAAAAAA

ECL1002P99P99-F2ACGCGAATTC GACTCGCTATTACGGAAGAT		ACGC <u>GAATTC</u> GACTCGCTATTACGGAAGAT	EcoRI	
		P99-HIS-R2	ACACAAGCTT TTAGTGGTGATGATGGTGATGCTGTAGCGCCTCGAGGA	HindIII
KP1013	CMY-2	CMY-2-F2	ACGC <u>GAATTC</u> TACGGAACTGATTTCATGATGAAAAAATCGTTATGC	EcoRI
		CMY-2-R1	ACAC <u>AAGCTT</u> TTATTGCAGCTTTTCAAGAATGC	HindIII
KX1000	OXA-2	OXA-2-F2	ACAC <u>GGATCC</u> ATTAAGGAAAAGTTAATGGCAATCCGAATCTTCGC	BamHI
		OXA-2-R1	ACACAAGCTT TTATCGCGCAGCGTCCGAGT	HindIII
KP1007	OXA-10	Oxa-10-F2	ACAC <u>GAATTC</u> CACCAAGAAGGTGCCATGAAAACATTTGCCGCAT	EcoRI
		Oxa-10-R1	ACACAAGCTT TTAGCCACCAATGATGCCCT	HindIII
EC1062	OXA-48	Oxa-48-F2	ACAC <u>GAATTC</u> AAGCAAGGGGACGTTATGCGTGTATTAGCC	EcoRI
		Oxa-48-HIS-R1	ACAC <u>AAGCTT</u> CTAGTGGTGATGGTGATGGGGGAATAATTTTTCCTG	HindIII
KP1081	NDM-1	NDM1-F2	ACAC <u>GAATTC</u> GCTGAATAAAAGGAAAACTTG	EcoRI
		NDM1-HIS-R1	ACACAAGCTT TCAGTGGTGATGATGGTGATGGCGCAGCTTGTCGGCCA	HindIII
KP1014	VIM-1	VIM-1-F2	ACGC <u>GAATTC</u> CCCTATGGAGTCTTGATGTTAAAAGTTATTAGTAG	EcoRI
		VIM-1-R1	ACACAAGCTT CTACTCGGCGACTGAGCGATT	HindIII
Pa1066	VIM-2	VIM-2-own-F	ACAC <u>GAATTC</u> ACAAAGTTATGCCGCACTC	EcoRI
		VIM-2-P24-R	ACAT <u>AAGCTT</u> CTACTCAACGACTGAGCGAT	HindIII
Pa1070	VIM-7	VIM-7-own-F	ACAC <u>GGATCC</u> ACAAAGTTATCGCAGTCGG	BamHI
		VIM-7-P24-R	ACAT <u>AAGCTT</u> ACTCGGCCACCGGGCGTACTTT	HindIII

Pa1068	SPM-1	SPM-1-own-F1	ACAC <u>GAATTC</u> TTATCGGAGATCGGAATGAAC	<i>Eco</i> RI	
		SPM-1-P24-R1	ACACAAGCTT CTACAGTCTCATTTCGCCAA	HindIII	
Pa1069	GIM-1	GIM-1-own-F	ACAC <u>GGATCC</u> AGTTAGAAGGATGATTTCC	BamHI	
		GIM-1-P24-R	ACAT <u>CTGCAG</u> TTAATCAGCCGACGCTTCAGC	PstI	
Pa1064	IMP-13	PA-IMP-own-F	ACGC <u>GAATTC</u> TAGAAAAGGDWARGTATGAA	EcoRI	
		PA-IMP-R	ACGC <u>GGATCC</u> GTTAGAAAWTTAGYTACTTGG	BamHI	
Pa1067	IMP-15	PA-IMP-own-F	ACGC <u>GAATTC</u> TAGAAAAGGDWARGTATGAA	EcoRI	
		PA-IMP-R	ACGC <u>GGATCC</u> GTTAGAAAWTTAGYTACTTGG	BamHI	
Pa1065	IMP-18	PA-IMP-own-F	ACGC <u>GAATTC</u> TAGAAAAGGDWARGTATGAA	EcoRI	
		PA-IMP-R	ACGC <u>GGATCC</u> GTTAGAAAWTTAGYTACTTGG	BamHI	
ECM6846	CcrA	BF-ccrA-own-F	ACGC <u>GAATTC</u> ATATAAAAGAATAAAATGAAAACAGTATTTATCC	EcoRI	
		BF-ccrA-R	ACGC <u>AAGCTT</u> CTATGGCTTTGAAGTGCTTTC	HindIII	
SMM1020	L1	SM-K279a-L1- own-F	ACACGAATTC AAGCGGACGTGGATCATGCGTTTTACCCTGCTCGC	<i>Eco</i> RI	
		SM-K279a-L1-R	ACAT <u>AAGCTT</u> TCAGCGGGTCCCGGCCGTTT	HindIII	
Reverse transcription-quantitative PCR					
Primer		Gene	Primer sequence (5' to 3')	Used for	

