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Standard Model for Neural Ion Dynamics

Rate equations for the membrane potential of the neuron, gating variables for K+ and Na+

channels, ion concentrations inside the neuron, glia, and ECS, and volumes of the neuron,

glia cell, and ECS are based on our previous work [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Here we

describe these equations together with the modifications due to the inclusion of glutamate

dynamics, and the morphology used in this model.

Membrane Model

We refer to the rate equations for the membrane potential and the gating dynamics as the

membrane model. It is a variant of the classical Hodgkin–Huxley (HH) description of the

neural membrane [13, 14]. The membrane has a capacitance Cm and carries a potential V ,

which follows a Kirchhoff law and is governed by the K+, Na+, and Cl− ion currents IK , INa,

and ICl, respectively. In the rate equations below a pump current Ip is also included. It has

an important role in the ion dynamics (see below).

There are leak ion channels and voltage–gated channels that depend on the gating vari-

ables n (K+ activation), m (Na+ inactivation), and h (Na+ activation). The gating dynamics

are given by the HH exponential functions αx and βx (for x ∈ {n,m, h}). The full membrane
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model reads

dV

dt
= − 1

Cm
(INa + IK + ICl + Ip) , (1S)

dn

dt
= φ

(
αn(1− n)− βnn

)
, (2S)

dh

dt
= φ

(
αh(1− h)− βhh

)
, (3S)

with the conventional timescale parameter φ, and an adiabatic approximation for the ex-

tremely fast m–gate:

m = m∞ =
αm

αm + βm
(4S)

The voltage–dependent exponential functions are

αn =
0.01(V + 34)

1− exp(−(V + 34)/10)
, (5S)

βn = 0.125 exp(−(V + 44)/80) , (6S)

αm =
0.1(V + 30)

1− exp(−(V + 30)/10)
, (7S)

βm = 4 exp(−(V + 55)/18) , (8S)

αh = 0.07 exp(−(V + 44)/20) , (9S)

βh =
1

1 + exp(−(V + 14)/10)
. (10S)

These equations were originally adopted from [14] and have been used extensively by us

and other groups. Nevertheless, we have tested in the past that states like seizure, SD, and

anoxic depolarization are robust in the face of different types of formalisms for ion channels

including the Goldman-Hodgkin-Katz formalism [9].

The currents Iion (for ion ∈ {K,Na,Cl}) are all of the form

Iion = gion(V − Eion) . (11S)

with conductances gion that are a combination of leak and gated parts. Leak conductances

and maximal conductances of gated channels are denoted by a superscript l and g, respec-
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tively:

gK = glK + ggKn
4 , (12S)

gNa = glNa + ggNam
3h , (13S)

gCl = glCl . (14S)

The Nernst potentials Eion are given by the ion concentrations ioni/e in the intra–/extracellular

space (ICS and ECS), and the ion valence zion:

Eion =
26.64

zion
ln(ione/ion i) (15S)

The coefficient 26.64 mV can be derived from the ideal gas constant, the absolute tempera-

ture, and Faraday’s constant. In addition to these currents we will also include Na+ and K+

currents through AMPA and NMDA receptor gates. Also glutamate uptake by the neuron

comes with ion cotransport which will be included as well (see below). The conductances

and other parameters defining the membrane model are given in Table A.

We would like to remark that the Hodgkin-Huxley formalism uses linear relationships

for current and voltage (Ohm’s law). Nevertheless, it is well known that the actual current

flowing through ion-selective permeability channels in the neuronal membrane is nonlinear,

rectifying [15], and can be more accurately accounted for using the Goldman-Hodgkin-Katz

(GHK) equations [16]. However, we have previously shown that the two formalisms result

in qualitatively same dynamics under extreme conditions such as seizures and SD [9].