Primer	Gene	Primer sequence (5' to 3')	Used for	
KP-acrB-qF2	aanD	CCGGTATCGCGTTCGTTTCGC	qPCR	
KP-acrB-qR2	acrb	AGTTTTTCGTGGCCCAGACCCG	RT; qPCR	
	•			
		4		
		4		

KP-ompK35-qF	own K25	CAACCAGCTGGACGACAACGA	qPCR
KP-ompK35-qR	ompros	AGAATTGGTAAACGATACCCACG	RT; qPCR
KP-ompK36-qF	own V26	GTGGTTGCTCAGTACCAGTTC	qPCR
KP-ompK36-qR	отркзо	GCTGTTGTCGTCCAGCAGGTTG	RT; qPCR
KP-rpoB-qF	rnoB	AAGGCGAATCCAGCTTGTTCAGC	qPCR
KP-rpoB-qR	Προσ	TGACGTTGCATGTTCGCACCCATCA	RT; qPCR

7

8 All source strains are part of the Medicines Company strain collection. Abbreviations of species that served as a source of cloned genes: KP, *Klebsiella pneumoniae*; SM, *Serratia*

9 marcescens; ECL, Enterobacter cloacae, ECM or EC, Escherichia coli; KX, Klebsiella oxytoca; Pa, Pseudomonas aeruginosa; SMM, Stenotrophomonas maltophilia.

10 Sequences corresponding to restriction sites are underlined.

11 qPCR, quantitative PCR; RT, reverse transcription

12

Strains	Beta-lactamase	Parent strain/Recipient	Relevant genotype	Construction/ selection/ source	
KPM1001 (ATCC 43816)	SHV-24 ¹	NA	Wild type	ATCC	
KPM1026a	SHV-24	KPM1001	Wild type	Selected from ATCC 43816 on 200 µg/ml of streptomycin, K88R in S12	
KPM1271	SHV-24, KPC-3, TEM-1 ²	KPM1026a	Wild type	Conjugation of pKpQIL with bla_{KPC-3} from KP1074 into KPM1026a	
KPM1004	SHV-24	ATCC 43816	ramR	Selected from ATCC 43816 on 4 μ g/ml of tigecycline,8bp insertion in <i>ramR</i> causing a frame-shift from amino acid no.46	
KPM1027	SHV-24	KPM1004	ramR	Selected from KP1027 on 200 µg/ml of streptomycin, K43T in S12	
KPM1272	SHV-24, KPC-3, TEM-1	KPM1027	ramR	Conjugation of pKpQIL with <i>bla</i> _{KPC-3} from KP1074 into KPM1027	
KPM1176	SHV-24	KPM1027	ramR, ompK36_1176	Selected from KPM1027 on 0.25 µg/ml of meropenem; carries frame-shift from amino acid no. 266 in OmpK36	
KPM2067	SHV-24, KPC-3, TEM-1	KPM1271	ompK36_2067	Selected from KPM1271 on meropenem 2 μ g/ml and vaborbactam 2 μ g/ml; frame-shift from amino acid no. 54 of OmpK36	
KPM2040	SHV-24	KPM2067	ompK36_2067	pKpQIL plasmid with <i>bla</i> _{KPC-3} cured from KPM2067	
KPM2600	SHV-24	KPM1026a	ΔompK35	ompK35 disrupted in KPM1026a	
KPM2601	SHV-24, KPC-3, TEM-1	KPM2600	∆ompK35	Conjugation of pKpQIL with blaKPC-3 from KP1074 into KPM2600	
KPM2610	SHV-24	KPM1027	ramR ∆ompK35	ompK35 disrupted in KPM1027	
KPM2828	SHV-24, KPC-3, TEM-1	KPM2610	ramR ∆ompK35	Conjugation of pKpQIL with <i>bla</i> _{KPC-3} from KP1074 into KPM2610	
KPM2613	SHV-24	KPM2040	ompK36_2040	ompK35 disrupted in KPM2040	
KPM2631	SHV-24, KPC-3, TEM-1	KPM2613	ompK36_2040 <i>\Delta</i> ompK35	Conjugation of pKpQIL with <i>bla</i> _{KPC-3} from KP1074 into KPM2613	