Ion Dynamics, Ion Regulation, and Osmosis

The above introduced currents induce ion fluxes. The changes in the intracellular ion

amounts N ion
i due to these currents follow from converting currents to fluxes by a factor

γ =
Am
F

(16S)
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that depends on the membrane surface area Am and Faraday’s constant F :

dNNa
i

dt
= −γ(INa + 3Ip) , (17S)

dNK
i

dt
= −γ(IK − 2Ip) , (18S)

dNCl
i

dt
= γICl . (19S)

The pump terms Ip account for exchange of intracellular Na+ for extracellular K+ at a

3/2 ratio. Pumping gets stronger when extracellular K+ (Ke) or intracellular Na+ (Nai)

concentrations increase and has a maximal turnover rate ρ:

Ip = ρ

(
1 + exp

(
15− Nai

3

))−1(
1 + exp (5.5−Ke)

)−1
(20S)

Such a straightforward extension of the membrane model to include ion dynamics is found

in many computational studies on SD, stroke and seizure–like brain dynamics [17, 1, 2, 3, 4,

6, 9, 18, 11, 19, 20]

Electroneutrality is important symmetry and is conserved in all compartments. Similarly,

the model also ensures mass conservation in the system. Electroneutrality of the intracellular

space implies that the intracellular charge concentration

Qi := Nai +Ki − Cli = Na0i +K0
i − Cl0i (21S)

is constant. Where Nai, Ki, and Cli are intracellular concentrations of Na+, K+, and

Cl+ respectively. Accordingly Nai, Ki and Cli are not independent, and one of the rate

Eqs. (17S)–(19S) can be replaced by simply solving Eq. (21S) for that variable. Note that

initial physiological resting conditions are denoted by a superscript 0.

Also mass conservation holds and ion concentrations in the ECS follow from values in

the ICS by solving the following constraint equations:

Naiωi + Naeωe = Na0iωi + Na0
eωe , (22S)

Kiωi + Keωe = K0
i ωi + K0

eωe + ∆NK , (23S)

Cliωi + Naeωe = Cl0iωi + Cl0eωe . (24S)
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The extracellular ion amounts follow from mass conservation. Thus we have

NNa,0
e +NNa,0

i = NNa
e +NNa

i −∆NNa
glia , (25S)

NK,0
e +NK,0

i = NK
e +NK

i −∆NK
glia −∆NK

bath , (26S)

NCl,0
e +NCl,0

i = NCl
e +NCl

i −∆NCl
glia . (27S)

The difference terms ∆N ion
glia and ∆NK

bath represent ion exchange with glia cells and an external

K+ bath, respectively. The formulation in terms of these differences has been first proposed

in Ref. [2], where it was also pointed out that particle exchange with external reservoirs is

much slower than transmembrane ion fluxes (see below).

Diffusive coupling to the bath is driven by the concentration difference between the ECS

and the bath:

d∆NK
bath

dt
= λ(Ke −Kbath) (28S)

This coupling scheme is defined by the bath coupling strength λ and the K+ concentration

in the bath Kbath. We are going to model an experimental procedure where brain slices are

perfused with a high K+ solution to initiate SD. In the model this can be done by setting

Kbath to a higher value.

Glial K+ buffering is modelled by assuming a Ke–dependent rate of K+ uptake

λup = λ1

(
1.0 + exp

(
5.5−Ke

2.5

))−1
(29S)

and a constant small re–release rate λrel:

d∆NK
glia

dt
= −λrel + λup

∆NK,max
glia −∆NK

glia

∆NK,max
glia

(30S)

Note that we assume a limited uptake capacity ∆NK,max
glia . Glia swelling will be important

and it is hence necessary to include all glial ion fluxes (see below). The fluxes of Na+ and

Cl− can be approximated by

∆NNa
glia = −0.2∆NK

glia , (31S)

∆NCl
glia = 0.8∆NK

glia . (32S)
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This approximation is motivated by experimental data on glial ion channels and it guarantees

electroneutrality [4]. Both bath coupling and the glial buffering model have been used in

previous studies [17, 4]. The relationship between ∆NNa
glia and ∆NK

glia was derived and justified

previously [4].

During SD neural and glial swelling reduce the ECS to about 25% of its normal value.