13 Table S2. The panel of isogenic strains with various combinations of efflux and porin mutations and clinical strains used in this study

KPM2966	SHV-24	KPM2613	ramR ompK36_2040 AompK35	Selected from KPM2613 on 2 µg/ml of tigecycline, TAA
			· · · · · · · · · · · · · · · · · · ·	at amino acid no. 164 of RamR
VDM2065	SHV-24, KPC-3,	KPM2631		Selected from KPM2631 on 4 µg/ml of tigecycline,8bp15
KPM2903	TEM-1		ramR ompK36_2040 ∆ompK35	insertion in <i>ramR</i> causing a frame-shift from amino acid
				no. 50 16
KPM2592	SHV-24	KPM1026a	4 K26	ompK36 disrupted in KPM1026a
			20mpK30	17
KPM2599	SHV-24, KPC-3,	KPM2592	4 1/26	Conjugation of pKpQIL with <i>bla</i> _{KPC-3} from KP1074 into
	TEM-1		⊿отрК36	KPM2592 19
KPM2658	SHV-24	KPM1027		ompK36 disrupted in KPM1027
			ramR ДотрК36	10
KPM2818	SHV-24, KPC-3,	KPM2658		Conjugation of pKpOIL with bla_{KPC-3} from KP1074 into
	TEM-1		ramR ДотрК36	KPM2658 20
KP1074	SHV-11 ³ , KPC-3,	Clinical isolate	K25 6 42 ⁴ K26 GD ⁵	The Medicines Company strain collection 21
	TEM-1		ompK35_fs42*ompK36_GD*	22
KPM1308	SHV-11	KPM1074		pKpOIL plasmid cured from KP1074 and streptomycin ²³
			ompK35_fs42ompK36_GD	resistant mutant was selected 24
KPM2617	SHV-11	KPM1308		<i>ompK36</i> disrupted in KPM1308 25
			ompK35_fs42 \DompK36	26
KPM2644	SHV-11, KPC-3,	KPM2617		Conjugation of pKpQIL with <i>bla</i> _{KPC-3} from KP1074 in
	TEM-1		ompK35_ts42 \DompK36	KPM2617 28
KP1004	SHV-11, KPC-3,	Clinical isolate	ompK35 fs42 ompK36 wild-	The Medicines Company strain collection 29
	TEM-1		type	30

31

32 ¹SHV-24 is a chromosomally encoded beta-lactamase in all ATCC 43816/KPM1026a derivatives

33 ²The *bla*TEM-1 gene is located on pKpQIL plasmid along with bla_{KPC-3}

34 ³SHV-11 is a chromosomally encoded beta-lactamase in KP1074 and KP1004.

35 ⁴ fs42, frame-shift in OmpK35 at amino acid no. 42 that results in non-functional protein

36 ⁵ Duplication of two amino acids, Gly134 and Asp135, located within the L3 internal loop and associated with the reduced susceptibility to carbapenems due to constriction of the

37 channel (29).