This affects all extracellular particle concentrations dramatically. Swelling is driven by osmo-

sis. Ion fluxes create osmotic gradients and cellular volumes adjust to re–establish osmotic

equilibrium between ICS, ECS, and glia. Let us denote the respective volumes by ωi/e/g and

the total amounts of matter by Ni/e/g, for example

Ni = NNa
i +NK

i +NCl
i +NA

i +NX
i . (33S)

This expression contains additional types of particles, namely impermeant anions NA
i and

impermeant neutral matter NX
i . They ensure initial osmotic equilibrium. The equilibrium

is defined by the condition

Ni

ωi
=
Ne

ωe
=
Ng

ωg
=
Ntot

ωtot

⇒ ωi/e/g = Ni/e/g
ωtot

Ntot

, (34S)

where Ntot = Ni + Ne + Ng and ωtot = ωi + ωe + ωg. This relation shows that the volume

of a compartment grows and shrinks with the amount of particles in it, which is why events

with extreme ion fluxes sometimes can lead to strong cellular swelling. Strictly speaking

the above expression for ωi/e/g only gives the equilibrium volumes, which can differ from

the actual volumes, because it takes time for the cells to swell and recover from swelling.

However, it can be shown that for neurons and glia cells volume changes happen nearly

instantaneously [4] and Eq. (34S) is satisfied at all times. We remark that the glial ion

content is not modeled explicitly, but instead we assume an initial content N0
g such that the

glia cell is in balance with the ECS, i.e., N0
g /ω

0
g = N0

e /ω
0
e . The content at later times is then

Ng = N0
g + ∆NNa

glia + ∆NK
glia + ∆NCl

glia . (35S)

Volume changes are sometimes included in SD models. The volume model we chose is not the

commonly used one, but it seems physically more consistent than the more phenomenological

descriptions found in Refs. [21, 20, 6, 9] (for details see Ref. [4]).
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Modifications to the Membrane Potential and Ion Dynamics Due to Glutamate

Dynamics

Please read “Glutamate–Related Processes” section in the main text first for the following

equations to make sense. Uptake of glutamate goes along with ion cotransport [22]. For

the neuron, one molecule of glutamate is accompanied by three Na+ and one Cl−, while it

releases one K+. These contributions can be converted to the cotransport currents

IcoNa =
3

γ
(vc→n + ve→n) , (36S)

IcoCl =
1

γ
(vc→n + ve→n) , (37S)

IcoK =
−1

γ
(vc→n + ve→n) . (38S)

These and the AMPA and NMDA currents must be added to the rate equation for the

membrane potential and those for the ion changes, i.e. we need to replace

INa −→ INa + IAMPA

Na + INMDA

Na + IcoNa (39S)

IK −→ IK + IAMPA

K + INMDA

K + IcoK (40S)

ICl −→ ICl + IcoCl (41S)

in Eqs. (1S) and (17S–19S).

Morphology

Most single–compartment models for neural ion dynamics assume a nearly spherical shape

which resembles a soma rather than a whole neuron. However, glutamate dynamics mostly

involves processes at the dendritic terminals, so this assumption is not appropriate here. For

glutamate dynamics, it is relevant that how many synapses are there, how large the ECS is

and how much membrane surface area is available to take up glutamate from the ECS back

into the cells.

Table B compares values for a soma and a whole neuron including the dendrites. We

use the values of the latter. Moreover we assume glia cells of equal size and an extracellular

volume that corresponds to about 15% of the whole tissue [17, 23, 24]. This is achieved

by assuming volume ratios 3 : 1 : 3 between ICS, ECS, and glia, respectively. Note that the

values given in Table B are initial resting values and will change during SD.
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1. Hübel N, Schöll E, Dahlem MA (2014) Bistable dynamics underlying excitability of