38

39

40 Table S3. The effect of varying vaborbactam concentrations on aztreonam MICs in *E. coli* strains expressing various cloned beta-

41 lactamases

		Aztreonam MIC (µg/ml) in the presence of varied concentrations of vaborbactam (µg/ml)								
Strain	Beta-Lactamase	0	0.15	0.3	0.6	1.25	2.5	5	10	MPC ₁₆
ECM6701	KPC-2	16	0.25	≤0.125	≤0.125	≤0.125	≤0.125	≤0.125	≤0.125	<0.15
ECM6702	KPC-3	32	0.5	0.25	≤0.125	≤0.125	≤0.125	≤0.125	≤0.125	<0.15
ECM6696	NMC-A	32	2	1	0.5	0.25	≤0.125	≤0.125	≤0.125	≤0.15
ECM6706	SME-2	>128	4	2	1	0.5	0.25	0.25	≤0.125	<0.15
ECM6695	CTX-M-3	4	1	0.5	0.25	≤0.125	≤0.125	≤0.125	≤0.125	0.6
ECM6693	CTX-M-14	4	1	0.5	0.25	0.25	≤0.125	≤0.125	≤0.125	0.6
ECM6694	CTX-M-15	8	8	4	2	1	0.5	0.25	≤0.125	2.5
ECM6718	SHV-5	16	8	4	2	2	1	0.5	0.25	2.5
ECM6698	SHV-12	32	32	16	16	8	8	4	2	10
ECM6699	SHV-18	8	8	8	4	2	1	0.5	0.25	5
ECM6713	TEM-10	32	32	32	32	16	8	8	2	10
ECM6714	TEM-26	8	8	4	4	2	2	1	1	>10
ECM6700	CMY-2	4	2	2	2	1	0.5	0.25	≤0.125	5
ECMC715	AmpC-ECL (P99-	0	0	0	4	2	1	0.5	0.25	5
ECM0/15	like)	δ	δ	δ	4	⊧ <i>∠</i>	2 1	0.5	0.25	5
ECM6691	MIR-1	16	8	4	2	1	0.5	0.5	0.25	1.25

42 43

3 MPC, minimal potentiation concentration, MPC₁₆, concentration of vaborbactam required to reduce MIC 16-fold.

44 Vaborbactam concentrations are in bold italic.

45	The effect of increasing vaborbactam concentrations on aztreonam MICs in a panel of E. coli clones was determined. The concentration of
46	vaborbactam required to reduce the MIC 16-fold (minimal potentiation concentration, MPC ₁₆) was used as a measure of vaborbactam potency.
47	Table S3 shows that vaborbactam had the highest inhibitory potency in strains producing KPC compared to other class A or C beta-lactamases; the
48	MPC_{16} for these class A carbapenemase-producing strains was $\leq 0.15 \ \mu g/ml$. Vaborbactam was 8- to 32-fold less potent in strains producing
49	ESBLs; the MPC ₁₆ ranged from 0.6 to 2.5 μ g/ml, from 1.25 to 5 μ g/ml and from 5 to >10 μ g/ml for CTX-M-, class C- and SHV/TEM-producing
50	strains, respectively.
51	
52	
53	
54	
55	
56	
57	
58	

59 Table S4. MICs of ceftazidime alone or in combination with vaborbactam against the panel of engineered *E. coli* strains producing

60 various cloned metallo-beta-lactamases

		Ceftazidin	ne MIC (µg/ml)	
Strain	Beta-lactamase	alone	w/vaborbacta 8 µg/ml	m at
ECM6704	none	≤0.125	≤0.125	64
ECM6909	VIM-2	2	2	65
ECM6903	VIM-7	0.25	0.25	
ECM6865	SPM-1	1	1	66
ECM6912	GIM-1	16	16	67
ECM6784	IMP-13	64	64	
ECM6785	IMP-18	>64	>64	68
ECM6786	IMP-15	64	64	
ECM6852	CcrA1	32	32	69
ECM6853	L1	32	32	

70

71

		Strains	
Genes	KPM1026a	KPM1027 ² (ave±stdev)	KPM1176
ompK35	1.00	0.14±0.02	0.14
ompK36	1.00	0.94±0.43	0.44
acrB	1.00	3.11±0.64	3.88
$rpoB^1$	1.00	1.00	1.00

72 Table S5. Relative expression of *acrB*, *ompK35* and *ompK36* in KPM1026a and its derivatives, KPM1027 and KPM1176

73

74 ¹ The expression of *acrB*, *ompK35* and *ompK36* in each strain was normalized with the housekeeping gene *rpoB*. To calculate the level of expression relative to strain KPM1026a,

75 the normalized CT value of a gene in a test strain was subtracted from that of the same gene in KPM1026a, and the difference (Δ CT) was used as a logarithmic power (base=2).

76 2 Data for KPM1027 is the average of 3 tests.