ion homeostasis in neuron models. PLoS Comp Biol 10: e1003551.
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Table A: Parameters for membrane and ion dynamics, and initial concentrations.
Name Value & unit Description
Cm 1 µF/cm2 membrane capacitance
φ 3/msec gating time scale parameter
glNa 0.0135 mS/cm2 Na+ leak cond.
ggNa 100 mS/cm2 max. gated Na+ cond.
glK 0.05 mS/cm2 K+ leak cond.
ggK 40 mS/cm2 max. gated K+ cond.
glCl 0.05 mS/cm2 Cl− leak cond.
F 96,485 C/mol Faraday’s constant
ρ 6.46 µA/cm2 max. pump current
λ 1e–4 /msec bath coupling strength
Kbath 4 mM K+ con. in bath
λ1 1.44e–2 mM/msec glial K+ uptake parameter
λrel 5.1e–3 mM/msec glial K+ release rate

∆NK,max
glia 350 fmol K+ uptake capacity of glia cell

Na0
i 15 mM init. conc. of Na+ in ICS

Na0
e 144 mM init. conc. of Na+ in ECS

K0
i 140 mM init. conc. of K+ in ICS

K0
e 4 mM init. conc. of K+ in ECS

Cl0i 9 mM init. conc. of Cl− in ICS
Cl0e 130 mM init. conc. of Cl− in ECS
Ai 146 mM init. conc. of imperm. anions in ICS
Ae 18 mM init. conc. of imperm. anions in ECS
Xi 5 mM init. conc. of imperm. neutral matter in ICS
Xe 19 mM init. conc. of imperm. neutral matter in ECS
Mg 315 mM init. conc. of all matter in glial compartment
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Table B: Morphological parameters.
Name Value & unit Description
ωi ∼ 2,000 µm3 soma volume

A
(n)
m ∼ 900 µm2 soma membrane surface area

ωi 7,500 µm3 volume of whole neuron
ωg 7,500 µm3 glia volume (equal size as neuron)
ωe 2,500 µm3 ECS volume (∼ 15% of whole tissue)

A
(n)
m 18,000 µm2 neural membrane surface area

A
(g)
m 18,000 µm2 glial membrane surface area
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Table C: Parameters for glutamate–related processes.
Name Value & unit Description
Vcr −50 mV critical potential parameter
Vhi 50 mV high potential parameter
Rmax 1.50e–5 fmol/msec maximal release rate
Nsyn 5000 number of synapses
NG

max 10 fmol glutamate available for signaling
αNMDA 0.072 /(mM×msec) receptor gating constant
βNMDA 0.0066 /msec receptor gating constant
αAMPA 1.1 /(mM×msec) receptor gating constant
βAMPA 0.19 /msec receptor gating constant
gNMDA 0.139 mS/cm2 max. cond. of NMDA rcpt. channel
gAMPA 0.486 mS/cm2 max. cond. of AMPA rcpt. channel
[Mg2+] 1.2 mM external [Mg2+] concentration
r 100 nm cleft radius
h 20 nm cleft height
ωc 1.26e–3 µm3 cleft volume
ωen 3.77e–3 µm3 volume within envelope
Aσ 6.3e–3 µm2 flux cross section area
DG 0.3 µm2/msec glutamate diffusion coefficient
∆x 20 µm distance from cleft to stationary extrac. glutamate conc.
vmax
c→n 0.03 mM/msec maximal glutamate uptake rate (cleft to neuron)
km 0.03 mM equilibration constant for glutamate uptake
krec 0.001 fmol/msec glutamate recycling rate
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Table D: Polarized vs depolarized membrane state.
Name Value & unit Description
EK −40.5 mV K+ Nernst potential
ENa −22.1 mV Na+ Nernst potential
ECl −34.2 mV Cl− Nernst potential
Ip 6.46 µA/cm2 pump current
V −34.2 mV depolarized potential
gK 2.045 mS/cm2 K+ cond. in depolarized state
gNa 1.603 mS/cm2 Na+ cond. in depolarized state
V −92.1 mV hyperpolarized potential
gK 0.050 mS/cm2 K+ cond. in hyperpolarized state
gNa 0.0135 mS/cm2 Na+ cond. in hyperpolarized state
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